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Summary. We present the bubble sorting algorithm using macro instruc-
tions such as the if-Macro (conditional branch macro instructions) and the Times-
Macro (for-loop macro instructions) etc. The correctness proof of the program
should include the proof of autonomic, halting and the correctness of the pro-
gram result. In the three terms, we justify rigorously the correctness of the bubble
sorting algorithm. In order to prove it is autonomic, we use the following the-
orem: if all variables used by the program are initialized, it is autonomic. This
justification method probably reveals that autonomic concept is not important.

MML Identifier: SCMBSORT.

The articles [18], [24], [21], [19], [31], [7], [9], [12], [22], [10], [13], [29], [14], [15],
[11], [28], [8], [32], [17], [26], [5], [6], [3], [}, [2], [4], [27], [25], [16], [20], [30], and
[23] provide the terminology and notation for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules: p is a programmed finite partial
state of SCMrgga, 71 is an instruction of SCMrgga, 4, j, k are natural numbers,
f1, f are finite sequence locations, a, b, di, do are integer locations, [, [ are
instructions-locations of SCMrgga, and s1 is a state of SCMpga.

We now state a number of propositions:

(1) Let I, J be macro instructions and a, b be integer locations. Suppose I

does not destroy b and J does not destroy b. Then if a > 0 then I else J
does not destroy b.
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(2) Let I, J be macro instructions and a, b be integer locations. Suppose I
does not destroy b and J does not destroy b. Then if a = 0 then I else J
does not destroy b.

(3) Let I be a macro instruction and a, b be integer locations. If I does not
destroy b and a # b, then Times(a, I) does not destroy b.

(4) For every function f and for all sets n, m holds
(f+(n=—m)+-(m——n))(m) = n.

(5) For every function f and for all sets n, m holds
(f+(m——m)-+-(m—n)) () = m.

(6) For every function f and for all sets n, m, x such that € dom f and
x #m and z # n holds (f+-(n——m)+-(m——n))(z) = f(x).

(7) Let f, g be functions and m, n be sets. Suppose that

i) f(m)=g(n),
) fn) =g(m),
) m € dom f,
(iv) n € dom f,
) dom f = domg, and
) for every set k such that & # m and k # n and k& € dom f holds

f(k) = g(k).

Then f and g are fiberwise equipotent.

(8) Let s be a state of SCMpga, f be a finite sequence location, and a, b
be integer locations. Then (Exec(b:=f,,s))(b) = 5 5(f)-

(9) Let s be a state of SCMpga, f be a finite sequence location, and a, b
be integer locations. Then (Exec(fq,:=b,s))(f) = s(f) +- (|s(a)|, s(b)).

(10) Let s be a state of SCMpga, f be a finite sequence location, m, n
be natural numbers, and a be an integer location. If m # n + 1, then
(Exec(intloc(m):=f,, Initialize(s)))(intloc(n + 1)) = s(intloc(n + 1)).

(11) Let s be a state of SCMpsa, m, n be natural numbers, and a be an inte-
ger location. If m # n+1, then (Exec(intloc(m):=a, Initialize(s)))(intloc(n+
1)) = s(intloc(n + 1)).

(12) Let s be a state of SCMypga, f be a finite sequence location, and a be
a read-write integer location. Then (IExec(Stopscny,s$))(a) = s(a) and

(IExec(Stopsampg, » ) (f) = s(f)-
In the sequel n denotes a natural number.
One can prove the following propositions:
(13) Ifn<10,thenn=0orn=1lorn=2orn=3orn=4orn=>5or
n=6orn=7orn=8orn=9orn=10.
(14) Suppose n < 12. Thenn =0orn=1lorn=2orn =3 or n =4 or
n=5orn=6orn=7orn=8orn=9orn=10orn =11 or n = 12.
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(15) Let f, g be functions and X be a set. If dom f = dom g and for every
set x such that x € X holds f(z) = g(x), then f|X = g X.

(16) If iy € rngp and if 43 = a:=b or i; = AddTo(a,b) or i; = SubFrom(a, b)
or i3 = MultBy(a,b) or iy = Divide(a,b), then a € UsedIntLoc(p) and
b € UsedIntLoc(p).

(17) If iy € rngp and if iy = if a = 0 goto [; or i; = if a > 0 goto [y, then
a € UsedIntLoc(p).

(18) 1If iy € rngp and if iy = b:=f1, or i1 = f1,:=b, then a € UsedIntLoc(p)
and b € UsedIntLoc(p).

(19) 1Ifiy € rngpandifiy = b:=fy, or iy = f1,:=b, then f; € UsedInt® Loc(p).

(20) If i1 € rngp and if iy = a:=lenf; or iy = f1:=(0,...,0), then a €

———

a

UsedIntLoc(p).
(21) If iy € rngp and if i3 = a:=lenf; or i1 = f1:=(0,...,0), then f; €
———

a

UsedInt* Loc(p).

(22) Let p be a macro instruction, s, s3 be states of SCMpga, and gi-
ven i. If p C sy and p C s3, then (Computation(ss))(i)]domp =
(Computation(ss))(i)] dom p.

(23) Let t be a finite partial state of SCMpga, p be a macro instruction,
and x be a set. Suppose domt C Int-Locations U FinSeqg-Locations and
x € dom tUUsedInt* Loc(p) UUsedIntLoc(p). Then z is an integer location
or a finite sequence location.

(24) For every fi holds (Exec(Divide(dy,d2),s1))(f1) = si1(f1) and
(EXGC(DiVide(dl, d2), 31))(ICSCMFSA) = NeXt(IC(51)>.

(25) Let 4, k be natural numbers, ¢ be a finite partial state of SCMpga, p be
a macro instruction, and so, s3 be states of SCMpga. Suppose that

) k<i,
) pC sy
(iii) p C ss,
) domt C Int-Locations U FinSeqg-Locations,
) for every j holds IC(Computation(sz))(j) € domp and IC(Computation(33))(j) S

dom p,

(vi)  (Computation(s2))(k)(ICscmys,) = (Computation(ss))(k)(ICscMypsa )
and

(vii)  (Computation(sz))(k)[(domt¢ U UsedInt* Loc(p) U UsedIntLoc(p)) =
(Computation(ss))(k)[(dom ¢ U UsedInt® Loc(p) U UsedIntLoc(p)).

Then (Computation(s2))(i)(ICscmys, ) = (Computation(ss))(i)(ICscMys, )
and (Computation(sg))(7)[(dom¢ U UsedInt* Loc(p) U UsedIntLoc(p)) =
(Computation(ssz))(i)[(domt U UsedInt* Loc(p) U UsedIntLoc(p)).
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(26) Let 4, k be natural numbers, p be a macro instruction, and s3, s3 be
states of SCMpga. Suppose k£ < ¢ and p C s9 and p C s3 and for every j
holds IC(Computation(sz))(j) € domp and IC(Computation(sg))(j) € domp and
(Computation(s2))(k)(ICscmyps,) = (Computation(ss))(k)(ICscmysy )
and (Computation(sz))(k)[(UsedInt* Loc(p) U UsedIntLoc(p)) =
(Computation(ss))(k)[(UsedInt* Loc(p) U UsedIntLoc(p)).

Then (Computation(sz))(i)(ICscmyps, ) = (Computation(ss))(i)(ICscMypg,
and (Computation(sz))(7)[(UsedInt™ Loc(p) U UsedIntLoc(p)) =
(Computation(ss))(7)[(UsedInt® Loc(p) U UsedIntLoc(p)).

(27)  UsedIntLoc(Stopgappg, ) = 9-
(28) UsedIntLoc(Goto(l)) = 0.

(29) For all macro instructions I, J and for every integer location a
holds UsedIntLoc(if @ = 0 then [ else J) = {a} U UsedIntLoc(I) U
UsedIntLoc(J) and UsedIntLoc(if @ > 0 then I else J) = {a} U
UsedIntLoc(7) U UsedIntLoc(.J).

(30) For every macro instruction I and for every instruction-location [ of
SCMrpga holds UsedIntLoc(Directed(1,1)) = UsedIntLoc(T).

(31) For every integer location a and for every macro instruction I holds
UsedIntLoc(Times(a, I)) = UsedIntLoc(/) U {a, intloc(0)}.

(32) For all sets x1, x2, x3 holds {2, 21} U{zs, 21} = {x1, 22, 23}.

(33) UsedInt™ Loc(Stopgomps, ) = -

(34) UsedInt* Loc(Goto(l)) = 0.

(35) For all macro instructions I, J and for every integer location a

holds UsedInt* Loc(if @ = 0 then I else J) = UsedInt* Loc(I) U
UsedInt® Loc(J) and UsedInt® Loc(if @ > 0 then I else J)
= UsedInt™ Loc(I) U UsedInt™ Loc(J).

(36) For every macro instruction I and for every instruction-location [ of
SCMpgga holds UsedInt™ Loc(Directed(Z,1)) = UsedInt™ Loc(1).

(37) For every integer location a and for every macro instruction I holds
UsedInt® Loc(Times(a, I)) = UsedInt® Loc([).
Let f be a finite sequence location and let ¢ be a finite sequence of elements
of Z. Then fr——t is a finite partial state of SCMpgp.
One can prove the following propositions:
(38) Every finite sequence of elements of Z is a finite sequence of elements of
R.

(39) Let ¢ be a finite sequence of elements of Z. Then there exists a finite
sequence u of elements of R such that ¢ and u are fiberwise equipotent
and v is a finite sequence of elements of Z and non-increasing.

(40) dom((intloc(0)——1)+- Start-At(insloc(0))) = {intloc(0), ICscMypgy }-
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(41) For every macro instruction I holds dom Initialized(I) = domI U
{intloc(0), ICSCMFSA}.

(42) Let w be a finite sequence of elements of Z, f be a finite sequence loca-
tion, and I be a macro instruction. Then dom(Initialized(I)+-(f——w)) =
dom I U {intloc(0), ICscMps,» f}-

(43) For every instruction-location I of SCMpga holds ICscmyg, # -

(44) For every integer location a and for every macro instruction I holds
card Times(a, I) = card I + 12.

(45) For all instructions 9, i3, i4 of SCMpga holds card(ie;ig;ig) = 6, where
i9 = by:=b3, by = intloc(3 + 1), bs = intloc(2 + 1), i3 = SubFrom(bs, agp),
ag = intloc(0), ig = bs:= foy,, bs = intloc(4 + 1), and fo = fsloc(0).

(46) Let ¢ be a finite sequence of elements of Z, f be a finite sequence location,
and I be a macro instruction. Then dom Initialized(I) N dom(f——t) = 0.

(47) Let w be a finite sequence of elements of Z, f be a finite sequence loca-
tion, and I be a macro instruction. Then Initialized(I)+-(f——w) starts
at insloc(0).

(48) Let I, J be macro instructions, k& be a natural number, and ¢ be
an instruction of SCMpga. If k¥ < cardJ and i = J(insloc(k)), then

(I;J)(insloc(card I + k)) = IncAddr(7, card I).
(49) Suppose that
(i) i1 = a:=b, or
i1 = AddTo(a,b), or

G

)
)
(ili) 43 = SubFrom(a,b), or
(iv) i1 = MultBy(a,b), or
(v) 43 = Divide(a, b), or
(vi) i1 = goto Iy, or
(viil) 43 =if a =0 goto Iy, or
(viii) 43 =if a > 0 goto Iy, or
(ix) i1 =b:=f,, or
(x) i1 = fa:=b, or
(xi) 43 = a:=lenf, or
(xii) 41 = f:=(0,...,0).

a
Then i1 # haltscmyg, -

(50) Let I, J be macro instructions, k& be a natural number, and ¢ be
an instruction of SCMygga. Suppose for every natural number n holds
IncAddr(i,n) = 4 and ¢ # haltgscm,g, and k£ = cardl. Then
(I;i;J) (insloc(k)) = ¢ and (I3i;J)(insloc(k + 1)) = goto insloc(card I + 2).

(51) Let I, J be macro instructions and k be a natural number. If k = card I,
then (I;(a:=b);J)(insloc(k)) = a:=b and (I;(a:=b);J)(insloc(k + 1)) =

155
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goto insloc(card I + 2).

(52) Let I, J be macro instructions and k be a natural number. If k = card I,
then (I;(a:=lenf);J)(insloc(k)) = a:=lenf and (I;(a:=lenf);J)(insloc(k +
1)) = goto insloc(card I + 2).

(53) Let w be a finite sequence of elements of Z, f be a finite sequence
location, s be a state of SCMygga, and I be a macro instruction. If
Initialized(/)+-(f——w) C s, then I C s.

(54) Let w be a finite sequence of elements of Z, f be a finite sequence
location, s be a state of SCMygga, and I be a macro instruction. If
Initialized(I)+-(f——w) C s, then s(f) = w and s(intloc(0)) = 1.

(55) For every finite sequence location f and for every integer location a and
for every state s of SCMpga holds {a,ICscmygg,, f} € domss.

(56) For every macro instruction p and for every state s of SCMpga holds
UsedInt* Loc(p) U UsedIntLoc(p) C dom s.

(57) Let s be a state of SCMpga, I be a macro instruction, and f be a finite
sequence location. Then (Result(s—+- Initialized([)))(f) = (IExec(Z,s))(f)-

2. THE PROGRAM CODE FOR BUBLE SORT

Let f be a finite sequence location. The functor bubble-sort( f) yields a macro
instruction and is defined as follows:

(Def. 1) bubble-sort(f) = is;

(ar:=len )
Times(aq,
(ag:=ay);
SubFrom(ag, ap);
(az=len )
Times(ag,
(ag:=a3);
SubFrom(as, agp);
(a5::fa3)§
(a6:=fa,);

SubFrom(ag, as);
(if ag > 0 then (a6:=fa,)i(fay:=06);(fas:=05) else (Stopscris)))):
where i5 = (ag:=ap);(as:=ap);(as:=ag);(as:=ag);(ag:=ao),
ay = intloc(2), ap = intloc(0), a3 = intloc(3), as = intloc(4), a5 =
intloc(5), ag = intloc(6), and a; = intloc(1).
The macro instruction the bubble sort algorithm is defined by:
(Def. 2) The bubble sort algorithm = bubble-sort(fsloc(0)).
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The following propositions are true:

(58) For every finite sequence location f holds UsedIntLoc(bubble-sort(f)) =
{ao,a1,a2,a3,a4,a5,a6}, where ap = intloc(0), a; = intloc(1l), as =
intloc(2), ag = intloc(3), a4 = intloc(4), as = intloc(5), and ag = intloc(6).

(59) For every finite sequence location f holds UsedInt* Loc(bubble-sort(f)) =
{r}-

3. DEFINING RELATIONSHIP BETWEEN THE INPUT AND OUTPUT OF
SORTING ALGORITHMS

The partial function Sorting-Function from FinPartSt(SCMpsa) to
FinPartSt(SCMpsga ) is defined by the condition (Def. 3).

(Def. 3) Let p, ¢ be finite partial states of SCMpgs. Then (p, ¢) €
Sorting-Function if and only if there exists a finite sequence t of elements
of Z and there exists a finite sequence u of elements of R such that ¢ and
u are fiberwise equipotent and w is a finite sequence of elements of Z and
non-increasing and p = fsloc(0)——t and ¢ = fsloc(0)——u.

We now state two propositions:
(60) For every set p holds p € dom Sorting-Function iff there exists a finite
sequence t of elements of Z such that p = fsloc(0)——t.
(61) Let ¢ be a finite sequence of elements of Z. Then there exists a finite
sequence u of elements of R such that
(i) t and u are fiberwise equipotent,
(ii)  w is non-increasing and a finite sequence of elements of Z, and
(iii)  (Sorting-Function)(fsloc(0)——t) = fsloc(0)——u.

4. THE BAsiC PROPERTY OF BUBLE SORT

Next we state several propositions:
(62) For every finite sequence location f holds card bubble-sort(f) = 63.
(63) For every finite sequence location f and for every natural number k such
that & < 63 holds insloc(k) € dom bubble-sort(f).
(64) bubble-sort(fsloc(0)) is keepIntO 1 and InitHalting.
(65) Let s be a state of SCMpga. Then
(i)  s(fo) and (IExec(bubble-sort(fy),s))(fo) are fiberwise equipotent, and
(ii)  for all natural numbers 4, j such that i > 1 and j < lens(fp) and i < j
and for all integers z1, x2 such that 1 = (IExec(bubble-sort(fo), s))(fo)(?)
and 29 = (IExec(bubble-sort(fy), s))(fo)(j) holds z1 > x4,
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where fp = fsloc(0).

(66) Let ¢ be a natural number, s be a state of SCMpga, and w be a finite
sequence of elements of Z. Suppose Initialized(the bubble sort algorithm)
+(fsloc(0)—w) C s. Then IC computation(s))(i) € dom (the bubble sort
algorithm).

(67) Let s be a state of SCMpga and ¢ be a finite sequence of elements of Z.
Suppose Initialized(the bubble sort algorithm) +-(fsloc(0)——t) C s. Then
there exists a finite sequence u of elements of R such that

(i) ¢ and wu are fiberwise equipotent,

(ii)  w is non-increasing and a finite sequence of elements of Z, and
(iii)  (Result(s))(fsloc(0)) = u.

5. THE CORRECTNESS AND AUTONOMOUSNESS OF BUBLE SORT ALGORITHM

We now state two propositions:

(68) For every finite sequence w of elements of Z holds Initialized(the bubble
sort algorithm) +-(fsloc(0)——w) is autonomic.

(69) Initialized(the bubble sort algorithm) computes Sorting-Function.
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