Bounding Boxes for Special Sequences in \mathcal{E}^2

Yatsuka Nakamura Shinshu University Nagano

Adam Grabowski¹ University of Białystok

Summary. This is the continuation of the proof of the Jordan Theorem according to [18].

MML Identifier: JORDAN5D.

The articles [16], [8], [6], [2], [21], [20], [5], [3], [12], [13], [15], [9], [1], [14], [17], [4], [23], [11], [10], [22], [19], and [7] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we use the following convention: p, q denote points of $\mathcal{E}_{\mathrm{T}}^2$, s, r denote real numbers, h denotes a non constant standard special circular sequence, g denotes a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, f denotes a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, and I, i, j, k denote natural numbers.

We now state a number of propositions:

- (1) Let B be a subset of \mathbb{R} . Suppose there exists a real number r_1 such that $r_1 \in B$ and B is lower bounded and for every r such that $r \in B$ holds $s \leq r$. Then $s \leq \inf B$.
- (2) Let B be a subset of \mathbb{R} . Suppose there exists a real number r_1 such that $r_1 \in B$ and B is upper bounded and for every r such that $r \in B$ holds $s \ge r$. Then $s \ge \sup B$.
- (3) $\pi_{\operatorname{len} h} h \in \mathcal{L}(h, \operatorname{len} h -' 1).$

¹A part of this paper was written while the author visited the Shinshu University in the winter of 1997.

- (4) If $3 \le i$, then $i \mod (i 1) = 1$.
- (5) If $p \in \operatorname{rng} h$, then there exists a natural number i such that $1 \leq i$ and $i+1 \leq \operatorname{len} h$ and h(i)=p.
- (6) For every finite sequence g of elements of \mathbb{R} such that $r \in \operatorname{rng} g$ holds $(\operatorname{Inc}(g))(1) \leqslant r$ and $r \leqslant (\operatorname{Inc}(g))(\operatorname{len}\operatorname{Inc}(g))$.
- (7) Suppose $1 \le i$ and $i \le \text{len } h$ and $1 \le I$ and $I \le \text{width the Go-board of } h$. Then ((the Go-board of h)_{1,I})₁ $\le (\pi_i h)_1$ and $(\pi_i h)_1 \le (\text{the Go-board of } h)_{\text{len the Go-board of } h, I})_1$.
- (8) Suppose $1 \leqslant i$ and $i \leqslant \text{len } h$ and $1 \leqslant I$ and $I \leqslant \text{len the Goboard of } h$. Then ((the Go-board of h)_{I,1})_{$\mathbf{2}$} $\leqslant (\pi_i h)_{\mathbf{2}}$ and $(\pi_i h)_{\mathbf{2}} \leqslant (\text{the Go-board of } h)_{I,\text{width the Go-board of } h)_{\mathbf{2}}$.
- (9) Suppose $1 \leq i$ and $i \leq len the Go-board of <math>f$. Then there exist k, j such that $k \in \text{dom } f$ and $\langle i, j \rangle \in \text{the indices of the Go-board of } f$ and $\pi_k f = (\text{the Go-board of } f)_{i,j}$.
- (10) Suppose $1 \leq j$ and $j \leq$ width the Go-board of f. Then there exist k, i such that $k \in \text{dom } f$ and $\langle i, j \rangle \in \text{the indices of the Go-board of } f$ and $\pi_k f = (\text{the Go-board of } f)_{i,j}$.
- (11) Suppose $1 \le i$ and $i \le len$ the Go-board of f and $1 \le j$ and $j \le width$ the Go-board of f. Then there exists k such that $k \in \text{dom } f$ and $\langle i, j \rangle \in \text{the}$ indices of the Go-board of f and $(\pi_k f)_1 = (\text{the Go-board of } f)_{i,j})_1$.
- (12) Suppose $1 \le i$ and $i \le len$ the Go-board of f and $1 \le j$ and $j \le width$ the Go-board of f. Then there exists k such that $k \in \text{dom } f$ and $\langle i, j \rangle \in \text{the}$ indices of the Go-board of f and $(\pi_k f)_2 = (\text{the Go-board of } f)_{i,j})_2$.

2. Extrema of Projections

One can prove the following propositions:

- (13) If $1 \leqslant i$ and $i \leqslant \text{len } h$, then S-bound $\widetilde{\mathcal{L}}(h) \leqslant (\pi_i h)_2$ and $(\pi_i h)_2 \leqslant N$ -bound $\widetilde{\mathcal{L}}(h)$.
- (14) If $1 \leqslant i$ and $i \leqslant \text{len } h$, then W-bound $\widetilde{\mathcal{L}}(h) \leqslant (\pi_i h)_1$ and $(\pi_i h)_1 \leqslant \text{E-bound } \widetilde{\mathcal{L}}(h)$.
- (15) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{W-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj}2 \upharpoonright \text{W-most } \widetilde{\mathcal{L}}(h))^{\circ}$ (the carrier of $(\mathcal{E}_{\mathbb{T}}^2) \upharpoonright \text{W-most } \widetilde{\mathcal{L}}(h)$).
- (16) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{E-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj}2 \upharpoonright \text{E-most } \widetilde{\mathcal{L}}(h))^{\circ} \text{(the carrier of } (\mathcal{E}_{\mathrm{T}}^2) \upharpoonright \text{E-most } \widetilde{\mathcal{L}}(h)).$
- (17) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{N-bound } \mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj1} \upharpoonright \text{N-most } \widetilde{\mathcal{L}}(h))^{\circ}(\text{the carrier of } (\mathcal{E}^2_{\mathbb{T}}) \upharpoonright \text{N-most } \widetilde{\mathcal{L}}(h)).$

- (18) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{S-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj1} \upharpoonright \text{S-most } \widetilde{\mathcal{L}}(h))^{\circ} \text{(the carrier of } (\mathcal{E}^2_T) \upharpoonright \text{S-most } \widetilde{\mathcal{L}}(h)).$
- (19) For every subset X of \mathbb{R} such that $X = \{q_1 : q \in \widetilde{\mathcal{L}}(g)\}$ holds $X = (\operatorname{proj1} \upharpoonright \widetilde{\mathcal{L}}(g))^{\circ}$ (the carrier of $(\mathcal{E}_{\mathcal{T}}^2) \upharpoonright \widetilde{\mathcal{L}}(g)$).
- (20) For every subset X of \mathbb{R} such that $X = \{q_2 : q \in \widetilde{\mathcal{L}}(g)\}$ holds $X = (\operatorname{proj2} \upharpoonright \widetilde{\mathcal{L}}(g))^{\circ}$ (the carrier of $(\mathcal{E}_{\mathcal{T}}^2) \upharpoonright \widetilde{\mathcal{L}}(g)$).
- (21) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{W-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds inf $X = \inf(\text{proj}2 \upharpoonright \text{W-most } \widetilde{\mathcal{L}}(h))$.
- (22) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{W-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\text{proj}2 \upharpoonright \text{W-most } \widetilde{\mathcal{L}}(h)).$
- (23) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{E-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds inf $X = \inf(\text{proj} 2 \mid \text{E-most } \widetilde{\mathcal{L}}(h))$.
- (24) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{E-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\text{proj2} \upharpoonright \text{E-most } \widetilde{\mathcal{L}}(h)).$
- (25) For every subset X of \mathbb{R} such that $X = \{q_1 : q \in \widetilde{\mathcal{L}}(g)\}$ holds inf $X = \inf(\operatorname{proj} 1 \upharpoonright \widetilde{\mathcal{L}}(g))$.
- (26) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{S-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds inf $X = \inf(\text{proj}1 \upharpoonright \text{S-most } \widetilde{\mathcal{L}}(h))$.
- (27) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{S-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\text{proj1} \upharpoonright \text{S-most } \widetilde{\mathcal{L}}(h)).$
- (28) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \mathbb{N}\text{-bound }\mathcal{L}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds inf $X = \inf(\text{proj}1 \upharpoonright \mathbb{N}\text{-most }\widetilde{\mathcal{L}}(h))$.
- (29) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{N-bound } \widetilde{\mathcal{L}}(h) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\text{proj1} \upharpoonright \text{N-most } \widetilde{\mathcal{L}}(h)).$
- (30) For every subset X of \mathbb{R} such that $X = \{q_2 : q \in \mathcal{L}(g)\}$ holds inf $X = \inf(\text{proj}2 \upharpoonright \mathcal{L}(g))$.
- (31) For every subset X of \mathbb{R} such that $X = \{q_1 : q \in \mathcal{L}(g)\}$ holds $\sup X = \sup(\operatorname{proj} 1 \upharpoonright \widetilde{\mathcal{L}}(g))$.
- (32) For every subset X of \mathbb{R} such that $X = \{q_2 : q \in \widehat{\mathcal{L}}(g)\}$ holds $\sup X = \sup(\operatorname{proj2} \upharpoonright \widehat{\mathcal{L}}(g))$.
- (33) If $p \in \mathcal{L}(h)$ and $1 \leqslant I$ and $I \leqslant$ width the Go-board of h, then ((the Go-board of h)_{1,I})₁ $\leqslant p_1$.
- (34) If $p \in \widetilde{\mathcal{L}}(h)$ and $1 \leqslant I$ and $I \leqslant$ width the Go-board of h, then $p_1 \leqslant$ ((the Go-board of h)_{len the Go-board of h, I)₁.}
- (35) If $p \in \widetilde{\mathcal{L}}(h)$ and $1 \leqslant I$ and $I \leqslant lenthe$ Go-board of h, then ((the Go-board of h)_{I,1})_{$\mathbf{2}$} $\leqslant p_{\mathbf{2}}$.
- (36) If $p \in \mathcal{L}(h)$ and $1 \leq I$ and $I \leq len$ the Go-board of h, then $p_2 \leq ((\text{the Go-board of } h)_{I,\text{width the Go-board of } h})_2$.

- (37) Suppose $1 \leqslant i$ and $i \leqslant len the Go-board of <math>h$ and $1 \leqslant j$ and $j \leqslant width the Go-board of <math>h$. Then there exists q such that $q_1 = ((the Go-board of h)_{i,j})_1$ and $q \in \widetilde{\mathcal{L}}(h)$.
- (38) Suppose $1 \leqslant i$ and $i \leqslant len the Go-board of <math>h$ and $1 \leqslant j$ and $j \leqslant width the Go-board of <math>h$. Then there exists q such that $q_2 = ((the Go-board of <math>h)_{i,j})_2$ and $q \in \widetilde{\mathcal{L}}(h)$.
- (39) W-bound $\widetilde{\mathcal{L}}(h) = ((\text{the Go-board of } h)_{1,1})_{\mathbf{1}}.$
- (40) S-bound $\widetilde{\mathcal{L}}(h) = ((\text{the Go-board of } h)_{1,1})_2.$
- (41) E-bound $\widetilde{\mathcal{L}}(h) = ((\text{the Go-board of } h)_{\text{lenthe Go-board of } h, 1})_1.$
- (42) N-bound $\mathcal{L}(h) = ((\text{the Go-board of } h)_{1,\text{width the Go-board of } h})_2.$
- (43) Let Y be a non empty finite subset of \mathbb{N} . Suppose that
 - (i) $1 \leqslant i$,
 - (ii) $i \leq \text{len } f$,
- (iii) $1 \leq I$,
- (iv) $I \leq \text{len the Go-board of } f$,
- (v) $Y = \{j : \langle I, j \rangle \in \text{the indices of the Go-board of } f \land \bigvee_k (k \in \text{dom } f \land \pi_k f = (\text{the Go-board of } f)_{I,j})\},$
- (vi) $(\pi_i f)_1 = ((\text{the Go-board of } f)_{I,1})_1, \text{ and }$
- (vii) $i_1 = \min Y$.

Then ((the Go-board of f)_{I,i_1})_{$\mathbf{2}$} $\leqslant (\pi_i f)_{\mathbf{2}}$.

- (44) Let Y be a non empty finite subset of \mathbb{N} . Suppose that
 - (i) $1 \leqslant i$,
 - (ii) $i \leq \operatorname{len} h$,
- (iii) $1 \leq I$,
- (iv) $I \leq \text{width the Go-board of } h$,
- (v) $Y = \{j : \langle j, I \rangle \in \text{the indices of the Go-board of } h \land \bigvee_k (k \in \text{dom } h \land \pi_k h = (\text{the Go-board of } h)_{j,I})\},$
- (vi) $(\pi_i h)_2 = ((\text{the Go-board of } h)_{1,I})_2, \text{ and }$
- (vii) $i_1 = \min Y$.

Then ((the Go-board of h)_{i_1,I})₁ $\leq (\pi_i h)_{1}$.

- (45) Let Y be a non empty finite subset of \mathbb{N} . Suppose that
 - (i) $1 \leqslant i$,
 - (ii) $i \leq \operatorname{len} h$,
- (iii) $1 \leq I$,
- (iv) $I \leq \text{width the Go-board of } h$,
- (v) $Y = \{j : \langle j, I \rangle \in \text{the indices of the Go-board of } h \land \bigvee_k (k \in \text{dom } h \land \pi_k h = (\text{the Go-board of } h)_{j,I})\},$
- (vi) $(\pi_i h)_2 = (\text{the Go-board of } h)_{1,I})_2$, and
- (vii) $i_1 = \max Y$.

Then ((the Go-board of h)_{i_1,I})_{$\mathbf{1}$} $\geqslant (\pi_i h)_{\mathbf{1}}$.

- (46) Let Y be a non empty finite subset of \mathbb{N} . Suppose that
 - (i) $1 \leqslant i$,
 - (ii) $i \leq \operatorname{len} f$,
- (iii) $1 \leqslant I$,
- (iv) $I \leq \text{len the Go-board of } f$,
- (v) $Y = \{j : \langle I, j \rangle \in \text{ the indices of the Go-board of } f \land \bigvee_k (k \in \text{dom } f \land \pi_k f = (\text{the Go-board of } f)_{I,j})\},$
- (vi) $(\pi_i f)_1 = ((\text{the Go-board of } f)_{I,1})_1, \text{ and }$
- (vii) $i_1 = \max Y$.

Then ((the Go-board of f)_{I,i_1})_{$\mathbf{2}$} $\geqslant (\pi_i f)_{\mathbf{2}}$.

3. COORDINATES OF THE SPECIAL CIRCULAR SEQUENCES BOUNDING BOXES

Let g be a non constant standard special circular sequence. The functor $i_{SW} g$ yields a natural number and is defined as follows:

(Def. 1) $\langle 1, i_{SW} g \rangle \in \text{the indices of the Go-board of } g \text{ and (the Go-board of } g)_{1,i_{SW} g} = \text{W-min } \widetilde{\mathcal{L}}(g).$

The functor $i_{NW} g$ yields a natural number and is defined by:

(Def. 2) $\langle 1, i_{\text{NW}} g \rangle \in \text{the indices of the Go-board of } g \text{ and (the Go-board of } g)_{1,i_{\text{NW}}g} = \text{W-max } \widetilde{\mathcal{L}}(g).$

The functor $i_{SE} g$ yielding a natural number is defined by the conditions (Def. 3).

- (Def. 3)(i) \langle len the Go-board of g, $i_{SE} g \rangle \in$ the indices of the Go-board of g, and
 - (ii) (the Go-board of g)_{len the Go-board of g, $i_{SE} g = E$ -min $\widetilde{\mathcal{L}}(g)$.}

The functor $i_{NE} g$ yielding a natural number is defined by the conditions (Def. 4).

- (Def. 4)(i) \langle len the Go-board of g, $i_{NE} g \rangle \in$ the indices of the Go-board of g, and
 - (ii) (the Go-board of g)_{len the Go-board of g, $i_{NE} g = E$ -max $\widetilde{\mathcal{L}}(g)$.}

The functor $i_{WS} g$ yields a natural number and is defined by:

(Def. 5) $\langle i_{WS} g, 1 \rangle \in \text{the indices of the Go-board of } g \text{ and (the Go-board of } g)_{i_{WS} g, 1} = \text{S-min } \widetilde{\mathcal{L}}(g).$

The functor $i_{ES} g$ yields a natural number and is defined by:

(Def. 6) $\langle i_{\text{ES}} g, 1 \rangle \in \text{the indices of the Go-board of } g$ and (the Go-board of g) $_{i_{\text{ES}} g, 1} = \text{S-max } \widetilde{\mathcal{L}}(g)$.

The functor $i_{WN} g$ yields a natural number and is defined by the conditions (Def. 7).

- (Def. 7)(i) $\langle i_{WN} g$, width the Go-board of $g \rangle \in$ the indices of the Go-board of g, and
 - (ii) (the Go-board of g)_{iwn g,width the Go-board of g = N-min $\widetilde{\mathcal{L}}(g)$.}

The functor $i_{EN} g$ yields a natural number and is defined by the conditions (Def. 8).

- (Def. 8)(i) $\langle i_{\text{EN}} g, \text{ width the Go-board of } g \rangle \in \text{the indices of the Go-board of } g,$ and
 - (ii) (the Go-board of g)_{iEN g,width the Go-board of g = N-max $\widetilde{\mathcal{L}}(g)$. Next we state two propositions:}
 - (47)(i) $1 \le i_{WN} h$,
 - (ii) $i_{WN} h \leq len the Go-board of h,$
 - (iii) $1 \leqslant i_{EN} h$,
 - (iv) $i_{EN} h \leq len the Go-board of h,$
 - (v) $1 \leqslant i_{WS} h$,
 - (vi) $i_{WS} h \leq len the Go-board of h,$
 - (vii) $1 \leq i_{ES} h$, and
 - (viii) $i_{ES} h \leq len the Go-board of h.$
 - (48)(i) $1 \le i_{NE} h$,
 - (ii) $i_{NE} h \leq width the Go-board of h,$
 - (iii) $1 \leq i_{SE} h$,
 - (iv) $i_{SE} h \leq width the Go-board of h$,
 - (v) $1 \leqslant i_{NW} h$,
 - (vi) $i_{NW} h \leq width the Go-board of h,$
 - (vii) $1 \leq i_{SW} h$, and
 - (viii) $i_{SW} h \leq \text{width the Go-board of } h$.

Let g be a non constant standard special circular sequence. The functor $n_{SW} g$ yields a natural number and is defined as follows:

- (Def. 9) $1 \leq n_{SW} g$ and $n_{SW} g + 1 \leq \text{len } g$ and $g(n_{SW} g) = \text{W-min } \widetilde{\mathcal{L}}(g)$. The functor $n_{NW} g$ yielding a natural number is defined as follows:
- (Def. 10) $1 \leq n_{\text{NW}} g$ and $n_{\text{NW}} g + 1 \leq \text{len } g$ and $g(n_{\text{NW}} g) = \text{W-max } \widetilde{\mathcal{L}}(g)$. The functor $n_{\text{SE}} g$ yielding a natural number is defined by:
- (Def. 11) $1 \leq n_{SE} g$ and $n_{SE} g + 1 \leq \text{len } g$ and $g(n_{SE} g) = \text{E-min } \widetilde{\mathcal{L}}(g)$. The functor $n_{NE} g$ yielding a natural number is defined by:
- (Def. 12) $1 \leq n_{\text{NE}} g$ and $n_{\text{NE}} g + 1 \leq \text{len } g$ and $g(n_{\text{NE}} g) = \text{E-max } \widetilde{\mathcal{L}}(g)$. The functor $n_{\text{WS}} g$ yielding a natural number is defined by:
- (Def. 13) $1 \leq n_{WS} g$ and $n_{WS} g + 1 \leq \text{len } g$ and $g(n_{WS} g) = \text{S-min } \widetilde{\mathcal{L}}(g)$. The functor $n_{ES} g$ yields a natural number and is defined as follows:
- (Def. 14) $1 \leq n_{\text{ES}} g$ and $n_{\text{ES}} g + 1 \leq \text{len } g$ and $g(n_{\text{ES}} g) = \text{S-max } \widetilde{\mathcal{L}}(g)$. The functor $n_{\text{WN}} g$ yielding a natural number is defined by:
- (Def. 15) $1 \leq n_{WN} g$ and $n_{WN} g + 1 \leq \text{len } g$ and $g(n_{WN} g) = \text{N-min } \widetilde{\mathcal{L}}(g)$. The functor $n_{EN} g$ yielding a natural number is defined by:
- (Def. 16) $1 \leqslant n_{\text{EN}} g$ and $n_{\text{EN}} g + 1 \leqslant \text{len } g$ and $g(n_{\text{EN}} g) = \text{N-max } \widetilde{\mathcal{L}}(g)$.

Next we state four propositions:

- (49) $n_{WN} h \neq n_{WS} h$.
- (50) $n_{SW} h \neq n_{SE} h$.
- (51) $n_{EN} h \neq n_{ES} h$.
- (52) $n_{NW} h \neq n_{NE} h$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathbf{T}}^2$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [8] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathematics, 2(5):635–642, 1991.
- [9] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [10] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part I. Formalized Mathematics, 3(1):107–115, 1992.
- [13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board part II. Formalized Mathematics, 3(1):117–121, 1992.
- [14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [15] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized Mathematics, 5(3):323–328, 1996.
- [16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [18] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- [20] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics, 5(3):317–322, 1996.
- [21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received June 8, 1998