
FORMALIZED MATHEMATICS

Volume 7, Number 1, 1998

University of Białystok

On the Composition of Non-parahalting

Macro Instructions

Piotr Rudnicki1

University of Alberta

Edmonton

Summary. An attempt to use the Times macro, [2], was the origin of
writing this article. First, the semantics of the macro composition as developed
in [23, 3, 4] is extended to the case of macro instructions which are not always
halting. Next, several functors extending the memory handling for SCMFSA, [18],
are defined; they are convenient when writing more complicated programs. After
this preparatory work, we define a macro instruction computing the Fibonacci
sequence (see the SCM program computing the same sequence in [10]) and prove
its correctness. The semantics of the Times macro is given in [2] only for the case
when the iterated instruction is parahalting; this is remedied in [17].

MML Identifier: SFMASTR1.

The notation and terminology used in this paper are introduced in the following

papers: [16], [21], [19], [27], [5], [7], [15], [12], [14], [13], [11], [25], [6], [9], [28],

[23], [3], [4], [1], [24], [22], [8], [18], [26], and [20].

1. Good Instructions and Good Macro Instruction

Let i be an instruction of SCMFSA. We say that i is good if and only if:

(Def. 1) Macro(i) is good.

Let a be a read-write integer location and let b be an integer location. One

can check the following observations:

∗ a:=b is good,

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

85
c© 1998 University of Białystok

ISSN 1426–2630



86 piotr rudnicki

∗ AddTo(a, b) is good,

∗ SubFrom(a, b) is good, and

∗ MultBy(a, b) is good.

Let us note that there exists an instruction of SCMFSA which is good and

parahalting.

Let a, b be read-write integer locations. Observe that Divide(a, b) is good.

Let l be an instruction-location of SCMFSA. One can verify that goto l is

good.

Let a be an integer location and let l be an instruction-location of SCMFSA.

Note that if a = 0 goto l is good and if a > 0 goto l is good.

Let a be an integer location, let f be a finite sequence location, and let b be

a read-write integer location. One can check that b:=fa is good.

Let f be a finite sequence location and let b be a read-write integer location.

One can verify that b:=lenf is good.

Let f be a finite sequence location and let a be an integer location. One can

check that f :=〈0, . . . , 0
︸ ︷︷ ︸

a

〉 is good. Let b be an integer location. Note that fa:=b

is good.

Let us note that there exists an instruction of SCMFSA which is good.

Let i be a good instruction of SCMFSA. Note that Macro(i) is good.

Let i, j be good instructions of SCMFSA. Note that i;j is good.

Let i be a good instruction of SCMFSA and let I be a good macro instruc-

tion. Note that i;I is good and I;i is good.

Let a, b be read-write integer locations. Note that swap(a, b) is good.

Let I be a good macro instruction and let a be a read-write integer location.

One can verify that Times(a, I) is good.

One can prove the following proposition

(1) For every integer location a and for every macro instruction I such that

a /∈ UsedIntLoc(I) holds I does not destroy a.

2. Composition of Non-parahalting Macro Instructions

For simplicity, we use the following convention: s, S denote states of SCMFSA,

I, J denote macro instructions, I1 denotes a good macro instruction, i denotes a

good parahalting instruction of SCMFSA, j denotes a parahalting instruction of

SCMFSA, a, b denote integer locations, and f denotes a finite sequence location.

We now state a number of propositions:

(2) (I+·Start-At(insloc(0)))↾D = ∅, where

D = Int-Locations∪FinSeq-Locations.



on the composition of non-parahalting macro . . . 87

(3) If I is halting on Initialize(S) and closed on Initialize(S) and J is closed

on IExec(I, S), then I;J is closed on Initialize(S).

(4) If I is halting on Initialize(S) and J is halting on IExec(I, S) and I is

closed on Initialize(S) and J is closed on IExec(I, S), then I;J is halting

on Initialize(S).

(5) Suppose I is closed on s and I+·Start-At(insloc(0)) ⊆ s and s is

halting. Let m be a natural number. Suppose m ¬ LifeSpan(s). Then

(Computation(s))(m) and (Computation(s+·(I;J)))(m) are equal outside

the instruction locations of SCMFSA.

(6) Suppose I1 is halting on Initialize(s) and J is halting on IExec(I1, s)

and I1 is closed on Initialize(s) and J is closed on IExec(I1, s).

Then LifeSpan(s+· Initialized(I1;J)) = LifeSpan(s+· Initialized(I1)) + 1 +

LifeSpan(Result(s+· Initialized(I1))+· Initialized(J)).

(7) Suppose I1 is halting on Initialize(s) and J is halting on IExec(I1, s)

and I1 is closed on Initialize(s) and J is closed on IExec(I1, s). Then

IExec(I1;J, s) = IExec(J, IExec(I1, s))+·Start-At(ICIExec(J,IExec(I1,s)) +

card I1).

(8) Suppose that

(i) I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),

and

(ii) J is parahalting, or halting on IExec(I1, s), or closed on IExec(I1, s).

Then (IExec(I1;J, s))(a) = (IExec(J, IExec(I1, s)))(a).

(9) Suppose that

(i) I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),

and

(ii) J is parahalting, or halting on IExec(I1, s), or closed on IExec(I1, s).

Then (IExec(I1;J, s))(f) = (IExec(J, IExec(I1, s)))(f).

(10) Suppose that

(i) I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),

and

(ii) J is parahalting, or halting on IExec(I1, s), or closed on IExec(I1, s).

Then IExec(I1;J, s)↾D = IExec(J, IExec(I1, s))↾D, where D =

Int-Locations∪FinSeq-Locations.

(11) If I1 is parahalting, or closed on Initialize(s), or halting on

Initialize(s), then Initialize(IExec(I1, s))↾D = IExec(I1, s)↾D, where D =

Int-Locations∪FinSeq-Locations.

(12) If I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),

then (IExec(I1;j, s))(a) = (Exec(j, IExec(I1, s)))(a).

(13) If I1 is parahalting, or halting on Initialize(s), or closed on Initialize(s),

then (IExec(I1;j, s))(f) = (Exec(j, IExec(I1, s)))(f).



88 piotr rudnicki

(14) If I1 is parahalting, or halting on Initialize(s), or closed on

Initialize(s), then IExec(I1;j, s)↾D = Exec(j, IExec(I1, s))↾D, where D =

Int-Locations∪FinSeq-Locations.

(15) If J is parahalting, or halting on Exec(i, Initialize(s)), or closed on

Exec(i, Initialize(s)), then (IExec(i;J, s))(a) =

(IExec(J,Exec(i, Initialize(s))))(a).

(16) If J is parahalting, or halting on Exec(i, Initialize(s)), or closed on

Exec(i, Initialize(s)), then (IExec(i;J, s))(f) =

(IExec(J,Exec(i, Initialize(s))))(f).

(17) If J is parahalting, or halting on Exec(i, Initialize(s)), or closed on

Exec(i, Initialize(s)), then IExec(i;J, s)↾D = IExec(J,Exec(i, Initialize(s)))

↾D, where D = Int-Locations∪FinSeq-Locations.

3. Memory Allocation

In the sequel L is a finite subset of Int-Locations and m, n are natural

numbers.

Let d be an integer location. Then {d} is a subset of Int-Locations. Let e

be an integer location. Then {d, e} is a subset of Int-Locations. Let f be an

integer location. Then {d, e, f} is a subset of Int-Locations. Let g be an integer

location. Then {d, e, f, g} is a subset of Int-Locations.

Let L be a finite subset of Int-Locations. The functor RWNotIn-seqL yields

a function from N into 2N and is defined by the conditions (Def. 2).

(Def. 2)(i) (RWNotIn-seqL)(0) = {k; k ranges over natural numbers: intloc(k) /∈

L ∧ k 6= 0},

(ii) for every natural number i and for every non empty subset s1 of N

such that (RWNotIn-seqL)(i) = s1 holds (RWNotIn-seqL)(i + 1) = s1 \

{min s1}, and

(iii) for every natural number i holds (RWNotIn-seqL)(i) is infinite.

Let L be a finite subset of Int-Locations and let n be a natural number. Note

that (RWNotIn-seqL)(n) is non empty.

One can prove the following propositions:

(18) 0 /∈ (RWNotIn-seqL)(n) and for every m such that m ∈

(RWNotIn-seqL)(n) holds intloc(m) /∈ L.

(19) min(RWNotIn-seqL)(n) < min(RWNotIn-seqL)(n + 1).

(20) If n < m, then min(RWNotIn-seqL)(n) < min(RWNotIn-seqL)(m).

Let n be a natural number and let L be a finite subset of Int-Locations. The

functor nth-RWNotIn(L) yields an integer location and is defined as follows:

(Def. 3) nth-RWNotIn(L) = intloc(min(RWNotIn-seqL)(n)).



on the composition of non-parahalting macro . . . 89

We introduce 1st -RWNotIn(L), 2nd-RWNotIn(L), 3rd -RWNotIn(L) as syno-

nyms of nth-RWNotIn(L).

Let n be a natural number and let L be a finite subset of Int-Locations. One

can verify that nth-RWNotIn(L) is read-write.

We now state two propositions:

(21) nth-RWNotIn(L) /∈ L.

(22) If n 6= m, then nth-RWNotIn(L) 6= mth-RWNotIn(L).

Let n be a natural number and let p be a programmed finite partial state

of SCMFSA. The functor n
th-NotUsed(p) yielding an integer location is defined

by:

(Def. 4) nth-NotUsed(p) = nth-RWNotIn(UsedIntLoc(p)).

We introduce 1st-NotUsed(p), 2nd-NotUsed(p), 3rd-NotUsed(p) as synonyms of

nth-NotUsed(p).

Let n be a natural number and let p be a programmed finite partial state of

SCMFSA. Observe that nth-NotUsed(p) is read-write.

4. A Macro for the Fibonacci Sequence

One can prove the following proposition

(23) a ∈ UsedIntLoc(swap(a, b)) and b ∈ UsedIntLoc(swap(a, b)).

Let N , r1 be integer locations. The functor Fib macro(N, r1) yielding a ma-

cro instruction is defined by:

(Def. 5) Fib macro(N, r1) =

(N1:=N);

SubFrom(r1, r1);

(n1:= intloc(0));

(a1:=N1);

Times(a1,AddTo(r1, n1); swap(r1, n1));

(N :=N1),

where N1 = 2nd-RWNotIn(UsedIntLoc(swap(r1, n1))), n1 = 1st -RWNotIn

({N, r1}), and a1 = 1st -RWNotIn(UsedIntLoc(swap(r1, n1))).

Next we state the proposition

(24) Let N , r1 be read-write integer locations. Suppose N 6= r1. Let n be

a natural number. If n = s(N), then (IExec(Fib macro(N, r1), s))(r1) =

Fib(n) and (IExec(Fib macro(N, r1), s))(N) = s(N).



90 piotr rudnicki

References

[1] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. Forma-
lized Mathematics, 6(1):59–63, 1997.

[2] Noriko Asamoto. The loop and Times macroinstruction for SCMFSA. Formalized Ma-
thematics, 6(4):483–497, 1997.

[3] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[5] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[6] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[7] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[8] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.

[9] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I - preliminaries.
Formalized Mathematics, 4(1):69–72, 1993.

[10] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part II - programs.
Formalized Mathematics, 4(1):73–75, 1993.

[11] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[15] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathema-
tics, 2(5):635–642, 1991.

[16] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[17] Piotr Rudnicki. Another timesmacro instruction. Formalized Mathematics, 7(1):101–105,
1998.

[18] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized Ma-
thematics, 6(1):29–36, 1997.

[19] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[21] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[22] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[23] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.

[24] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[25] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[27] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 3, 1998


