
FORMALIZED MATHEMATICS

Volume 7, Number 2, 1998

University of Białystok

Introduction to Concept Lattices

Christoph Schwarzweller

University of Tübingen

Summary. In this paper we give Mizar formalization of concept lattices.
Concept lattices stem from the so called formal concept analysis — a part of
applied mathematics that brings mathematical methods into the field of data
anylysis and knowledge processing. Our approach follows the one given in [8].

MML Identifier: CONLAT 1.

The papers [3], [14], [4], [5], [1], [15], [12], [10], [13], [11], [2], [7], [9], and [6]

provide the notation and terminology for this paper.

1. Formal Contexts

We consider 2-sorted as systems

〈 objects, a Attributes 〉,

where the objects constitute a set and the Attributes is a set.

Let C be a 2-sorted. We say that C is empty if and only if:

(Def. 1) The objects of C are empty and the Attributes of C is empty.

We say that C is quasi-empty if and only if:

(Def. 2) The objects of C are empty or the Attributes of C is empty.

Let us note that there exists a 2-sorted which is strict and non empty and

there exists a 2-sorted which is strict and non quasi-empty.

One can verify that there exists a 2-sorted which is strict, empty, and quasi-

empty.

We consider ContextStr as extensions of 2-sorted as systems

〈 objects, a Attributes, a Information 〉,

where the objects constitute a set, the Attributes is a set, and the Information

is a relation between the objects and the Attributes.

233
c© 1998 University of Białystok

ISSN 1426–2630



234 christoph schwarzweller

One can check that there exists a ContextStr which is strict and non empty

and there exists a ContextStr which is strict and non quasi-empty.

A FormalContext is a non quasi-empty ContextStr.

Let C be a 2-sorted.

(Def. 3) An element of the objects of C is said to be an object of C.

(Def. 4) An element of the Attributes of C is said to be a Attribute of C.

Let C be a non quasi-empty 2-sorted. Note that the Attributes of C is non

empty and the objects of C is non empty.

Let C be a non quasi-empty 2-sorted. One can check that there exists a

subset of the objects of C which is non empty and there exists a subset of the

Attributes of C which is non empty.

Let C be a FormalContext, let o be an object of C, and let a be a Attribute

of C. We say that o is connected with a if and only if:

(Def. 5) 〈〈o, a〉〉 ∈ the Information of C.

We introduce o is not connected with a as an antonym of o is connected with a.

2. Derivation Operators

Let C be a FormalContext. The functor ObjectDerivationC yields a func-

tion from 2the objects of C into 2the Attributes of C and is defined by the condition

(Def. 6).

(Def. 6) Let O be an element of 2the objects of C . Then (ObjectDerivationC)(O) =

{a; a ranges over Attribute of C:
∧

o : object of C
(o ∈ O ⇒ o is connected

with a)}.

Let C be a FormalContext. The functor AttributeDerivationC yields a func-

tion from 2the Attributes of C into 2the objects of C and is defined by the condition

(Def. 7).

(Def. 7) LetA be an element of 2the Attributes of C . Then (AttributeDerivationC)(A) =

{o; o ranges over objects of C:
∧

a :Attribute of C
(a ∈ A ⇒ o is connected

with a)}.

The following propositions are true:

(1) Let C be a FormalContext and o be an object of C. Then

(ObjectDerivationC)({o}) = {a; a ranges over Attribute of C: o is con-

nected with a}.

(2) Let C be a FormalContext and a be a Attribute of C. Then

(AttributeDerivationC)({a}) = {o; o ranges over objects of C: o is con-

nected with a}.



introduction to concept lattices 235

(3) For every FormalContext C and for all subsets O1, O2 of the ob-

jects of C such that O1 ⊆ O2 holds (ObjectDerivationC)(O2) ⊆

(ObjectDerivationC)(O1).

(4) For every FormalContext C and for all subsets A1, A2 of the Attri-

butes of C such that A1 ⊆ A2 holds (AttributeDerivationC)(A2) ⊆

(AttributeDerivationC)(A1).

(5) For every FormalContext C and for every subset O of the objects of C

holds O ⊆ (AttributeDerivationC)((ObjectDerivationC)(O)).

(6) For every FormalContext C and for every subset A of the Attributes of

C holds A ⊆ (ObjectDerivationC)((AttributeDerivationC)(A)).

(7) For every FormalContext C and for every subset O of the objects of C

holds (ObjectDerivationC)(O) = (ObjectDerivationC)

((AttributeDerivationC)((ObjectDerivationC)(O))).

(8) For every FormalContext C and for every subset A of the Attributes of

C holds (AttributeDerivationC)(A) =

(AttributeDerivationC)((ObjectDerivationC)((AttributeDerivationC)(A))).

(9) Let C be a FormalContext, O be a subset of the objects of C, and A be

a subset of the Attributes of C. Then O ⊆ (AttributeDerivationC)(A) if

and only if [:O, A :] ⊆ the Information of C.

(10) Let C be a FormalContext, O be a subset of the objects of C, and A

be a subset of the Attributes of C. Then A ⊆ (ObjectDerivationC)(O) if

and only if [:O, A :] ⊆ the Information of C.

(11) Let C be a FormalContext, O be a subset of the objects of C, and A be

a subset of the Attributes of C. Then O ⊆ (AttributeDerivationC)(A) if

and only if A ⊆ (ObjectDerivationC)(O).

Let C be a FormalContext. The functor φ(C) yielding a map from

2the objects of C

⊆ into 2the Attributes of C
⊆ is defined by:

(Def. 8) φ(C) = ObjectDerivationC.

Let C be a FormalContext. The functor psiC yields a map from

2the Attributes of C
⊆ into 2the objects of C

⊆ and is defined as follows:

(Def. 9) psiC = AttributeDerivationC.

We now state the proposition

(12) For every FormalContext C holds 〈〈φ(C), psiC〉〉 is a connection between

2the objects of C

⊆ and 2the Attributes of C
⊆ .

Let P , R be non empty relational structures and let C1 be a connection

between P and R. We say that C1 is co-Galois if and only if the condition

(Def. 10) is satisfied.

(Def. 10) There exists a map f from P into R and there exists a map g from R

into P such that



236 christoph schwarzweller

(i) C1 = 〈〈f, g〉〉,

(ii) f is antitone,

(iii) g is antitone, and

(iv) for all elements p1, p2 of P and for all elements r1, r2 of R holds

p1 ¬ g(f(p1)) and r1 ¬ f(g(r1)).

We now state several propositions:

(13) Let P , R be non empty posets, C1 be a connection between P and R, f

be a map from P into R, and g be a map from R into P . Suppose C1 = 〈〈f,

g〉〉. Then C1 is co-Galois if and only if for every element p of P and for

every element r of R holds p ¬ g(r) iff r ¬ f(p).

(14) Let P , R be non empty posets and C1 be a connection between P and

R. Suppose C1 is co-Galois. Let f be a map from P into R and g be a

map from R into P . If C1 = 〈〈f, g〉〉, then f = f · (g · f) and g = g · (f · g).

(15) For every FormalContext C holds 〈〈φ(C), psiC〉〉 is co-Galois.

(16) For every FormalContext C and for all subsets O1, O2 of the objects

of C holds (ObjectDerivationC)(O1 ∪ O2) = (ObjectDerivationC)(O1) ∩

(ObjectDerivationC)(O2).

(17) For every FormalContext C and for all subsets A1, A2 of

the Attributes of C holds (AttributeDerivationC)(A1 ∪ A2) =

(AttributeDerivationC)(A1) ∩ (AttributeDerivationC)(A2).

(18) For every FormalContext C holds (ObjectDerivationC)(∅) = the Attri-

butes of C.

(19) For every FormalContext C holds (AttributeDerivationC)(∅) = the ob-

jects of C.

3. Formal Concepts

Let C be a 2-sorted. We introduce ConceptStr over C which are systems

〈 a Extent, a Intent 〉,

where the Extent is a subset of the objects of C and the Intent is a subset of

the Attributes of C.

Let C be a 2-sorted and let C2 be a ConceptStr over C. We say that C2 is

empty if and only if:

(Def. 11) The Extent of C2 is empty and the Intent of C2 is empty.

We say that C2 is quasi-empty if and only if:

(Def. 12) The Extent of C2 is empty or the Intent of C2 is empty.

Let C be a non quasi-empty 2-sorted. Observe that there exists a ConceptStr

over C which is strict and non empty and there exists a ConceptStr over C which

is strict and quasi-empty.



introduction to concept lattices 237

Let C be an empty 2-sorted. Observe that every ConceptStr over C is empty.

Let C be a quasi-empty 2-sorted. Observe that every ConceptStr over C is

quasi-empty.

Let C be a FormalContext and let C2 be a ConceptStr over C. We say that

C2 is concept-like if and only if:

(Def. 13) (ObjectDerivationC)(the Extent of C2) = the Intent of C2 and

(AttributeDerivationC)(the Intent of C2) = the Extent of C2.

Let C be a FormalContext. One can check that there exists a ConceptStr

over C which is concept-like and non empty.

Let C be a FormalContext. A FormalConcept of C is a concept-like non

empty ConceptStr over C.

Let C be a FormalContext. Note that there exists a FormalConcept of C

which is strict.

Next we state four propositions:

(20) Let C be a FormalContext and O be a subset of the objects of C. Then

(i) 〈(AttributeDerivationC)((ObjectDerivationC)(O)),

(ObjectDerivationC)(O)〉 is a FormalConcept of C, and

(ii) for every subset O′ of the objects of C and for every subset A′ of the

Attributes of C such that 〈O′, A′〉 is a FormalConcept of C and O ⊆ O′

holds (AttributeDerivationC)((ObjectDerivationC)(O)) ⊆ O′.

(21) Let C be a FormalContext and O be a subset of the ob-

jects of C. Then there exists a subset A of the Attributes of

C such that 〈O,A〉 is a FormalConcept of C if and only if

(AttributeDerivationC)((ObjectDerivationC)(O)) = O.

(22) Let C be a FormalContext and A be a subset of the Attributes of C.

Then

(i) 〈(AttributeDerivationC)(A), (ObjectDerivationC)

((AttributeDerivationC)(A))〉 is a FormalConcept of C, and

(ii) for every subset O′ of the objects of C and for every subset A′ of the

Attributes of C such that 〈O′, A′〉 is a FormalConcept of C and A ⊆ A′

holds (ObjectDerivationC)((AttributeDerivationC)(A)) ⊆ A′.

(23) Let C be a FormalContext and A be a subset of the At-

tributes of C. Then there exists a subset O of the objects of

C such that 〈O,A〉 is a FormalConcept of C if and only if

(ObjectDerivationC)((AttributeDerivationC)(A)) = A.

Let C be a FormalContext and let C2 be a ConceptStr over C. We say that

C2 is universal if and only if:

(Def. 14) The Extent of C2 = the objects of C.

Let C be a FormalContext and let C2 be a ConceptStr over C. We say that

C2 is co-universal if and only if:



238 christoph schwarzweller

(Def. 15) The Intent of C2 = the Attributes of C.

Let C be a FormalContext. Note that there exists a FormalConcept of C

which is strict and universal and there exists a FormalConcept of C which is

strict and co-universal.

Let C be a FormalContext. The functor Concept− with− all−ObjectsC

yields a strict universal FormalConcept of C and is defined by the condition

(Def. 16).

(Def. 16) There exists a subset O of the objects of C and there exists a subset A of

the Attributes of C such that Concept− with− all−ObjectsC = 〈O, A〉

and O = (AttributeDerivationC)(∅) and A =

(ObjectDerivationC)((AttributeDerivationC)(∅)).

Let C be a FormalContext. The functor Concept− with− all−AttributesC

yielding a strict co-universal FormalConcept of C is defined by the condition

(Def. 17).

(Def. 17) There exists a subset O of the objects of C and there exists a subset A

of the Attributes of C such that Concept− with− all−AttributesC =

〈O, A〉 and O = (AttributeDerivationC)((ObjectDerivationC)(∅)) and

A = (ObjectDerivationC)(∅).

One can prove the following propositions:

(24) Let C be a FormalContext. Then the Extent of

Concept− with− all−ObjectsC = the objects of C and the Intent of

Concept− with− all−AttributesC = the Attributes of C.

(25) Let C be a FormalContext and C2 be a FormalConcept of C. Then

(i) if the Extent of C2 = ∅, then C2 is co-universal, and

(ii) if the Intent of C2 = ∅, then C2 is universal.

(26) Let C be a FormalContext and C2 be a strict FormalConcept of C. Then

(i) if the Extent of C2 = ∅, then C2 = Concept− with− all−AttributesC,

and

(ii) if the Intent of C2 = ∅, then C2 = Concept− with− all−ObjectsC.

(27) Let C be a FormalContext and C2 be a quasi-empty ConceptStr over C.

Suppose C2 is a FormalConcept of C. Then C2 is universal or co-universal.

(28) Let C be a FormalContext and C2 be a quasi-empty Con-

ceptStr over C. If C2 is a strict FormalConcept of C, then C2 =

Concept− with− all−ObjectsC or C2 =

Concept− with− all−AttributesC.

Let C be a FormalContext. A non empty set is called a Set of FormalCon-

cepts of C if:

(Def. 18) For every set X such that X ∈ it holds X is a FormalConcept of C.

Let C be a FormalContext and let F1 be a Set of FormalConcepts of C. We

see that the element of F1 is a FormalConcept of C.



introduction to concept lattices 239

Let C be a FormalContext and let C3, C4 be FormalConcept of C. We say

that C3 is SubConcept of C4 if and only if:

(Def. 19) The Extent of C3 ⊆ the Extent of C4.

We introduce C4 is SuperConcept of C3 as a synonym of C3 is SubConcept of

C4.

One can prove the following propositions:

(29) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SuperConcept of C4 if and only if C4 is SubConcept of C3.

(30) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SubConcept of C4 if and only if the Extent of C3 ⊆ the Extent of C4.

(31) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SubConcept of C4 if and only if the Intent of C4 ⊆ the Intent of C3.

(32) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SuperConcept of C4 if and only if the Extent of C4 ⊆ the Extent of C3.

(33) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SuperConcept of C4 if and only if the Intent of C3 ⊆ the Intent of C4.

(34) Let C be a FormalContext and C2 be a FormalConcept of

C. Then C2 is SubConcept of Concept− with− all−ObjectsC and

Concept− with− all−AttributesC is SubConcept of C2.

4. Concept Lattices

Let C be a FormalContext. The functor B− carrierC yielding a non empty

set is defined by the condition (Def. 20).

(Def. 20) B− carrierC = {〈E, I〉; E ranges over subsets of the objects of

C, I ranges over subsets of the Attributes of C: 〈E, I〉 is non

empty ∧ (ObjectDerivationC)(E) = I ∧ (AttributeDerivationC)(I) =

E}.

Let C be a FormalContext. Then B− carrierC is a Set of FormalConcepts

of C.

Let C be a FormalContext. One can check that B− carrierC is non empty.

One can prove the following proposition

(35) For every FormalContext C and for every set C2 holds C2 ∈ B− carrierC

iff C2 is a strict FormalConcept of C.

Let C be a FormalContext. The functor B−meetC yields a binary operation

on B− carrierC and is defined by the condition (Def. 21).

(Def. 21) Let C3, C4 be strict FormalConcept of C. Then there exists a subset O of

the objects of C and there exists a subset A of the Attributes of C such that



240 christoph schwarzweller

(B−meetC)(C3, C4) = 〈O,A〉 and O = (the Extent of C3)∩ (the Extent

of C4) and A = (ObjectDerivationC)((AttributeDerivationC)((the Intent

of C3) ∪ (the Intent of C4))).

Let C be a FormalContext. The functor B− joinC yielding a binary opera-

tion on B− carrierC is defined by the condition (Def. 22).

(Def. 22) Let C3, C4 be strict FormalConcept of C. Then there exists a sub-

set O of the objects of C and there exists a subset A of the At-

tributes of C such that (B− joinC)(C3, C4) = 〈O, A〉 and O =

(AttributeDerivationC)((ObjectDerivationC)((the Extent of C3) ∪ (the

Extent of C4))) and A = (the Intent of C3) ∩ (the Intent of C4).

One can prove the following propositions:

(36) For every FormalContext C and for all strict FormalConcept C3, C4 of

C holds (B−meetC)(C3, C4) = (B−meetC)(C4, C3).

(37) For every FormalContext C and for all strict FormalConcept C3, C4 of

C holds (B− joinC)(C3, C4) = (B− joinC)(C4, C3).

(38) For every FormalContext C and for all strict FormalConcept

C3, C4, C5 of C holds (B−meetC)(C3, (B−meetC)(C4, C5)) =

(B−meetC)((B−meetC)(C3, C4), C5).

(39) For every FormalContext C and for all strict FormalConcept

C3, C4, C5 of C holds (B− joinC)(C3, (B− joinC)(C4, C5)) =

(B− joinC)((B− joinC)(C3, C4), C5).

(40) For every FormalContext C and for all strict FormalConcept C3, C4 of

C holds (B− joinC)((B−meetC)(C3, C4), C4) = C4.

(41) For every FormalContext C and for all strict FormalConcept C3, C4 of

C holds (B−meetC)(C3, (B− joinC)(C3, C4)) = C3.

(42) For every FormalContext C and for every strict FormalConcept C2 of C

holds (B−meetC)(C2, Concept− with− all−ObjectsC) = C2.

(43) For every FormalContext C and for every strict FormalConcept

C2 of C holds (B− joinC)(C2, Concept− with− all−ObjectsC) =

Concept− with− all−ObjectsC.

(44) For every FormalContext C and for every strict FormalConcept C2 of C

holds (B− joinC)(C2, Concept− with− all−AttributesC) = C2.

(45) For every FormalContext C and for every strict FormalConcept

C2 of C holds (B−meetC)(C2, Concept− with− all−AttributesC) =

Concept− with− all−AttributesC.

Let C be a FormalContext. The functor ConceptLatticeC yielding a strict

non empty lattice structure is defined as follows:

(Def. 23) ConceptLatticeC = 〈B− carrierC,B− joinC,B−meetC〉.

The following proposition is true



introduction to concept lattices 241

(46) For every FormalContext C holds ConceptLatticeC is a lattice.

Let C be a FormalContext. One can verify that ConceptLatticeC is strict

non empty and lattice-like.

Let C be a FormalContext and let S be a non empty subset of the carrier

of ConceptLatticeC. We see that the element of S is a FormalConcept of C.

Let C be a FormalContext and let C2 be an element of the carrier of

ConceptLatticeC. The functor C2
T yielding a strict FormalConcept of C is

defined as follows:

(Def. 24) C2
T = C2.

One can prove the following two propositions:

(47) Let C be a FormalContext and C3, C4 be elements of the carrier of

ConceptLatticeC. Then C3 ⊑ C4 if and only if C3
T is SubConcept of C4

T.

(48) For every FormalContext C holds ConceptLatticeC is a complete lattice.

Let C be a FormalContext. Observe that ConceptLatticeC is complete.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,
6(1):93–107, 1997.

[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[7] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[8] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer Verlag, Berlin,
Heidelberg, Ney York, 1996. (written in German).

[9] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and pro-
ducts of relational structures. Formalized Mathematics, 6(1):117–121, 1997.

[10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[12] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
1990.

[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[14] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[15] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received October 2, 1998


