
FORMALIZED MATHEMATICS

Volume 7, Number 1, 1998

University of Białystok

Initialization Halting Concepts and Their

Basic Properties of SCMFSA

Jing-Chao Chen

Shanghai Jiaotong University

Yatsuka Nakamura

Shinshu University

Nagano

Summary. Up to now, many properties of macro instructions of SCMFSA
are described by the parahalting concepts. However, many practical programs are
not always halting while they are halting for initialization states. For this reason,
we propose initialization halting concepts. That a program is initialization halting
(called ”InitHalting” for short) means it is halting for initialization states.In
order to make the halting proof of more complicated programs easy, we present
”InitHalting” basic properties of the compositions of the macro instructions, if-
Macro (conditional branch macro instructions) and Times-Macro (for-loop macro
instructions) etc.

MML Identifier: SCM HALT.

The terminology and notation used in this paper have been introduced in the

following articles: [14], [18], [16], [26], [7], [9], [12], [11], [24], [8], [13], [27], [22],

[5], [6], [3], [1], [2], [4], [23], [19], [20], [21], [10], [15], [25], and [17].

1. The Definition of Several Notions Related to Initialization

For simplicity, we adopt the following rules: m is a natural number, I is a

macro instruction, s, s1, s2 are states of SCMFSA, a is an integer location, and

f is a finite sequence location.

Let I be a macro instruction. We say that I is InitClosed if and only if:

(Def. 1) For every state s of SCMFSA and for every natural number n such that

Initialized(I) ⊆ s holds IC(Computation(s))(n) ∈ dom I.

We say that I is InitHalting if and only if:

137
c© 1998 University of Białystok

ISSN 1426–2630



138 jing-chao chen and yatsuka nakamura

(Def. 2) Initialized(I) is halting.

We say that I is keepInt0 1 if and only if:

(Def. 3) For every state s of SCMFSA such that Initialized(I) ⊆ s and for every

natural number k holds (Computation(s))(k)(intloc(0)) = 1.

2. The Relationship Between Initialization Halting and

Unconditional Halting

The following four propositions are true:

(1) For every set x and for all natural numbers i, m, n such that x ∈

dom((intloc(i)7−→. m)+·Start-At(insloc(n))) holds x = intloc(i) or x =

ICSCMFSA .

(2) For every macro instruction I and for all natural numbers i, m, n holds

dom I ∩ dom((intloc(i) 7−→. m)+·Start-At(insloc(n))) = ∅.

(3) Initialized(I) = I+·((intloc(0)7−→. 1)+·Start-At(insloc(0))).

(4) Macro(haltSCMFSA) is InitHalting.

Let us mention that there exists a macro instruction which is InitHalting.

One can prove the following three propositions:

(5) For every InitHalting macro instruction I such that Initialized(I) ⊆ s

holds s is halting.

(6) I+·Start-At(insloc(0)) ⊆ Initialized(I).

(7) For every macro instruction I and for every state s of SCMFSA such

that Initialized(I) ⊆ s holds s(intloc(0)) = 1.

Let us mention that every macro instruction which is paraclosed is also

InitClosed.

Let us note that every macro instruction which is parahalting is also Ini-

tHalting.

One can check the following observations:

∗ every macro instruction which is InitHalting is also InitClosed,

∗ every macro instruction which is keepInt0 1 is also InitClosed, and

∗ every macro instruction which is keeping 0 is also keepInt0 1.

3. The Other Properties of Initialization Halting

One can prove the following two propositions:

(8) Let I be a InitHalting macro instruction and a be a read-write integer

location. If a /∈ UsedIntLoc(I), then (IExec(I, s))(a) = s(a).



initialization halting concepts and their . . . 139

(9) Let I be a InitHalting macro instruction and f be a finite sequence

location. If f /∈ UsedInt∗ Loc(I), then (IExec(I, s))(f) = s(f).

Let I be a InitHalting macro instruction. Note that Initialized(I) is halting.

Let us observe that every macro instruction which is InitHalting is also non

empty.

The following propositions are true:

(10) For every InitHalting macro instruction I holds dom I 6= ∅.

(11) For every InitHalting macro instruction I holds insloc(0) ∈ dom I.

(12) Let J be a InitHalting macro instruction. Suppose Initialized(J) ⊆ s1.

Let n be a natural number. Suppose ProgramPart(Relocated(J, n)) ⊆

s2 and IC(s2) = insloc(n) and s1↾(Int-Locations∪FinSeq-Locations) =

s2↾(Int-Locations∪FinSeq-Locations). Let i be a natural number. Then

IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and IncAddr(CurInstr

((Computation(s1))(i)), n) = CurInstr((Computation(s2))(i))

and (Computation(s1))(i)↾(Int-Locations∪FinSeq-Locations) =

(Computation(s2))(i)↾(Int-Locations∪FinSeq-Locations).

(13) If Initialized(I) ⊆ s, then I ⊆ s.

(14) Let I be a InitHalting macro instruction. Suppose Initialized(I) ⊆

s1 and Initialized(I) ⊆ s2 and s1 and s2 are equal outside the in-

struction locations of SCMFSA. Let k be a natural number. Then

(Computation(s1))(k) and (Computation(s2))(k) are equal outside the in-

struction locations of SCMFSA and CurInstr((Computation(s1))(k)) =

CurInstr((Computation(s2))(k)).

(15) Let I be a InitHalting macro instruction. Suppose Initialized(I) ⊆ s1

and Initialized(I) ⊆ s2 and s1 and s2 are equal outside the instruction

locations of SCMFSA. Then LifeSpan(s1) = LifeSpan(s2) and Result(s1)

and Result(s2) are equal outside the instruction locations of SCMFSA.

(16) Macro(haltSCMFSA) is keeping 0 and InitHalting.

Let us observe that there exists a macro instruction which is keeping 0 and

InitHalting.

One can verify that there exists a macro instruction which is keepInt0 1 and

InitHalting.

Next we state several propositions:

(17) For every keepInt0 1 InitHalting macro instruction I holds

(IExec(I, s))(intloc(0)) = 1.

(18) Let I be a InitClosed macro instruction and J be a macro in-

struction. Suppose Initialized(I) ⊆ s and s is halting. Let gi-

ven m. Suppose m ¬ LifeSpan(s). Then (Computation(s))(m) and

(Computation(s+·(I;J)))(m) are equal outside the instruction locations

of SCMFSA.



140 jing-chao chen and yatsuka nakamura

(19) For all natural numbers i,m, n holds s+·I+·((intloc(i)7−→. m)+·Start-At

(insloc(n))) = (s+·((intloc(i)7−→. m)+·Start-At(insloc(n))))+·I.

(20) If (intloc(0)7−→. 1)+·Start-At(insloc(0)) ⊆ s, then Initialized(I) ⊆

s+·(I+·((intloc(0)7−→. 1)+·Start-At(insloc(0)))) and s+·(I+·((intloc(0)7−→. 1)

+·Start-At(insloc(0)))) = s+·I and s+·(I+·((intloc(0)7−→. 1)

+·Start-At(insloc(0))))+·Directed(I) = s+·Directed(I).

(21) For every InitClosed macro instruction I such that s+·I is halting

and Directed(I) ⊆ s and (intloc(0)7−→. 1)+·Start-At(insloc(0)) ⊆ s holds

IC(Computation(s))(LifeSpan(s+·I)+1) = insloc(card I).

(22) Let I be a InitClosed macro instruction. Suppose s+·I is halting and

Directed(I) ⊆ s and (intloc(0)7−→. 1)+·Start-At(insloc(0)) ⊆ s. Then

(Computation(s))(LifeSpan(s+·I))↾(Int-Locations∪FinSeq-Locations) =

(Computation(s))(LifeSpan(s+·I)+1)↾(Int-Locations∪FinSeq-Locations).

(23) Let I be a InitHalting macro instruction. Suppose Initialized(I) ⊆

s. Let k be a natural number. If k ¬ LifeSpan(s), then

CurInstr((Computation(s+·Directed(I)))(k)) 6= haltSCMFSA .

(24) Let I be a InitClosed macro instruction. Suppose s+· Initialized(I) is hal-

ting. Let J be a macro instruction and k be a natural number. Suppose k ¬

LifeSpan(s+· Initialized(I)). Then (Computation(s+· Initialized(I)))(k)

and (Computation(s+· Initialized(I;J)))(k) are equal outside the instruc-

tion locations of SCMFSA.

4. The Initialization Halting for Two Continuous

Macro-Instructions

One can prove the following proposition

(25) Let I be a keepInt0 1 InitHalting macro instruction, J be a Ini-

tHalting macro instruction, and s be a state of SCMFSA. Suppose

Initialized(I;J) ⊆ s. Then

(i) IC(Computation(s))(LifeSpan(s+·I)+1) = insloc(card I),

(ii) (Computation(s))(LifeSpan(s+·I)+1)↾(Int-Locations∪FinSeq-Locations) =

((Computation(s+·I))(LifeSpan(s+·I))+· Initialized(J))↾(Int-Locations∪

FinSeq-Locations),

(iii) ProgramPart(Relocated(J, card I)) ⊆ (Computation(s))(LifeSpan(s+·I)+

1),

(iv) (Computation(s))(LifeSpan(s+·I) + 1)(intloc(0)) = 1,

(v) s is halting,

(vi) LifeSpan(s) = LifeSpan(s+·I)+1+LifeSpan(Result(s+·I)+· Initialized(J)),

and

(vii) if J is keeping 0, then (Result(s))(intloc(0)) = 1.



initialization halting concepts and their . . . 141

Let I be a keepInt0 1 InitHalting macro instruction and let J be a InitHalting

macro instruction. Note that I;J is InitHalting.

Next we state four propositions:

(26) Let I be a keepInt0 1 macro instruction. Suppose s+·I is halting. Let J

be a InitClosed macro instruction. Suppose Initialized(I;J) ⊆ s. Let k be

a natural number. Then (Computation(Result(s+·I)+· Initialized(J)))(k)

+·Start-At(IC(Computation(Result(s+·I)+· Initialized(J)))(k) + card I) and

(Computation(s+·(I;J)))(LifeSpan(s+·I) + 1 + k) are equal outside the

instruction locations of SCMFSA.

(27) Let I be a keepInt0 1 macro instruction. Suppose s+· Initialized(I) is not

halting. Let J be a macro instruction and k be a natural number. Then

(Computation(s+· Initialized(I)))(k) and (Computation(s+· Initialized

(I;J)))(k) are equal outside the instruction locations of SCMFSA.

(28) Let I be a keepInt0 1 InitHalting macro instruction and J be a

InitHalting macro instruction. Then LifeSpan(s+· Initialized(I;J)) =

LifeSpan(s+· Initialized(I)) + 1 + LifeSpan(Result(s+· Initialized(I))

+· Initialized(J)).

(29) Let I be a keepInt0 1 InitHalting macro instruction and J be a InitHal-

ting macro instruction. Then IExec(I;J, s) = IExec(J, IExec(I, s))

+·Start-At(ICIExec(J,IExec(I,s)) + card I).

Let i be a parahalting instruction of SCMFSA. Observe that Macro(i) is

InitHalting.

Let i be a parahalting instruction of SCMFSA and let J be a parahalting

macro instruction. Observe that i;J is InitHalting.

Let i be a keeping 0 parahalting instruction of SCMFSA and let J be a

InitHalting macro instruction. Note that i;J is InitHalting.

Let I, J be keepInt0 1 macro instructions. One can verify that I;J is keepInt0

1.

Let j be a keeping 0 parahalting instruction of SCMFSA and let I be a

keepInt0 1 InitHalting macro instruction. One can check that I;j is InitHalting

and keepInt0 1.

Let i be a keeping 0 parahalting instruction of SCMFSA and let J be a

keepInt0 1 InitHalting macro instruction. Observe that i;J is InitHalting and

keepInt0 1.

Let j be a parahalting instruction of SCMFSA and let I be a parahalting

macro instruction. One can check that I;j is InitHalting.

Let i, j be parahalting instructions of SCMFSA. One can check that i;j is

InitHalting.

Next we state several propositions:

(30) Let I be a keepInt0 1 InitHalting macro instruction and J

be a InitHalting macro instruction. Then (IExec(I;J, s))(a) =



142 jing-chao chen and yatsuka nakamura

(IExec(J, IExec(I, s)))(a).

(31) Let I be a keepInt0 1 InitHalting macro instruction and J

be a InitHalting macro instruction. Then (IExec(I;J, s))(f) =

(IExec(J, IExec(I, s)))(f).

(32) For every keepInt0 1 InitHalting macro instruction I and for every state s

of SCMFSA holds Initialize(IExec(I, s))↾(Int-Locations∪FinSeq-Locations) =

IExec(I, s)↾(Int-Locations∪FinSeq-Locations).

(33) Let I be a keepInt0 1 InitHalting macro instruction and j be

a parahalting instruction of SCMFSA. Then (IExec(I;j, s))(a) =

(Exec(j, IExec(I, s)))(a).

(34) Let I be a keepInt0 1 InitHalting macro instruction and j be

a parahalting instruction of SCMFSA. Then (IExec(I;j, s))(f) =

(Exec(j, IExec(I, s)))(f).

Let I be a macro instruction and let s be a state of SCMFSA. We say that

I is closed onInit s if and only if:

(Def. 4) For every natural number k holds IC(Computation(s+· Initialized(I)))(k) ∈

dom I.

We say that I is halting onInit s if and only if:

(Def. 5) s+· Initialized(I) is halting.

We now state three propositions:

(35) Let I be a macro instruction. Then I is InitClosed if and only if for every

state s of SCMFSA holds I is closed onInit s.

(36) Let I be a macro instruction. Then I is InitHalting if and only if for

every state s of SCMFSA holds I is halting onInit s.

(37) Let s be a state of SCMFSA, I be a macro instruction, and a be

an integer location. Suppose I does not destroy a and I is closed

onInit s and Initialized(I) ⊆ s. Let k be a natural number. Then

(Computation(s))(k)(a) = s(a).

Let us observe that there exists a macro instruction which is InitHalting and

good.

Let us observe that every macro instruction which is InitClosed and good is

also keepInt0 1.

Let us mention that StopSCMFSA is InitHalting and good.

We now state several propositions:

(38) Let s be a state of SCMFSA, i be a keeping 0 parahalting instruction

of SCMFSA, J be a InitHalting macro instruction, and a be an integer

location. Then (IExec(i;J, s))(a) = (IExec(J,Exec(i, Initialize(s))))(a).

(39) Let s be a state of SCMFSA, i be a keeping 0 parahalting instruction of

SCMFSA, J be a InitHalting macro instruction, and f be a finite sequence

location. Then (IExec(i;J, s))(f) = (IExec(J,Exec(i, Initialize(s))))(f).



initialization halting concepts and their . . . 143

(40) Let s be a state of SCMFSA and I be a macro instruction. Then I is

closed onInit s if and only if I is closed on Initialize(s).

(41) Let s be a state of SCMFSA and I be a macro instruction. Then I is

halting onInit s if and only if I is halting on Initialize(s).

(42) For every macro instruction I and for every state s of SCMFSA holds

IExec(I, s) = IExec(I, Initialize(s)).

5. IF-Programs with Initialization Halting

The following propositions are true:

(43) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) = 0 and I is closed onInit s and

I is halting onInit s. Then if a = 0 then I else J is closed onInit s and

if a = 0 then I else J is halting onInit s.

(44) Let s be a state of SCMFSA, I, J be macro instructions, and a be

a read-write integer location. Suppose s(a) = 0 and I is closed onInit

s and I is halting onInit s. Then IExec(if a = 0 then I else J, s) =

IExec(I, s)+·Start-At(insloc(card I + cardJ + 3)).

(45) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) 6= 0 and J is closed onInit s and

J is halting onInit s. Then if a = 0 then I else J is closed onInit s and

if a = 0 then I else J is halting onInit s.

(46) Let I, J be macro instructions, a be a read-write integer location,

and s be a state of SCMFSA. Suppose s(a) 6= 0 and J is closed onI-

nit s and J is halting onInit s. Then IExec(if a = 0 then I else J, s) =

IExec(J, s)+·Start-At(insloc(card I + cardJ + 3)).

(47) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,

and a be a read-write integer location. Then if a = 0 then I else J is

InitHalting and if s(a) = 0, then IExec(if a = 0 then I else J, s) =

IExec(I, s)+·Start-At(insloc(card I + cardJ + 3)) and if s(a) 6= 0, then

IExec(if a = 0 then I else J, s) = IExec(J, s)+·Start-At(insloc(card I +

cardJ + 3)).

(48) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,

and a be a read-write integer location. Then

(i) ICIExec(if a=0 then I else J,s) = insloc(card I + cardJ + 3),

(ii) if s(a) = 0, then for every integer location d holds (IExec(if a =

0 then I else J, s))(d) = (IExec(I, s))(d) and for every finite sequence

location f holds (IExec(if a = 0 then I else J, s))(f) = (IExec(I, s))(f),

and



144 jing-chao chen and yatsuka nakamura

(iii) if s(a) 6= 0, then for every integer location d holds (IExec(if a =

0 then I else J, s))(d) = (IExec(J, s))(d) and for every finite sequence

location f holds (IExec(if a = 0 then I else J, s))(f) = (IExec(J, s))(f).

(49) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) > 0 and I is closed onInit s and

I is halting onInit s. Then if a > 0 then I else J is closed onInit s and

if a > 0 then I else J is halting onInit s.

(50) Let s be a state of SCMFSA, I, J be macro instructions, and a be

a read-write integer location. Suppose s(a) > 0 and I is closed onInit

s and I is halting onInit s. Then IExec(if a > 0 then I else J, s) =

IExec(I, s)+·Start-At(insloc(card I + cardJ + 3)).

(51) Let s be a state of SCMFSA, I, J be macro instructions, and a be a

read-write integer location. Suppose s(a) ¬ 0 and J is closed onInit s and

J is halting onInit s. Then if a > 0 then I else J is closed onInit s and

if a > 0 then I else J is halting onInit s.

(52) Let I, J be macro instructions, a be a read-write integer location,

and s be a state of SCMFSA. Suppose s(a) ¬ 0 and J is closed onI-

nit s and J is halting onInit s. Then IExec(if a > 0 then I else J, s) =

IExec(J, s)+·Start-At(insloc(card I + cardJ + 3)).

(53) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,

and a be a read-write integer location. Then if a > 0 then I else J is

InitHalting and if s(a) > 0, then IExec(if a > 0 then I else J, s) =

IExec(I, s)+·Start-At(insloc(card I + cardJ + 3)) and if s(a) ¬ 0, then

IExec(if a > 0 then I else J, s) = IExec(J, s)+·Start-At(insloc(card I +

cardJ + 3)).

(54) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,

and a be a read-write integer location. Then

(i) ICIExec(if a>0 then I else J,s) = insloc(card I + cardJ + 3),

(ii) if s(a) > 0, then for every integer location d holds (IExec(if a >

0 then I else J, s))(d) = (IExec(I, s))(d) and for every finite sequence

location f holds (IExec(if a > 0 then I else J, s))(f) = (IExec(I, s))(f),

and

(iii) if s(a) ¬ 0, then for every integer location d holds (IExec(if a >

0 then I else J, s))(d) = (IExec(J, s))(d) and for every finite sequence

location f holds (IExec(if a > 0 then I else J, s))(f) = (IExec(J, s))(f).

(55) Let s be a state of SCMFSA, I, J be macro instructions, and a be

a read-write integer location. Suppose s(a) < 0 and I is closed onInit

s and I is halting onInit s. Then IExec(if a < 0 then I else J, s) =

IExec(I, s)+·Start-At(insloc(card I + cardJ + cardJ + 7)).

(56) Let s be a state of SCMFSA, I, J be macro instructions, and a be

a read-write integer location. Suppose s(a) = 0 and J is closed onInit



initialization halting concepts and their . . . 145

s and J is halting onInit s. Then IExec(if a < 0 then I else J, s) =

IExec(J, s)+·Start-At(insloc(card I + cardJ + cardJ + 7)).

(57) Let s be a state of SCMFSA, I, J be macro instructions, and a be

a read-write integer location. Suppose s(a) > 0 and J is closed onInit

s and J is halting onInit s. Then IExec(if a < 0 then I else J, s) =

IExec(J, s)+·Start-At(insloc(card I + cardJ + cardJ + 7)).

(58) Let s be a state of SCMFSA, I, J be InitHalting macro instructions,

and a be a read-write integer location. Then

(i) if a < 0 then I else J is InitHalting,

(ii) if s(a) < 0, then IExec(if a < 0 then I else J, s) =

IExec(I, s)+·Start-At(insloc(card I + cardJ + cardJ + 7)), and

(iii) if s(a) ­ 0, then IExec(if a < 0 then I else J, s) =

IExec(J, s)+·Start-At(insloc(card I + cardJ + cardJ + 7)).

Let I, J be InitHalting macro instructions and let a be a read-write integer

location. One can verify the following observations:

∗ if a = 0 then I else J is InitHalting,

∗ if a > 0 then I else J is InitHalting, and

∗ if a < 0 then I else J is InitHalting.

Next we state a number of propositions:

(59) For every macro instruction I holds I is InitHalting iff for every state s

of SCMFSA holds I is halting on Initialize(s).

(60) For every macro instruction I holds I is InitClosed iff for every state s

of SCMFSA holds I is closed on Initialize(s).

(61) Let s be a state of SCMFSA, I be a InitHalting macro instruc-

tion, and a be a read-write integer location. Then (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))

(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(a).

(62) Let s be a state of SCMFSA, I be a InitHalting macro instruction, a be

an integer location, and k be a natural number. If I does not destroy a,

then (IExec(I, s))(a) =

(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(a).

(63) Let s be a state of SCMFSA, I be a InitHalting macro instruction, and

a be an integer location. If I does not destroy a, then (IExec(I, s))(a) =

(Initialize(s))(a).

(64) Let s be a state of SCMFSA, I be a keepInt0 1 InitHalting macro instruc-

tion, and a be a read-write integer location. Suppose I does not destroy

a. Then (Computation(Initialize(s)+·((I;SubFrom(a, intloc(0)))

+·Start-At(insloc(0)))))(LifeSpan(Initialize(s)+·((I;SubFrom(a, intloc(0)))

+·Start-At(insloc(0)))))(a) = s(a)− 1.



146 jing-chao chen and yatsuka nakamura

(65) Let s be a state of SCMFSA and I be a InitClosed macro instruc-

tion. Suppose Initialized(I) ⊆ s and s is halting. Let m be a natu-

ral number. Suppose m ¬ LifeSpan(s). Then (Computation(s))(m) and

(Computation(s+· loop I))(m) are equal outside the instruction locations

of SCMFSA.

(66) Let s be a state of SCMFSA and I be a InitHalting macro instruction.

Suppose Initialized(I) ⊆ s. Let k be a natural number. If k ¬ LifeSpan(s),

then CurInstr((Computation(s+· loop I))(k)) 6= haltSCMFSA .

(67) I ⊆ s+· Initialized(I).

(68) Let s be a state of SCMFSA and I be a macro instruction. Sup-

pose I is closed onInit s and I is halting onInit s. Let m be

a natural number. Suppose m ¬ LifeSpan(s+· Initialized(I)). Then

(Computation(s+· Initialized(I)))(m) and (Computation(s+· Initialized

(loop I)))(m) are equal outside the instruction locations of SCMFSA.

(69) Let s be a state of SCMFSA and I be a macro instruction.

Suppose I is closed onInit s and I is halting onInit s. Let m

be a natural number. If m < LifeSpan(s+· Initialized(I)), then

CurInstr((Computation(s+· Initialized(I)))(m)) =

CurInstr((Computation(s+· Initialized(loop I)))(m)).

(70) For every instruction-location l of SCMFSA holds l /∈ dom((intloc(0)7−→. 1)

+·Start-At(insloc(0))).

(71) Let s be a state of SCMFSA and I be a macro instruction.

Suppose I is closed onInit s and I is halting onInit s. Then

CurInstr((Computation(s+· Initialized(loop I)))

(LifeSpan(s+· Initialized(I)))) = goto insloc(0) and for every natu-

ral number m such that m ¬ LifeSpan(s+· Initialized(I)) holds

CurInstr((Computation(s+· Initialized(loop I)))(m)) 6= haltSCMFSA .

(72) Let s be a state of SCMFSA and I be a macro instruction.

Suppose I is closed onInit s and I is halting onInit s. Then

CurInstr((Computation(s+· Initialized(loop I)))(LifeSpan

(s+· Initialized(I)))) = goto insloc(0).

(73) Let s be a state of SCMFSA, I be a good InitHalting macro in-

struction, and a be a read-write integer location. Suppose I does not

destroy a and s(intloc(0)) = 1 and s(a) > 0. Then loop if a =

0 then Goto(insloc(2)) else (I;SubFrom(a, intloc(0))) is pseudo-closed

on s.

(74) Let s be a state of SCMFSA, I be a good InitHalting ma-

cro instruction, and a be a read-write integer location. Suppose I

does not destroy a and s(a) > 0. Then Initialized(loop if a =

0 then Goto(insloc(2)) else (I;SubFrom(a, intloc(0)))) is pseudo-closed



initialization halting concepts and their . . . 147

on s.

6. LOOP-Programs with Initialization Halting

We now state two propositions:

(75) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,

and a be a read-write integer location. Suppose I does not destroy a and

s(intloc(0)) = 1. Then Times(a, I) is closed on s and Times(a, I) is halting

on s.

(76) Let I be a good InitHalting macro instruction and a be a read-write

integer location. If I does not destroy a, then Initialized(Times(a, I)) is

halting.

Let a be a read-write integer location and let I be a good macro instruction.

Observe that Times(a, I) is good.

Next we state several propositions:

(77) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,

and a be a read-write integer location. Suppose I does not destroy a and

s(intloc(0)) = 1 and s(a) > 0. Then there exists a state s2 of SCMFSA
and there exists a natural number k such that

(i) s2 = s+· Initialized(loop if a = 0 then Goto(insloc(2))

else (I;SubFrom(a, intloc(0)))),

(ii) k = LifeSpan(s+· Initialized(if a = 0 then Goto(insloc(2))

else (I;SubFrom(a, intloc(0))))) + 1,

(iii) (Computation(s2))(k)(a) = s(a)− 1,

(iv) (Computation(s2))(k)(intloc(0)) = 1,

(v) for every read-write integer location b such that b 6= a holds

(Computation(s2))(k)(b) = (IExec(I, s))(b),

(vi) for every finite sequence location f holds (Computation(s2))(k)(f) =

(IExec(I, s))(f),

(vii) IC(Computation(s2))(k) = insloc(0), and

(viii) for every natural number n such that n ¬ k holds

IC(Computation(s2))(n) ∈ dom loop if a = 0 then Goto(insloc(2))

else (I;SubFrom(a, intloc(0))).

(78) Let s be a state of SCMFSA, I be a good InitHalting macro instruc-

tion, and a be a read-write integer location. If s(intloc(0)) = 1 and

s(a) ¬ 0, then IExec(Times(a, I), s)↾(Int-Locations∪FinSeq-Locations) =

s↾(Int-Locations∪FinSeq-Locations).

(79) Let s be a state of SCMFSA, I be a good InitHalting macro instruc-

tion, and a be a read-write integer location. Suppose I does not de-

stroy a and s(a) > 0. Then (IExec(I;SubFrom(a, intloc(0)), s))(a) =



148 jing-chao chen and yatsuka nakamura

s(a) − 1 and IExec(Times(a, I), s)↾(Int-Locations∪FinSeq-Locations) =

IExec(Times(a, I), IExec(I;SubFrom(a, intloc(0)), s))↾(Int-Locations∪

FinSeq-Locations).

(80) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,

f be a finite sequence location, and a be a read-write integer location. If

s(a) ¬ 0, then (IExec(Times(a, I), s))(f) = s(f).

(81) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,

b be an integer location, and a be a read-write integer location. If s(a) ¬ 0,

then (IExec(Times(a, I), s))(b) = (Initialize(s))(b).

(82) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,

f be a finite sequence location, and a be a read-write integer location.

If I does not destroy a and s(a) > 0, then (IExec(Times(a, I), s))(f) =

(IExec(Times(a, I), IExec(I;SubFrom(a, intloc(0)), s)))(f).

(83) Let s be a state of SCMFSA, I be a good InitHalting macro instruc-

tion, b be an integer location, and a be a read-write integer location.

If I does not destroy a and s(a) > 0, then (IExec(Times(a, I), s))(b) =

(IExec(Times(a, I), IExec(I;SubFrom(a, intloc(0)), s)))(b).

Let i be an instruction of SCMFSA. We say that i is good if and only if:

(Def. 6) i does not destroy intloc(0).

Let us observe that there exists an instruction of SCMFSA which is para-

halting and good.

Let i be a good instruction of SCMFSA and let J be a good macro instruc-

tion. Observe that i;J is good and J ;i is good.

Let i, j be good instructions of SCMFSA. Note that i;j is good.

Let a be a read-write integer location and let b be an integer location. Ob-

serve that a:=b is good and SubFrom(a, b) is good.

Let a be a read-write integer location, let b be an integer location, and let f

be a finite sequence location. Observe that a:=fb is good.

Let a, b be integer locations and let f be a finite sequence location. One can

check that fa:=b is good.

Let a be a read-write integer location and let f be a finite sequence location.

One can verify that a:=lenf is good.

Let n be a natural number. One can check that intloc(n + 1) is read-write.

References

[1] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part I. Formalized
Mathematics, 6(1):65–72, 1997.

[2] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part II. Formalized
Mathematics, 6(1):73–80, 1997.

[3] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. Forma-
lized Mathematics, 6(1):59–63, 1997.

[4] Noriko Asamoto. The loop and Times macroinstruction for SCMFSA. Formalized Ma-
thematics, 6(4):483–497, 1997.



initialization halting concepts and their . . . 149

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[6] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[7] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[8] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[9] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[10] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.

[11] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[14] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[15] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized Ma-
thematics, 6(1):29–36, 1997.

[16] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[18] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[19] Andrzej Trybulec and Yatsuka Nakamura. Computation in SCMFSA. Formalized Ma-
thematics, 5(4):537–542, 1996.

[20] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[21] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Mathe-
matics, 5(4):583–586, 1996.

[22] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.

[23] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 17, 1998


