
FORMALIZED MATHEMATICS

Volume 7, Number 1, 1998

University of Białystok

Another times Macro Instruction

Piotr Rudnicki1

University of Alberta

Edmonton

Summary. The semantics of the times macro is given in [2] only for the
case when the body of the macro is parahalting. We remedy this by defining
a new times macro instruction in terms of while (see [9, 13]). The semantics
of the new times macro is given in a way analogous to the semantics of while
macros. The new times uses an anonymous variable to control the number of its
executions. We present two examples: a trivial one and a remake of the macro
for the Fibonacci sequence (see [12]).

MML Identifier: SFMASTR2.

The terminology and notation used in this paper are introduced in the following

articles: [11], [16], [21], [6], [8], [19], [5], [7], [10], [22], [3], [4], [1], [18], [17], [12],

[14], [20], and [15].

1. SCMFSA Preliminaries

For simplicity, we follow the rules: s, s1, s2 denote states of SCMFSA, a,

b denote integer locations, d denotes a read-write integer location, f denotes a

finite sequence location, I denotes a macro instruction, J denotes a good macro

instruction, and k denotes a natural number.

One can prove the following propositions:

(1) If I is closed on Initialize(s) and halting on Initialize(s) and b /∈

UsedIntLoc(I), then (IExec(I, s))(b) = (Initialize(s))(b).

(2) If I is closed on Initialize(s) and halting on Initialize(s) and f /∈

UsedInt∗ Loc(I), then (IExec(I, s))(f) = (Initialize(s))(f).

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.

99
c© 1998 University of Białystok

ISSN 1426–2630



100 piotr rudnicki

(3) Suppose I is closed on Initialize(s), halting on Initialize(s), and parahal-

ting but s(intloc(0)) = 1 or a is read-write but a /∈ UsedIntLoc(I). Then

(IExec(I, s))(a) = s(a).

(4) If s(intloc(0)) = 1, then I is closed on s iff I is closed on Initialize(s).

(5) If s(intloc(0)) = 1, then I is closed on s and halting on s iff I is closed

on Initialize(s) and halting on Initialize(s).

(6) Let I1 be a subset of Int-Locations and F1 be a subset of

FinSeq-Locations. Then s1↾(I1 ∪ F1) = s2↾(I1 ∪ F1) if and only if the

following conditions are satisfied:

(i) for every integer location x such that x ∈ I1 holds s1(x) = s2(x), and

(ii) for every finite sequence location x such that x ∈ F1 holds s1(x) =

s2(x).

(7) Let I1 be a subset of Int-Locations. Then s1↾(I1 ∪ FinSeq-Locations) =

s2↾(I1 ∪ FinSeq-Locations) if and only if the following conditions are sa-

tisfied:

(i) for every integer location x such that x ∈ I1 holds s1(x) = s2(x), and

(ii) for every finite sequence location x holds s1(x) = s2(x).

2. Another times Macro Instruction

Let a be an integer location and let I be a macro instruction. The functor

times(a, I) yields a macro instruction and is defined by:

(Def. 1) times(a, I) = (a1:=a);(while a1 > 0 do (I;SubFrom(a1, intloc(0)))),

where a1 = 1st -RWNotIn({a} ∪UsedIntLoc(I)).

We introduce a times I as a synonym of times(a, I).

Next we state two propositions:

(8) {b} ∪UsedIntLoc(I) ⊆ UsedIntLoc(times(b, I)).

(9) UsedInt∗ Loc(times(b, I)) = UsedInt∗ Loc(I).

Let I be a good macro instruction and let a be an integer location. Observe

that times(a, I) is good.

Let s be a state of SCMFSA, let I be a macro instruction, and let a be an

integer location. The functor StepTimes(a, I, s) yields a function from N into
∏
(the object kind of SCMFSA) and is defined by:

(Def. 2) StepTimes(a, I, s) = StepWhile>0 (a1, I;SubFrom(a1, intloc(0)),

Exec(a1:=a, Initialize(s))),

where a1 = 1st -RWNotIn({a} ∪UsedIntLoc(I)).

Next we state several propositions:

(10) (StepTimes(a, J, s))(0)(intloc(0)) = 1.



another times macro instruction 101

(11) If s(intloc(0)) = 1 or a is read-write, then (StepTimes(a, J, s))

(0)(1st -RWNotIn({a} ∪UsedIntLoc(J))) = s(a).

(12) Suppose (StepTimes(a, J, s))(k)(intloc(0)) = 1 and J is closed on

(StepTimes(a, J, s))(k) and halting on (StepTimes(a, J, s))(k). Then

(StepTimes(a, J, s))(k + 1)(intloc(0)) = 1 and if (StepTimes(a, J, s))(k)

(1st -RWNotIn({a}∪UsedIntLoc(J))) > 0, then (StepTimes(a, J, s))(k+1)

(1st -RWNotIn({a} ∪UsedIntLoc(J))) = (StepTimes(a, J, s))(k)

(1st -RWNotIn({a} ∪UsedIntLoc(J)))− 1.

(13) If s(intloc(0)) = 1 or a is read-write, then (StepTimes(a, I, s))(0)(a) =

s(a).

(14) (StepTimes(a, I, s))(0)(f) = s(f).

Let s be a state of SCMFSA, let a be an integer location, and let I be a

macro instruction. We say that ProperTimesBody a, I, s if and only if:

(Def. 3) For every natural number k such that k < s(a) holds I is closed on

(StepTimes(a, I, s))(k) and halting on (StepTimes(a, I, s))(k).

One can prove the following propositions:

(15) If I is parahalting, then ProperTimesBody a, I, s.

(16) If ProperTimesBody a, J , s, then for every k such that k ¬ s(a) holds

(StepTimes(a, J, s))(k)(intloc(0)) = 1.

(17) Suppose s(intloc(0)) = 1 or a is read-write but ProperTimesBody a, J , s.

Let given k. If k ¬ s(a), then (StepTimes(a, J, s))(k)(1st -RWNotIn({a} ∪

UsedIntLoc(J))) + k = s(a).

(18) Suppose ProperTimesBody a, J , s but 0 ¬ s(a) but s(intloc(0)) = 1 or

a is read-write. Let given k. If k ­ s(a), then (StepTimes(a, J, s))(k)

(1st -RWNotIn({a} ∪UsedIntLoc(J))) = 0 and (StepTimes(a, J, s))

(k)(intloc(0)) = 1.

(19) If s(intloc(0)) = 1, then (StepTimes(a, I, s))(0)↾(UsedIntLoc(I) ∪

FinSeq-Locations) = s↾(UsedIntLoc(I) ∪ FinSeq-Locations).

(20) Suppose (StepTimes(a, J, s))(k)(intloc(0)) = 1 and J is halting on

Initialize((StepTimes(a, J, s))(k)) and closed on Initialize((StepTimes(a, J, s))

(k)) and (StepTimes(a, J, s))(k)(1st -RWNotIn({a}∪UsedIntLoc(J))) > 0.

Then (StepTimes(a, J, s))(k + 1)↾(UsedIntLoc(J) ∪ FinSeq-Locations) =

IExec(J, (StepTimes(a, J, s))(k))↾(UsedIntLoc(J) ∪ FinSeq-Locations).

(21) Suppose ProperTimesBody a, J , s or J is parahalting but

k < s(a) but s(intloc(0)) = 1 or a is read-write. Then

(StepTimes(a, J, s))(k + 1)↾(UsedIntLoc(J) ∪ FinSeq-Locations) =

IExec(J, (StepTimes(a, J, s))(k))↾(UsedIntLoc(J) ∪ FinSeq-Locations).

(22) If s(a) ¬ 0 and s(intloc(0)) = 1, then IExec(times(a, I), s)↾(UsedIntLoc(I)∪

FinSeq-Locations) = s↾(UsedIntLoc(I) ∪ FinSeq-Locations).



102 piotr rudnicki

(23) Suppose s(a) = k but ProperTimesBody a, J , s or J is parahalting

but s(intloc(0)) = 1 or a is read-write. Then IExec(times(a, J), s)↾D =

(StepTimes(a, J, s))(k)↾D, where D = Int-Locations∪FinSeq-Locations.

(24) If s(intloc(0)) = 1 and if ProperTimesBody a, J , s or J is parahalting,

then times(a, J) is closed on s and times(a, J) is halting on s.

3. A Trivial Example

Let d be a read-write integer location. The functor triv-times(d) yields a

macro instruction and is defined as follows:

(Def. 4) triv-times(d) =

times(d, (while d = 0 do Macro(d:=d));

SubFrom(d, intloc(0))).

One can prove the following propositions:

(25) If s(d) ¬ 0, then (IExec(triv-times(d), s))(d) = s(d).

(26) If 0 ¬ s(d), then (IExec(triv-times(d), s))(d) = 0.

4. A Macro for the Fibonacci Sequence

Let N , r1 be integer locations. The functor Fib-macro(N, r1) yields a macro

instruction and is defined by:

(Def. 5) Fib-macro(N, r1) =

(N1:=N);

SubFrom(r1, r1);

(n1:= intloc(0));

times(N,AddTo(r1, n1); swap(r1, n1));

(N :=N1),

where N1 = 1st-NotUsed(times(N,AddTo(r1, n1); swap(r1, n1))) and n1 =

1st -RWNotIn({N, r1}).

One can prove the following proposition

(27) Let N , r1 be read-write integer locations. Suppose N 6= r1. Let n be

a natural number. If n = s(N), then (IExec(Fib-macro(N, r1), s))(r1) =

Fib(n) and (IExec(Fib-macro(N, r1), s))(N) = s(N).



another times macro instruction 103

References

[1] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. Forma-
lized Mathematics, 6(1):59–63, 1997.

[2] Noriko Asamoto. The loop and Times macroinstruction for SCMFSA. Formalized Ma-
thematics, 6(4):483–497, 1997.

[3] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[5] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[6] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[7] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I - preliminaries.
Formalized Mathematics, 4(1):69–72, 1993.

[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[9] Jing-Chao Chen. While macro instructions of SCMFSA. Formalized Mathematics,
6(4):553–561, 1997.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[12] Piotr Rudnicki. On the composition of non-parahalting macro instructions. Formalized
Mathematics, 7(1):87–92, 1998.

[13] Piotr Rudnicki. The while macro instructions of SCMFSA. Part II. Formalized Mathe-
matics, 7(1):93–100, 1998.

[14] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized Ma-
thematics, 6(1):29–36, 1997.

[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[16] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[17] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[18] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.
Formalized Mathematics, 5(4):519–528, 1996.

[19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 4, 1998


