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The articles [5], [6], [2], [8], [7], [3], [1], [4], and [9] provide the notation and

terminology for this paper.

1. Preliminaries

One can verify that there exists a non empty category structure which is

transitive, associative, and strict and has units.

Let A be a non empty transitive category structure and let B be a non empty

category structure with units. One can verify that there exists a functor struc-

ture from A to B which is strict, comp-preserving, comp-reversing, precovariant,

precontravariant, and feasible.

Let A be a transitive non empty category structure with units and let B be

a non empty category structure with units. Observe that there exists a functor

structure from A to B which is strict, comp-preserving, comp-reversing, preco-

variant, precontravariant, feasible, and id-preserving.

Let A be a transitive non empty category structure with units and let B be

a non empty category structure with units. Observe that there exists a functor

from A to B which is strict, feasible, covariant, and contravariant.

Next we state several propositions:

(1) Let C be a category, o1, o2, o3, o4 be objects of C, a be a morphism from

o1 to o2, b be a morphism from o2 to o3, c be a morphism from o1 to o4,

and d be a morphism from o4 to o3. Suppose b ·a = d ·c and a ·a−1 = id(o2)
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and d−1 · d = id(o4) and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and 〈o2, o3〉 6= ∅ and

〈o3, o4〉 6= ∅ and 〈o4, o3〉 6= ∅. Then c · a−1 = d−1 · b.

(2) Let A be a non empty transitive category structure, B, C be non empty

category structures with units, F be a feasible precovariant functor struc-

ture from A to B, G be a functor structure from B to C, and o, o1 be

objects of A. Then Morph-MapG·F (o, o1) = Morph-MapG(F (o), F (o1)) ·

Morph-MapF (o, o1).

(3) Let A be a non empty transitive category structure, B, C be non empty

category structures with units, F be a feasible precontravariant functor

structure from A to B, G be a functor structure from B to C, and o, o1 be

objects of A. Then Morph-MapG·F (o, o1) = Morph-MapG(F (o1), F (o)) ·

Morph-MapF (o, o1).

(4) Let A be a non empty transitive category structure, B be a non empty

category structure with units, and F be a feasible precovariant functor

structure from A to B. Then idB · F = the functor structure of F .

(5) Let A be a transitive non empty category structure with units, B be a

non empty category structure with units, and F be a feasible precovariant

functor structure from A to B. Then F · idA = the functor structure of F .

For simplicity, we use the following convention: A denotes a non empty cate-

gory structure, B, C denote non empty reflexive category structures, F denotes

a feasible precovariant functor structure from A to B, G denotes a feasible pre-

covariant functor structure from B to C, M denotes a feasible precontravariant

functor structure from A to B, N denotes a feasible precontravariant functor

structure from B to C, o1, o2 denote objects of A, and m denotes a morphism

from o1 to o2.

The following four propositions are true:

(6) If 〈o1, o2〉 6= ∅, then (G · F )(m) = G(F (m)).

(7) If 〈o1, o2〉 6= ∅, then (N ·M)(m) = N(M(m)).

(8) If 〈o1, o2〉 6= ∅, then (N · F )(m) = N(F (m)).

(9) If 〈o1, o2〉 6= ∅, then (G ·M)(m) = G(M(m)).

Let A be a non empty transitive category structure, let B be a transitive non

empty category structure with units, let C be a non empty category structure

with units, let F be a feasible precovariant comp-preserving functor structure

from A to B, and let G be a feasible precovariant comp-preserving functor

structure from B to C. One can check that G · F is comp-preserving.

Let A be a non empty transitive category structure, let B be a transitive non

empty category structure with units, let C be a non empty category structure

with units, let F be a feasible precontravariant comp-reversing functor structure

from A to B, and let G be a feasible precontravariant comp-reversing functor

structure from B to C. One can check that G · F is comp-preserving.
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Let A be a non empty transitive category structure, let B be a transitive non

empty category structure with units, let C be a non empty category structure

with units, let F be a feasible precovariant comp-preserving functor structure

from A to B, and let G be a feasible precontravariant comp-reversing functor

structure from B to C. One can verify that G · F is comp-reversing.

Let A be a non empty transitive category structure, let B be a transitive non

empty category structure with units, let C be a non empty category structure

with units, let F be a feasible precontravariant comp-reversing functor structure

from A to B, and let G be a feasible precovariant comp-preserving functor

structure from B to C. One can verify that G · F is comp-reversing.

Let A, B be transitive non empty category structures with units, let C be

a non empty category structure with units, let F be a covariant functor from

A to B, and let G be a covariant functor from B to C. Then G · F is a strict

covariant functor from A to C.

Let A, B be transitive non empty category structures with units, let C be a

non empty category structure with units, let F be a contravariant functor from

A to B, and let G be a contravariant functor from B to C. Then G ·F is a strict

covariant functor from A to C.

Let A, B be transitive non empty category structures with units, let C be a

non empty category structure with units, let F be a covariant functor from A

to B, and let G be a contravariant functor from B to C. Then G · F is a strict

contravariant functor from A to C.

Let A, B be transitive non empty category structures with units, let C be a

non empty category structure with units, let F be a contravariant functor from

A to B, and let G be a covariant functor from B to C. Then G · F is a strict

contravariant functor from A to C.

For simplicity, we adopt the following convention: A, B, C, D are transitive

non empty category structures with units, F1, F2, F3 are covariant functors from

A to B, G1, G2, G3 are covariant functors from B to C, H1, H2 are covariant

functors from C to D, p is a transformation from F1 to F2, p1 is a transformation

from F2 to F3, q is a transformation from G1 to G2, q1 is a transformation from

G2 to G3, and r is a transformation from H1 to H2.

The following proposition is true

(10) If F1 is transformable to F2 and G1 is transformable to G2, then G1 ·F1

is transformable to G2 · F2.

2. The Composition of Functors with Transformations

Let A, B, C be transitive non empty category structures with units, let F1,

F2 be covariant functors from A to B, let t be a transformation from F1 to
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F2, and let G be a covariant functor from B to C. Let us assume that F1 is

transformable to F2. The functor G · t yields a transformation from G · F1 to

G · F2 and is defined as follows:

(Def. 1) For every object o of A holds (G · t)(o) = G(t[o]).

Next we state the proposition

(11) For every object o of A such that F1 is transformable to F2 holds (G1 ·

p)[o] = G1(p[o]).

Let A, B, C be transitive non empty category structures with units, let G1,

G2 be covariant functors from B to C, let F be a covariant functor from A

to B, and let s be a transformation from G1 to G2. Let us assume that G1 is

transformable to G2. The functor s ·F yielding a transformation from G1 ·F to

G2 · F is defined by:

(Def. 2) For every object o of A holds (s · F )(o) = s[F (o)].

Next we state a number of propositions:

(12) For every object o of A such that G1 is transformable to G2 holds (q ·

F1)[o] = q[F1(o)].

(13) If F1 is transformable to F2 and F2 is transformable to F3, then G1 · (p1
◦

p) = G1 · p1
◦ G1 · p.

(14) If G1 is transformable to G2 and G2 is transformable to G3, then (q1
◦

q) · F1 = q1 · F1
◦ q · F1.

(15) If H1 is transformable to H2, then (r ·G1) · F1 = r · (G1 · F1).

(16) If G1 is transformable to G2, then (H1 · q) · F1 = H1 · (q · F1).

(17) If F1 is transformable to F2, then (H1 ·G1) · p = H1 · (G1 · p).

(18) id(G1) ·F1 = idG1·F1
.

(19) G1 · id(F1) = idG1·F1
.

(20) If F1 is transformable to F2, then idB · p = p.

(21) If G1 is transformable to G2, then q · idB = q.

3. The Composition of Transformations

Let A, B, C be transitive non empty category structures with units, let F1,

F2 be covariant functors from A to B, let G1, G2 be covariant functors from B

to C, let t be a transformation from F1 to F2, and let s be a transformation

from G1 to G2. The functor s t yielding a transformation from G1 ·F1 to G2 ·F2

is defined as follows:

(Def. 3) s t = s · F2
◦ G1 · t.

The following propositions are true:
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(22) Let q be a natural transformation from G1 to G2. Suppose F1 is trans-

formable to F2 and G1 is naturally transformable to G2. Then q p =

G2 · p ◦ q · F1.

(23) If F1 is transformable to F2, then ididB p = p.

(24) If G1 is transformable to G2, then q ididB = q.

(25) If F1 is transformable to F2, then G1 · p = id(G1) p.

(26) If G1 is transformable to G2, then q · F1 = q id(F1) .

We use the following convention: A, B, C, D are categories, F1, F2, F3 are

covariant functors from A to B, and G1, G2, G3 are covariant functors from B

to C.

One can prove the following proposition

(27) LetH1,H2 be covariant functors from C toD, t be a transformation from

F1 to F2, s be a transformation from G1 to G2, and u be a transformation

from H1 to H2. Suppose F1 is transformable to F2 and G1 is transformable

to G2 and H1 is transformable to H2. Then (u s) t = u (s t).

In the sequel t denotes a natural transformation from F1 to F2, s denotes a

natural transformation from G1 to G2, and s1 denotes a natural transformation

from G2 to G3.

One can prove the following propositions:

(28) If F1 is naturally transformable to F2, then G1 · t is a natural transfor-

mation from G1 · F1 to G1 · F2.

(29) If G1 is naturally transformable to G2, then s · F1 is a natural transfor-

mation from G1 · F1 to G2 · F1.

(30) Suppose F1 is naturally transformable to F2 and G1 is naturally trans-

formable to G2. Then G1 ·F1 is naturally transformable to G2 ·F2 and s t

is a natural transformation from G1 · F1 to G2 · F2.

(31) Let t be a transformation from F1 to F2 and t1 be a transformation from

F2 to F3. Suppose that

(i) F1 is naturally transformable to F2,

(ii) F2 is naturally transformable to F3,

(iii) G1 is naturally transformable to G2, and

(iv) G2 is naturally transformable to G3.

Then (s1
◦ s) (t1 ◦ t) = s1 t1 ◦ s t.

4. Natural Equivalences

One can prove the following proposition

(32) Suppose F1 is naturally transformable to F2 and F2 is transformable to

F1 and for every object a of A holds t[a] is iso. Then
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(i) F2 is naturally transformable to F1, and

(ii) there exists a natural transformation f from F2 to F1 such that for

every object a of A holds f(a) = t[a]−1 and f [a] is iso.

Let A, B be categories and let F1, F2 be covariant functors from A to B. We

say that F1, F2 are naturally equivalent if and only if the conditions (Def. 4)

are satisfied.

(Def. 4)(i) F1 is naturally transformable to F2,

(ii) F2 is transformable to F1, and

(iii) there exists a natural transformation t from F1 to F2 such that for

every object a of A holds t[a] is iso.

Let us notice that the predicate F1, F2 are naturally equivalent is reflexive and

symmetric.

Let A, B be categories and let F1, F2 be covariant functors from A to B.

Let us assume that F1, F2 are naturally equivalent. A natural transformation

from F1 to F2 is said to be a natural equivalence of F1 and F2 if:

(Def. 5) For every object a of A holds it[a] is iso.

In the sequel e is a natural equivalence of F1 and F2, e1 is a natural equiva-

lence of F2 and F3, and f is a natural equivalence of G1 and G2.

One can prove the following propositions:

(33) Suppose F1, F2 are naturally equivalent and F2, F3 are naturally equ-

ivalent. Then F1, F3 are naturally equivalent.

(34) Suppose F1, F2 are naturally equivalent and F2, F3 are naturally equ-

ivalent. Then e1
◦ e is a natural equivalence of F1 and F3.

(35) Suppose F1, F2 are naturally equivalent. ThenG1·F1, G1·F2 are naturally

equivalent and G1 · e is a natural equivalence of G1 · F1 and G1 · F2.

(36) Suppose G1, G2 are naturally equivalent. Then G1 ·F1, G2 ·F1 are natu-

rally equivalent and f · F1 is a natural equivalence of G1 · F1 and G2 · F1.

(37) Suppose F1, F2 are naturally equivalent and G1, G2 are naturally equ-

ivalent. Then G1 ·F1, G2 ·F2 are naturally equivalent and f e is a natural

equivalence of G1 · F1 and G2 · F2.

Let A, B be categories, let F1, F2 be covariant functors from A to B, and

let e be a natural equivalence of F1 and F2. Let us assume that F1, F2 are

naturally equivalent. The functor e−1 yielding a natural equivalence of F2 and

F1 is defined as follows:

(Def. 6) For every object a of A holds e−1(a) = e[a]−1.

The following propositions are true:

(38) For every object o of A such that F1, F2 are naturally equivalent holds

e−1[o] = e[o]−1.

(39) If F1, F2 are naturally equivalent, then e ◦ e−1 = id(F2) .
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(40) If F1, F2 are naturally equivalent, then e−1 ◦ e = id(F1) .

Let A, B be categories and let F be a covariant functor from A to B. Then

idF is a natural equivalence of F and F .

The following three propositions are true:

(41) If F1, F2 are naturally equivalent, then (e−1)−1 = e.

(42) Let k be a natural equivalence of F1 and F3. Suppose k = e1
◦ e and

F1, F2 are naturally equivalent and F2, F3 are naturally equivalent. Then

k−1 = e−1 ◦ e1
−1.

(43) (id(F1))
−1 = id(F1) .
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