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Summary. The article is a translation of the first chapters of a bookWstęp
do teorii liczb (Eng. Introduction to Number Theory) by W. Sierpiński, WSiP,
Biblioteczka Matematyczna, Warszawa, 1987. The first few pages of this book
have already been formalized in MML.We prove the Chinese Remainder Theorem
and Thue’s Theorem as well as several useful number theory propositions.

MML Identifier: WSIERP 1.

The terminology and notation used in this paper are introduced in the following

articles: [20], [16], [9], [14], [18], [1], [10], [13], [12], [15], [11], [17], [21], [6], [7],

[2], [5], [3], [8], [4], and [19].

For simplicity, we follow the rules: x, y, z, w denote real numbers, a, b, c, d,

e, f , g denote natural numbers, k, l, m, n, m1, n1 denote integers, and q denotes

a rational number.

The following propositions are true:

(1) If y 6= 0, then (x
y
)a = xa

ya
.

(2) x2 = x · x and (−x)2 = x2.

(3) (−x)2·a = x2·a and (−x)2·a+1 = −x2·a+1.

(4) If x 6= 0, then xa
Z

= xa.

(5) If x ­ 0 and y ­ 0 and d > 0 and xd = yd, then x = y.

(6) x > max(y, z) iff x > y and x > z.

(7) If x ¬ 0 and y ­ z, then y − x ­ z and y ­ z + x.

(8) If x ¬ 0 and y > z or x < 0 and y ­ z, then y > z + x and y − x > z.

Let us consider a, b. Then gcd(a, b) is a natural number. Let us observe that

the functor gcd(a, b) is commutative.

Let us consider m, n. Then m gcdn is an integer. Let us observe that the

functor m gcdn is commutative.
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Let us consider k, a. Then ka is an integer.

Let us consider a, b. Then ab is a natural number.

We now state a number of propositions:

(9) If k | m and k | n, then k | m + n.

(10) If k | m and k | n, then k | m ·m1 + n · n1.

(11) If m gcdn = 1 and k gcdn = 1, then m · k gcdn = 1.

(12) If gcd(a, b) = 1 and gcd(c, b) = 1, then gcd(a · c, b) = 1.

(13) 0 gcdm = |m| and 1 gcdm = 1.

(14) 1 and k are relative prime.

(15) If k and l are relative prime, then ka and l are relative prime.

(16) If k and l are relative prime, then ka and lb are relative prime.

(17) If k gcd l = 1, then k gcd lb = 1 and ka gcd lb = 1.

(18) |m| | k iff m | k.

(19) If a | b, then ac | bc.

(20) If a | 1, then a = 1.

(21) If d | a and gcd(a, b) = 1, then gcd(d, b) = 1.

(22) If k 6= 0, then k | l iff l
k
is an integer.

(23) If a ¬ b− c, then a ¬ b and c ¬ b.

In the sequel f1, f2, f3 are finite sequences.

Next we state two propositions:

(24) If a ∈ Seg len f2, then a ∈ Seg len(f2
a f3).

(25) If a ∈ Seg len f3, then len f2 + a ∈ Seg len(f2
a f3).

Let f4 be a finite sequence of elements of R and let us consider a. Then f4(a)

is a real number.

Let f5 be a finite sequence of elements of Z and let us consider a. Then f5(a)

is an integer.

Let f6 be a finite sequence of elements of N and let us consider a. Then f6(a)

is a natural number.

Let D be a non empty set and let D1 be a non empty subset of D. We see

that the finite sequence of elements of D1 is a finite sequence of elements of D.

Let D be a non empty set, let D1 be a non empty subset of D, and let f7,

f8 be finite sequences of elements of D1. Then f7
a f8 is a finite sequence of

elements of D1.

Let D be a non empty set and let D1 be a non empty subset of D. Then

ε(D1) is an empty finite sequence of elements of D1.

Z is a non empty subset of R.

For simplicity, we adopt the following convention: D, D1 are non empty

sets, v1, v2, v3 are sets, f6 is a finite sequence of elements of N, f5, f9 are finite

sequences of elements of Z, and f4 is a finite sequence of elements of R.
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Let us consider f5. Then
∑

f5 is an integer. Then
∏

f5 is an integer.

Let us consider f6. Then
∑

f6 is a natural number. Then
∏

f6 is a natural

number.

Let us consider a, f1. The functor f1∼a yielding a finite sequence is defined

as follows:

(Def. 1)(i) f1∼a = f1 if a /∈ dom f1,

(ii) len(f1∼a) + 1 = len f1 and for every b holds if b < a, then (f1∼a)(b) =

f1(b) and if b ­ a, then (f1∼a)(b) = f1(b + 1), otherwise.

Let us considerD, let us consider a, and let f1 be a finite sequence of elements

of D. Then f1∼a is a finite sequence of elements of D.

Let us consider D, let D1 be a non empty subset of D, let us consider a, and

let f1 be a finite sequence of elements of D1. Then f1∼a is a finite sequence of

elements of D1.

One can prove the following propositions:

(26) 〈v1〉∼1 = ε and 〈v1, v2〉∼1 = 〈v2〉 and 〈v1, v2〉∼2 = 〈v1〉 and 〈v1, v2,

v3〉∼1 = 〈v2, v3〉 and 〈v1, v2, v3〉∼2 = 〈v1, v3〉 and 〈v1, v2, v3〉∼3 = 〈v1, v2〉.
(27) If 1 ¬ a and a ¬ len f4, then

∑
(f4∼a) + f4(a) =

∑
f4.

(28) If a ∈ Seg len f6 and f6(a) 6= 0, then
∏

f6

f6(a) is a natural number.

(29) num q and den q are relative prime.

(30) If q 6= 0 and q = k
a
and a 6= 0 and k and a are relative prime, then

k = num q and a = den q.

(31) If there exists q such that a = qb, then there exists k such that a = kb.

(32) If there exists q such that a = qd, then there exists b such that a = bd.

(33) If e > 0 and ae | be, then a | b.
(34) There exist m, n such that gcd(a, b) = a ·m + b · n.

(35) There exist m1, n1 such that m gcdn = m ·m1 + n · n1.

(36) If m | n · k and m gcdn = 1, then m | k.

(37) If gcd(a, b) = 1 and a | b · c, then a | c.
(38) If a 6= 0 and b 6= 0, then there exist c, d such that gcd(a, b) = a · c− b · d.

(39) If f > 0 and g > 0 and gcd(f, g) = 1 and af = bg, then there exists e

such that a = eg and b = ef .

In the sequel x, y, z, t denote integers.

Next we state several propositions:

(40) There exist x, y such that m · x + n · y = k iff m gcdn | k.

(41) Suppose m 6= 0 and n 6= 0 and m ·m1 + n · n1 = k. Let given x, y. If

m · x + n · y = k, then there exists t such that x = m1 + t · n
m gcdn

and

y = n1 − t · m
m gcdn

.

(42) If gcd(a, b) = 1 and a · b = cd, then there exist e, f such that a = ed and

b = fd.
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(43) For every d such that for every a such that a ∈ Seg len f6 holds

gcd(f6(a), d) = 1 holds gcd(
∏

f6, d) = 1.

(44) Suppose len f6 ­ 2 and for all b, c such that b ∈ Seg len f6 and c ∈
Seg len f6 and b 6= c holds gcd(f6(b), f6(c)) = 1. Let given f5. Suppose

len f5 = len f6. Then there exists f9 such that len f9 = len f6 and for every

b such that b ∈ Seg len f6 holds f6(b) · f9(b) + f5(b) = f6(1) · f9(1) + f5(1).

(45) If x < y and z ­ w or x ¬ y and z > w or x < y and z > w, then

x− z < y − w.

(46) If a 6= 0 and a gcd k = 1, then there exist b, e such that 0 6= b and 0 6= e

and b ¬ √a and e ¬ √a and a | k · b + e or a | k · b− e.
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