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The articles [6], [2], [12], [1], [14], [8], [11], [15], [13], [4], [5], [10], [9], [3], and

[16] provide the terminology and notation for this paper.

1. Preliminaries

Let S be a non empty set and let a, b be elements of S. The functor a, b, ...

yields a function from N into S and is defined by the condition (Def. 1).

(Def. 1) Let i be a natural number. Then

(i) if there exists a natural number k such that i = 2 ·k, then (a, b, ...)(i) =

a, and

(ii) if it is not true that there exists a natural number k such that i = 2 ·k,

then (a, b, ...)(i) = b.

We now state two propositions:

(1) Let S, T be non empty reflexive relational structures, f be a map from

S into T , and P be a lower subset of T . If f is monotone, then f−1(P ) is

lower.

(2) Let S, T be non empty reflexive relational structures, f be a map from

S into T , and P be an upper subset of T . If f is monotone, then f−1(P )

is upper.
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Let T be an up-complete lattice and let S be an inaccessible subset of T .

Note that −S is directly closed.

Next we state the proposition

(3) Let S, T be reflexive antisymmetric non empty relational structures and

f be a map from S into T . If f is directed-sups-preserving, then f is

monotone.

Let S, T be reflexive antisymmetric non empty relational structures. Observe

that every map from S into T which is directed-sups-preserving is also monotone.

Next we state the proposition

(4) Let S, T be up-complete Scott top-lattices and f be a map from S into

T . If f is continuous, then f is monotone.

2. Poset of Continuous Maps

Let S be a set and let T be a reflexive relational structure. One can verify

that S 7−→ T is reflexive-yielding.

Let S be a non empty set and let T be a complete lattice. Observe that TS

is complete.

Let S, T be up-complete Scott top-lattices. The functor SCMaps(S, T ) yields

a strict full relational substructure of MonMaps(S, T ) and is defined by:

(Def. 2) For every map f from S into T holds f ∈ the carrier of SCMaps(S, T )

iff f is continuous.

Let S, T be up-complete Scott top-lattices. Note that SCMaps(S, T ) is non

empty.

3. Some Special Nets

Let S be a non empty relational structure and let a, b be elements of the

carrier of S. The functor NetStr(a, b) yields a strict non empty net structure

over S and is defined by the conditions (Def. 3).

(Def. 3)(i) The carrier of NetStr(a, b) = N,

(ii) the mapping of NetStr(a, b) = a, b, ..., and

(iii) for all elements i, j of the carrier of NetStr(a, b) and for all natural

numbers i′, j′ such that i = i′ and j = j′ holds i ¬ j iff i′ ¬ j′.

Let S be a non empty relational structure and let a, b be elements of the

carrier of S. Note that NetStr(a, b) is reflexive transitive directed and antisym-

metric.

We now state four propositions:
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(5) Let S be a non empty relational structure, a, b be elements of the

carrier of S, and i be an element of the carrier of NetStr(a, b). Then

(NetStr(a, b))(i) = a or (NetStr(a, b))(i) = b.

(6) Let S be a non empty relational structure, a, b be elements of the carrier

of S, i, j be elements of the carrier of NetStr(a, b), and i′, j′ be natural

numbers such that i′ = i and j′ = i′ + 1 and j′ = j. Then

(i) if (NetStr(a, b))(i) = a, then (NetStr(a, b))(j) = b, and

(ii) if (NetStr(a, b))(i) = b, then (NetStr(a, b))(j) = a.

(7) For every poset S with g.l.b.’s and for all elements a, b of the carrier of

S holds lim inf NetStr(a, b) = a ⊓ b.

(8) Let S, T be posets with g.l.b.’s, a, b be elements of the carrier of S, and

f be a map from S into T . Then lim inf(f ·NetStr(a, b)) = f(a) ⊓ f(b).

Let S be a non empty relational structure and let D be a non empty subset

of S. The functor NetStr(D) yielding a strict net structure over S is defined by:

(Def. 4) NetStr(D) = 〈D, (the internal relation of S) |2 D, idthe carrier of S↾D〉.

We now state the proposition

(9) Let S be a non empty reflexive relational structure and D be a non

empty subset of S. Then NetStr(D) = NetStr(D, idthe carrier of S↾D).

Let S be a non empty reflexive relational structure and let D be a directed

non empty subset of S. Note that NetStr(D) is non empty directed and reflexive.

Let S be a non empty reflexive transitive relational structure and let D be

a directed non empty subset of S. One can check that NetStr(D) is transitive.

Let S be a non empty reflexive relational structure and let D be a directed

non empty subset of S. Observe that NetStr(D) is monotone.

We now state the proposition

(10) For every up-complete lattice S and for every directed non empty subset

D of S holds lim inf NetStr(D) = supD.

4. Monotone Maps

We now state several propositions:

(11) Let S, T be lattices and f be a map from S into T . If for every net N

in S holds f(lim inf N) ¬ lim inf(f ·N), then f is monotone.

(12) Let S, T be continuous lower-bounded lattices and f be a map from S

into T . Suppose f is directed-sups-preserving. Let x be an element of S.

Then f(x) =
⊔

T
{f(w);w ranges over elements of S: w ≪ x}.

(13) Let S be a lattice, T be an up-complete lower-bounded lattice, and f be

a map from S into T . Suppose that for every element x of S holds f(x) =
⊔

T
{f(w);w ranges over elements of S: w ≪ x}. Then f is monotone.
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(14) Let S be an up-complete lower-bounded lattice, T be a continuous lower-

bounded lattice, and f be a map from S into T . Suppose that for every

element x of S holds f(x) =
⊔

T
{f(w);w ranges over elements of S: w ≪

x}. Let x be an element of S and y be an element of T . Then y ≪ f(x) if

and only if there exists an element w of S such that w ≪ x and y ≪ f(w).

(15) Let S, T be non empty relational structures, D be a subset of S, and f

be a map from S into T . Suppose that

(i) sup D exists in S and sup f◦D exists in T , or

(ii) S is complete and antisymmetric and T is complete and antisymmetric.

If f is monotone, then sup(f◦D) ¬ f(supD).

(16) Let S, T be non empty reflexive antisymmetric relational structures, D

be a directed non empty subset of S, and f be a map from S into T .

Suppose sup D exists in S and sup f◦D exists in T or S is up-complete

and T is up-complete. If f is monotone, then sup(f◦D) ¬ f(supD).

(17) Let S, T be non empty relational structures, D be a subset of S, and f

be a map from S into T . Suppose that

(i) inf D exists in S and inf f◦D exists in T , or

(ii) S is complete and antisymmetric and T is complete and antisymmetric.

If f is monotone, then f(infD) ¬ inf(f◦D).

(18) Let S, T be up-complete lattices, f be a map from S into T , and N be

a monotone non empty net structure over S. If f is monotone, then f ·N

is monotone.

Let S, T be up-complete lattices, let f be a monotone map from S into T ,

and let N be a monotone non empty net structure over S. Observe that f ·N

is monotone.

The following two propositions are true:

(19) Let S, T be up-complete lattices and f be a map from S into T . Suppose

that for every net N in S holds f(lim inf N) ¬ lim inf(f ·N). Let D be a

directed non empty subset of S. Then sup(f◦D) = f(supD).

(20) Let S, T be complete lattices, f be a map from S into T , N be a net in

S, j be an element of the carrier of N , and j′ be an element of the carrier

of f · N. Suppose j′ = j. Suppose f is monotone. Then f(⌈−⌉S{N(k); k

ranges over elements of the carrier of N : k ­ j}) ¬ ⌈−⌉T {(f ·N)(l); l ranges

over elements of the carrier of f ·N : l ­ j′}.
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5. Necessary and Sufficient Conditions of Scott-continuity

We now state two propositions:

(21) Let S, T be complete Scott top-lattices and f be a map from S into

T . Then f is continuous if and only if for every net N in S holds

f(lim inf N) ¬ lim inf(f ·N).

(22) Let S, T be complete Scott top-lattices and f be a map from S into T .

Then f is continuous if and only if f is directed-sups-preserving.

Let S, T be complete Scott top-lattices. Observe that every map from S into

T which is continuous is also directed-sups-preserving and every map from S

into T which is directed-sups-preserving is also continuous.

One can prove the following propositions:

(23) Let S, T be continuous complete Scott top-lattices and f be a map from

S into T . Then f is continuous if and only if for every element x of S and

for every element y of T holds y ≪ f(x) iff there exists an element w of S

such that w ≪ x and y ≪ f(w).

(24) Let S, T be continuous complete Scott top-lattices and f be a map from

S into T . Then f is continuous if and only if for every element x of S holds

f(x) =
⊔

T
{f(w);w ranges over elements of S: w ≪ x}.

(25) Let S be a lattice, T be a complete lattice, and f be a map from S into

T . Suppose that for every element x of S holds f(x) =
⊔

T
{f(w);w ranges

over elements of S: w ¬ x ∧ w is compact}. Then f is monotone.

(26) Let S, T be complete Scott top-lattices and f be a map from S into T .

Suppose that for every element x of S holds f(x) =
⊔

T
{f(w);w ranges

over elements of S: w ¬ x ∧ w is compact}. Let x be an element of S.

Then f(x) =
⊔

T
{f(w);w ranges over elements of S: w ≪ x}.

(27) Let S, T be complete Scott top-lattices and f be a map from S into

T . Suppose S is algebraic and T is algebraic. Then f is continuous if and

only if for every element x of S and for every element k of T such that

k ∈ the carrier of CompactSublatt(T ) holds k ¬ f(x) iff there exists an

element j of S such that j ∈ the carrier of CompactSublatt(S) and j ¬ x

and k ¬ f(j).

(28) Let S, T be complete Scott top-lattices and f be a map from S into T .

Suppose S is algebraic and T is algebraic. Then f is continuous if and only

if for every element x of S holds f(x) =
⊔

T
{f(w);w ranges over elements

of S: w ¬ x ∧ w is compact}.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.



18 adam grabowski

[2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[3] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81–91, 1997.

[4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,
6(1):93–107, 1997.

[5] Grzegorz Bancerek. The “way-below” relation. Formalized Mathematics, 6(1):169–176,
1997.

[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[7] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Com-
pendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.

[8] Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501–505,
1996.

[9] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized
Mathematics, 6(2):269–277, 1997.

[10] Robert Milewski. Algebraic lattices. Formalized Mathematics, 6(2):249–254, 1997.
[11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[12] Andrzej Trybulec. Natural transformations. Discrete categories. Formalized Mathematics,
2(4):467–474, 1991.

[13] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
[14] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[16] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices
and maps. Formalized Mathematics, 6(1):123–130, 1997.

Received February 13, 1998


