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Summary. The article is a translation of [7, pp. 112-113].

MML Identifier: WAYBEL17.

The articles [6], [2], [12], [1], [14], 8], [11], [15], [13], [4], [5], [10], [9], [3], and
[16] provide the terminology and notation for this paper.

1. PRELIMINARIES

Let S be a non empty set and let a, b be elements of S. The functor a,b, ...
yields a function from N into S and is defined by the condition (Def. 1).
(Def. 1) Let i be a natural number. Then
(i)  if there exists a natural number k such that i = 2-k, then (a,b,...)(i) =
a, and
(ii)  if it is not true that there exists a natural number k such that i = 2k,
then (a,b,...)(i) = b.
We now state two propositions:
(1) Let S, T be non empty reflexive relational structures, f be a map from
S into T, and P be a lower subset of T. If f is monotone, then f~!(P) is
lower.
(2) Let S, T be non empty reflexive relational structures, f be a map from
S into T, and P be an upper subset of 7. If f is monotone, then f~1(P)
is upper.
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Let T be an up-complete lattice and let S be an inaccessible subset of T
Note that —S is directly closed.
Next we state the proposition
(3) Let S, T be reflexive antisymmetric non empty relational structures and
f be a map from S into T. If f is directed-sups-preserving, then f is
monotone.
Let S, T be reflexive antisymmetric non empty relational structures. Observe
that every map from S into 7" which is directed-sups-preserving is also monotone.
Next we state the proposition
(4) Let S, T be up-complete Scott top-lattices and f be a map from S into
T. If f is continuous, then f is monotone.

2. POSET OF CONTINUOUS MAPS

Let S be a set and let T" be a reflexive relational structure. One can verify
that S —— T is reflexive-yielding.

Let S be a non empty set and let T be a complete lattice. Observe that T
is complete.

Let S, T be up-complete Scott top-lattices. The functor SCMaps(S, T') yields
a strict full relational substructure of MonMaps(S,T') and is defined by:

(Def. 2) For every map f from S into T holds f € the carrier of SCMaps(S,T)
iff f is continuous.

Let S, T' be up-complete Scott top-lattices. Note that SCMaps(S,T) is non

empty.

3. SOME SPECIAL NETS

Let S be a non empty relational structure and let a, b be elements of the
carrier of S. The functor NetStr(a,b) yields a strict non empty net structure
over S and is defined by the conditions (Def. 3).

(Def. 3)(i) The carrier of NetStr(a,b) =N,
(ii)  the mapping of NetStr(a,b) = a,b, ..., and
(iii)  for all elements 4, j of the carrier of NetStr(a,b) and for all natural
numbers 7/, 7' such that i = ¢ and j = j/ holds 7 < j iff / < j'.

Let S be a non empty relational structure and let a, b be elements of the
carrier of S. Note that NetStr(a, b) is reflexive transitive directed and antisym-
metric.

We now state four propositions:
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(5) Let S be a non empty relational structure, a, b be elements of the
carrier of S, and ¢ be an element of the carrier of NetStr(a,b). Then
(NetStr(a,b))(i) = a or (NetStr(a,b))(:) = b.

(6) Let S be a non empty relational structure, a, b be elements of the carrier
of S, i, j be elements of the carrier of NetStr(a,b), and ¢/, j/ be natural
numbers such that i/ =i and ' =4 + 1 and 5/ = j. Then

(i) if (NetStr(a,b))(i) = a, then (NetStr(a,b))(j) = b, and

(ii)  if (NetStr(a,b))(i) = b, then (NetStr(a,b))(j) = a.

(7) For every poset S with g.1.b.’s and for all elements a, b of the carrier of
S holds lim inf NetStr(a,b) = aMb.

(8) Let S, T be posets with g.1.b.’s, a, b be elements of the carrier of S, and
f be a map from S into T'. Then liminf(f - NetStr(a,b)) = f(a) 1 f(b).
Let S be a non empty relational structure and let D be a non empty subset
of S. The functor NetStr(D) yielding a strict net structure over S is defined by:

(Def. 4) NetStr(D) = (D, (the internal relation of S) |? D, idine carrier of 5 [D)-
We now state the proposition

(9) Let S be a non empty reflexive relational structure and D be a non
empty subset of S. Then NetStr(D) = NetStr(D, idthe carrier of s[D)-
Let S be a non empty reflexive relational structure and let D be a directed
non empty subset of S. Note that NetStr(D) is non empty directed and reflexive.
Let S be a non empty reflexive transitive relational structure and let D be
a directed non empty subset of S. One can check that NetStr(D) is transitive.
Let S be a non empty reflexive relational structure and let D be a directed
non empty subset of S. Observe that NetStr(D) is monotone.
We now state the proposition

(10) For every up-complete lattice S and for every directed non empty subset
D of S holds lim inf NetStr(D) = sup D.

4. MONOTONE MAPS

We now state several propositions:

(11) Let S, T be lattices and f be a map from S into T If for every net N
in S holds f(liminf N) < liminf(f - N), then f is monotone.

(12) Let S, T' be continuous lower-bounded lattices and f be a map from S
into T'. Suppose f is directed-sups-preserving. Let = be an element of S.
Then f(z) = | | {f(w);w ranges over elements of S: w < x}.

(13) Let S be a lattice, T' be an up-complete lower-bounded lattice, and f be
a map from S into T'. Suppose that for every element x of S holds f(x) =
Lr{f(w); w ranges over elements of S: w < x}. Then f is monotone.
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(14) Let S be an up-complete lower-bounded lattice, T' be a continuous lower-
bounded lattice, and f be a map from .S into T. Suppose that for every
element x of S holds f(z) = | | {f(w);w ranges over elements of S: w <
x}. Let « be an element of S and y be an element of T'. Then y < f(z) if
and only if there exists an element w of S such that w < z and y < f(w).

(15) Let S, T be non empty relational structures, D be a subset of S, and f
be a map from S into T'. Suppose that

(i) sup D exists in S and sup f°D exists in T, or
(ii) S is complete and antisymmetric and 7" is complete and antisymmetric.

If f is monotone, then sup(f°D) < f(sup D).

(16) Let S, T be non empty reflexive antisymmetric relational structures, D
be a directed non empty subset of S, and f be a map from S into 7.
Suppose sup D exists in S and sup f°D exists in T or S is up-complete
and T is up-complete. If f is monotone, then sup(f°D) < f(sup D).

(17) Let S, T be non empty relational structures, D be a subset of S, and f
be a map from S into T'. Suppose that

(i) inf D exists in S and inf f°D exists in T', or
(ii)  Sis complete and antisymmetric and 7" is complete and antisymmetric.
If f is monotone, then f(inf D) < inf(f°D).

(18) Let S, T' be up-complete lattices, f be a map from S into 7', and N be
a monotone non empty net structure over S. If f is monotone, then f- N
is monotone.

Let S, T be up-complete lattices, let f be a monotone map from S into T,
and let N be a monotone non empty net structure over S. Observe that f - N
is monotone.

The following two propositions are true:

(19) Let S, T be up-complete lattices and f be a map from S into 7. Suppose
that for every net N in S holds f(liminf N) < liminf(f - N). Let D be a
directed non empty subset of S. Then sup(f°D) = f(sup D).

(20) Let S, T be complete lattices, f be a map from S into 7', N be a net in
S, 7 be an element of the carrier of V, and j’ be an element of the carrier
of f- N. Suppose j/ = j. Suppose f is monotone. Then f([ |s{N(k);k
ranges over elements of the carrier of N: k > j}) < [ |p{(f-N)(1); ranges
over elements of the carrier of f- N : 1> j'}.
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5. NECESSARY AND SUFFICIENT CONDITIONS OF SCOTT-CONTINUITY

We now state two propositions:

(21) Let S, T be complete Scott top-lattices and f be a map from S into
T. Then f is continuous if and only if for every net N in S holds
f(liminf N) < liminf(f - V).

(22) Let S, T be complete Scott top-lattices and f be a map from S into 7.
Then f is continuous if and only if f is directed-sups-preserving.

Let S, T be complete Scott top-lattices. Observe that every map from S into
T which is continuous is also directed-sups-preserving and every map from S
into T" which is directed-sups-preserving is also continuous.

One can prove the following propositions:

(23) Let S, T be continuous complete Scott top-lattices and f be a map from
S into T'. Then f is continuous if and only if for every element z of S and
for every element y of T" holds y < f(x) iff there exists an element w of S
such that w < z and y < f(w).

(24) Let S, T be continuous complete Scott top-lattices and f be a map from
S into T'. Then f is continuous if and only if for every element x of S holds
f(z) = p{f(w);w ranges over elements of S: w < x}.

(25) Let S be a lattice, T be a complete lattice, and f be a map from S into
T. Suppose that for every element z of S holds f(x) = | |;{f(w);w ranges
over elements of S: w <z A w is compact}. Then f is monotone.

(26) Let S, T be complete Scott top-lattices and f be a map from S into 7'
Suppose that for every element = of S holds f(z) = | |,{f(w);w ranges
over elements of S: w <z A w is compact}. Let = be an element of S.
Then f(z) = | | {f(w);w ranges over elements of S: w < x}.

(27) Let S, T be complete Scott top-lattices and f be a map from S into
T. Suppose S is algebraic and T is algebraic. Then f is continuous if and
only if for every element x of S and for every element k of T such that
k € the carrier of CompactSublatt(7) holds k < f(z) iff there exists an
element j of S such that j € the carrier of CompactSublatt(S) and j < x
and k < f(j).

(28) Let S, T be complete Scott top-lattices and f be a map from S into 7'
Suppose S is algebraic and T is algebraic. Then f is continuous if and only
if for every element x of S holds f(x) = | | {f(w); w ranges over elements
of S:w <2z A wis compact}.
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