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Summary. In this paper we give Mizar formalization of concept lattices.
Concept lattices stem from the so called formal concept analysis — a part of
applied mathematics that brings mathematical methods into the field of data
anylysis and knowledge processing. Our approach follows the one given in [8].

MML Identifier: CONLAT 1.

The papers [3], [14], [4], [5], [1], [15], [12], [10], [13], [11], [2], [7], [9], and [6]

provide the notation and terminology for this paper.

1. Formal Contexts

We consider 2-sorted as systems

〈 objects, a Attributes 〉,

where the objects constitute a set and the Attributes is a set.

Let C be a 2-sorted. We say that C is empty if and only if:

(Def. 1) The objects of C are empty and the Attributes of C is empty.

We say that C is quasi-empty if and only if:

(Def. 2) The objects of C are empty or the Attributes of C is empty.

Let us note that there exists a 2-sorted which is strict and non empty and

there exists a 2-sorted which is strict and non quasi-empty.

One can verify that there exists a 2-sorted which is strict, empty, and quasi-

empty.

We consider ContextStr as extensions of 2-sorted as systems

〈 objects, a Attributes, a Information 〉,

where the objects constitute a set, the Attributes is a set, and the Information

is a relation between the objects and the Attributes.
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One can check that there exists a ContextStr which is strict and non empty

and there exists a ContextStr which is strict and non quasi-empty.

A FormalContext is a non quasi-empty ContextStr.

Let C be a 2-sorted.

(Def. 3) An element of the objects of C is said to be an object of C.

(Def. 4) An element of the Attributes of C is said to be a Attribute of C.

Let C be a non quasi-empty 2-sorted. Note that the Attributes of C is non

empty and the objects of C is non empty.

Let C be a non quasi-empty 2-sorted. One can check that there exists a

subset of the objects of C which is non empty and there exists a subset of the

Attributes of C which is non empty.

Let C be a FormalContext, let o be an object of C, and let a be a Attribute

of C. We say that o is connected with a if and only if:

(Def. 5) 〈〈o, a〉〉 ∈ the Information of C.

We introduce o is not connected with a as an antonym of o is connected with a.

2. Derivation Operators

Let C be a FormalContext. The functor ObjectDerivationC yields a func-

tion from 2the objects of C into 2the Attributes of C and is defined by the condition

(Def. 6).

(Def. 6) Let O be an element of 2the objects of C . Then (ObjectDerivationC)(O) =

{a; a ranges over Attribute of C:
∧

o : object of C
(o ∈ O ⇒ o is connected

with a)}.

Let C be a FormalContext. The functor AttributeDerivationC yields a func-

tion from 2the Attributes of C into 2the objects of C and is defined by the condition

(Def. 7).

(Def. 7) LetA be an element of 2the Attributes of C . Then (AttributeDerivationC)(A) =

{o; o ranges over objects of C:
∧

a :Attribute of C
(a ∈ A ⇒ o is connected

with a)}.

The following propositions are true:

(1) Let C be a FormalContext and o be an object of C. Then

(ObjectDerivationC)({o}) = {a; a ranges over Attribute of C: o is con-

nected with a}.

(2) Let C be a FormalContext and a be a Attribute of C. Then

(AttributeDerivationC)({a}) = {o; o ranges over objects of C: o is con-

nected with a}.
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(3) For every FormalContext C and for all subsets O1, O2 of the ob-

jects of C such that O1 ⊆ O2 holds (ObjectDerivationC)(O2) ⊆

(ObjectDerivationC)(O1).

(4) For every FormalContext C and for all subsets A1, A2 of the Attri-

butes of C such that A1 ⊆ A2 holds (AttributeDerivationC)(A2) ⊆

(AttributeDerivationC)(A1).

(5) For every FormalContext C and for every subset O of the objects of C

holds O ⊆ (AttributeDerivationC)((ObjectDerivationC)(O)).

(6) For every FormalContext C and for every subset A of the Attributes of

C holds A ⊆ (ObjectDerivationC)((AttributeDerivationC)(A)).

(7) For every FormalContext C and for every subset O of the objects of C

holds (ObjectDerivationC)(O) = (ObjectDerivationC)

((AttributeDerivationC)((ObjectDerivationC)(O))).

(8) For every FormalContext C and for every subset A of the Attributes of

C holds (AttributeDerivationC)(A) =

(AttributeDerivationC)((ObjectDerivationC)((AttributeDerivationC)(A))).

(9) Let C be a FormalContext, O be a subset of the objects of C, and A be

a subset of the Attributes of C. Then O ⊆ (AttributeDerivationC)(A) if

and only if [:O, A :] ⊆ the Information of C.

(10) Let C be a FormalContext, O be a subset of the objects of C, and A

be a subset of the Attributes of C. Then A ⊆ (ObjectDerivationC)(O) if

and only if [:O, A :] ⊆ the Information of C.

(11) Let C be a FormalContext, O be a subset of the objects of C, and A be

a subset of the Attributes of C. Then O ⊆ (AttributeDerivationC)(A) if

and only if A ⊆ (ObjectDerivationC)(O).

Let C be a FormalContext. The functor φ(C) yielding a map from

2the objects of C

⊆ into 2the Attributes of C
⊆ is defined by:

(Def. 8) φ(C) = ObjectDerivationC.

Let C be a FormalContext. The functor psiC yields a map from

2the Attributes of C
⊆ into 2the objects of C

⊆ and is defined as follows:

(Def. 9) psiC = AttributeDerivationC.

We now state the proposition

(12) For every FormalContext C holds 〈〈φ(C), psiC〉〉 is a connection between

2the objects of C

⊆ and 2the Attributes of C
⊆ .

Let P , R be non empty relational structures and let C1 be a connection

between P and R. We say that C1 is co-Galois if and only if the condition

(Def. 10) is satisfied.

(Def. 10) There exists a map f from P into R and there exists a map g from R

into P such that
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(i) C1 = 〈〈f, g〉〉,

(ii) f is antitone,

(iii) g is antitone, and

(iv) for all elements p1, p2 of P and for all elements r1, r2 of R holds

p1 ¬ g(f(p1)) and r1 ¬ f(g(r1)).

We now state several propositions:

(13) Let P , R be non empty posets, C1 be a connection between P and R, f

be a map from P into R, and g be a map from R into P . Suppose C1 = 〈〈f,

g〉〉. Then C1 is co-Galois if and only if for every element p of P and for

every element r of R holds p ¬ g(r) iff r ¬ f(p).

(14) Let P , R be non empty posets and C1 be a connection between P and

R. Suppose C1 is co-Galois. Let f be a map from P into R and g be a

map from R into P . If C1 = 〈〈f, g〉〉, then f = f · (g · f) and g = g · (f · g).

(15) For every FormalContext C holds 〈〈φ(C), psiC〉〉 is co-Galois.

(16) For every FormalContext C and for all subsets O1, O2 of the objects

of C holds (ObjectDerivationC)(O1 ∪ O2) = (ObjectDerivationC)(O1) ∩

(ObjectDerivationC)(O2).

(17) For every FormalContext C and for all subsets A1, A2 of

the Attributes of C holds (AttributeDerivationC)(A1 ∪ A2) =

(AttributeDerivationC)(A1) ∩ (AttributeDerivationC)(A2).

(18) For every FormalContext C holds (ObjectDerivationC)(∅) = the Attri-

butes of C.

(19) For every FormalContext C holds (AttributeDerivationC)(∅) = the ob-

jects of C.

3. Formal Concepts

Let C be a 2-sorted. We introduce ConceptStr over C which are systems

〈 a Extent, a Intent 〉,

where the Extent is a subset of the objects of C and the Intent is a subset of

the Attributes of C.

Let C be a 2-sorted and let C2 be a ConceptStr over C. We say that C2 is

empty if and only if:

(Def. 11) The Extent of C2 is empty and the Intent of C2 is empty.

We say that C2 is quasi-empty if and only if:

(Def. 12) The Extent of C2 is empty or the Intent of C2 is empty.

Let C be a non quasi-empty 2-sorted. Observe that there exists a ConceptStr

over C which is strict and non empty and there exists a ConceptStr over C which

is strict and quasi-empty.
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Let C be an empty 2-sorted. Observe that every ConceptStr over C is empty.

Let C be a quasi-empty 2-sorted. Observe that every ConceptStr over C is

quasi-empty.

Let C be a FormalContext and let C2 be a ConceptStr over C. We say that

C2 is concept-like if and only if:

(Def. 13) (ObjectDerivationC)(the Extent of C2) = the Intent of C2 and

(AttributeDerivationC)(the Intent of C2) = the Extent of C2.

Let C be a FormalContext. One can check that there exists a ConceptStr

over C which is concept-like and non empty.

Let C be a FormalContext. A FormalConcept of C is a concept-like non

empty ConceptStr over C.

Let C be a FormalContext. Note that there exists a FormalConcept of C

which is strict.

Next we state four propositions:

(20) Let C be a FormalContext and O be a subset of the objects of C. Then

(i) 〈(AttributeDerivationC)((ObjectDerivationC)(O)),

(ObjectDerivationC)(O)〉 is a FormalConcept of C, and

(ii) for every subset O′ of the objects of C and for every subset A′ of the

Attributes of C such that 〈O′, A′〉 is a FormalConcept of C and O ⊆ O′

holds (AttributeDerivationC)((ObjectDerivationC)(O)) ⊆ O′.

(21) Let C be a FormalContext and O be a subset of the ob-

jects of C. Then there exists a subset A of the Attributes of

C such that 〈O,A〉 is a FormalConcept of C if and only if

(AttributeDerivationC)((ObjectDerivationC)(O)) = O.

(22) Let C be a FormalContext and A be a subset of the Attributes of C.

Then

(i) 〈(AttributeDerivationC)(A), (ObjectDerivationC)

((AttributeDerivationC)(A))〉 is a FormalConcept of C, and

(ii) for every subset O′ of the objects of C and for every subset A′ of the

Attributes of C such that 〈O′, A′〉 is a FormalConcept of C and A ⊆ A′

holds (ObjectDerivationC)((AttributeDerivationC)(A)) ⊆ A′.

(23) Let C be a FormalContext and A be a subset of the At-

tributes of C. Then there exists a subset O of the objects of

C such that 〈O,A〉 is a FormalConcept of C if and only if

(ObjectDerivationC)((AttributeDerivationC)(A)) = A.

Let C be a FormalContext and let C2 be a ConceptStr over C. We say that

C2 is universal if and only if:

(Def. 14) The Extent of C2 = the objects of C.

Let C be a FormalContext and let C2 be a ConceptStr over C. We say that

C2 is co-universal if and only if:
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(Def. 15) The Intent of C2 = the Attributes of C.

Let C be a FormalContext. Note that there exists a FormalConcept of C

which is strict and universal and there exists a FormalConcept of C which is

strict and co-universal.

Let C be a FormalContext. The functor Concept− with− all−ObjectsC

yields a strict universal FormalConcept of C and is defined by the condition

(Def. 16).

(Def. 16) There exists a subset O of the objects of C and there exists a subset A of

the Attributes of C such that Concept− with− all−ObjectsC = 〈O, A〉

and O = (AttributeDerivationC)(∅) and A =

(ObjectDerivationC)((AttributeDerivationC)(∅)).

Let C be a FormalContext. The functor Concept− with− all−AttributesC

yielding a strict co-universal FormalConcept of C is defined by the condition

(Def. 17).

(Def. 17) There exists a subset O of the objects of C and there exists a subset A

of the Attributes of C such that Concept− with− all−AttributesC =

〈O, A〉 and O = (AttributeDerivationC)((ObjectDerivationC)(∅)) and

A = (ObjectDerivationC)(∅).

One can prove the following propositions:

(24) Let C be a FormalContext. Then the Extent of

Concept− with− all−ObjectsC = the objects of C and the Intent of

Concept− with− all−AttributesC = the Attributes of C.

(25) Let C be a FormalContext and C2 be a FormalConcept of C. Then

(i) if the Extent of C2 = ∅, then C2 is co-universal, and

(ii) if the Intent of C2 = ∅, then C2 is universal.

(26) Let C be a FormalContext and C2 be a strict FormalConcept of C. Then

(i) if the Extent of C2 = ∅, then C2 = Concept− with− all−AttributesC,

and

(ii) if the Intent of C2 = ∅, then C2 = Concept− with− all−ObjectsC.

(27) Let C be a FormalContext and C2 be a quasi-empty ConceptStr over C.

Suppose C2 is a FormalConcept of C. Then C2 is universal or co-universal.

(28) Let C be a FormalContext and C2 be a quasi-empty Con-

ceptStr over C. If C2 is a strict FormalConcept of C, then C2 =

Concept− with− all−ObjectsC or C2 =

Concept− with− all−AttributesC.

Let C be a FormalContext. A non empty set is called a Set of FormalCon-

cepts of C if:

(Def. 18) For every set X such that X ∈ it holds X is a FormalConcept of C.

Let C be a FormalContext and let F1 be a Set of FormalConcepts of C. We

see that the element of F1 is a FormalConcept of C.
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Let C be a FormalContext and let C3, C4 be FormalConcept of C. We say

that C3 is SubConcept of C4 if and only if:

(Def. 19) The Extent of C3 ⊆ the Extent of C4.

We introduce C4 is SuperConcept of C3 as a synonym of C3 is SubConcept of

C4.

One can prove the following propositions:

(29) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SuperConcept of C4 if and only if C4 is SubConcept of C3.

(30) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SubConcept of C4 if and only if the Extent of C3 ⊆ the Extent of C4.

(31) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SubConcept of C4 if and only if the Intent of C4 ⊆ the Intent of C3.

(32) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SuperConcept of C4 if and only if the Extent of C4 ⊆ the Extent of C3.

(33) Let C be a FormalContext and C3, C4 be FormalConcept of C. Then C3

is SuperConcept of C4 if and only if the Intent of C3 ⊆ the Intent of C4.

(34) Let C be a FormalContext and C2 be a FormalConcept of

C. Then C2 is SubConcept of Concept− with− all−ObjectsC and

Concept− with− all−AttributesC is SubConcept of C2.

4. Concept Lattices

Let C be a FormalContext. The functor B− carrierC yielding a non empty

set is defined by the condition (Def. 20).

(Def. 20) B− carrierC = {〈E, I〉; E ranges over subsets of the objects of

C, I ranges over subsets of the Attributes of C: 〈E, I〉 is non

empty ∧ (ObjectDerivationC)(E) = I ∧ (AttributeDerivationC)(I) =

E}.

Let C be a FormalContext. Then B− carrierC is a Set of FormalConcepts

of C.

Let C be a FormalContext. One can check that B− carrierC is non empty.

One can prove the following proposition

(35) For every FormalContext C and for every set C2 holds C2 ∈ B− carrierC

iff C2 is a strict FormalConcept of C.

Let C be a FormalContext. The functor B−meetC yields a binary operation

on B− carrierC and is defined by the condition (Def. 21).

(Def. 21) Let C3, C4 be strict FormalConcept of C. Then there exists a subset O of

the objects of C and there exists a subset A of the Attributes of C such that
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(B−meetC)(C3, C4) = 〈O,A〉 and O = (the Extent of C3)∩ (the Extent

of C4) and A = (ObjectDerivationC)((AttributeDerivationC)((the Intent

of C3) ∪ (the Intent of C4))).

Let C be a FormalContext. The functor B− joinC yielding a binary opera-

tion on B− carrierC is defined by the condition (Def. 22).

(Def. 22) Let C3, C4 be strict FormalConcept of C. Then there exists a sub-

set O of the objects of C and there exists a subset A of the At-

tributes of C such that (B− joinC)(C3, C4) = 〈O, A〉 and O =

(AttributeDerivationC)((ObjectDerivationC)((the Extent of C3) ∪ (the

Extent of C4))) and A = (the Intent of C3) ∩ (the Intent of C4).

One can prove the following propositions:

(36) For every FormalContext C and for all strict FormalConcept C3, C4 of

C holds (B−meetC)(C3, C4) = (B−meetC)(C4, C3).

(37) For every FormalContext C and for all strict FormalConcept C3, C4 of

C holds (B− joinC)(C3, C4) = (B− joinC)(C4, C3).

(38) For every FormalContext C and for all strict FormalConcept

C3, C4, C5 of C holds (B−meetC)(C3, (B−meetC)(C4, C5)) =

(B−meetC)((B−meetC)(C3, C4), C5).

(39) For every FormalContext C and for all strict FormalConcept

C3, C4, C5 of C holds (B− joinC)(C3, (B− joinC)(C4, C5)) =

(B− joinC)((B− joinC)(C3, C4), C5).

(40) For every FormalContext C and for all strict FormalConcept C3, C4 of

C holds (B− joinC)((B−meetC)(C3, C4), C4) = C4.

(41) For every FormalContext C and for all strict FormalConcept C3, C4 of

C holds (B−meetC)(C3, (B− joinC)(C3, C4)) = C3.

(42) For every FormalContext C and for every strict FormalConcept C2 of C

holds (B−meetC)(C2, Concept− with− all−ObjectsC) = C2.

(43) For every FormalContext C and for every strict FormalConcept

C2 of C holds (B− joinC)(C2, Concept− with− all−ObjectsC) =

Concept− with− all−ObjectsC.

(44) For every FormalContext C and for every strict FormalConcept C2 of C

holds (B− joinC)(C2, Concept− with− all−AttributesC) = C2.

(45) For every FormalContext C and for every strict FormalConcept

C2 of C holds (B−meetC)(C2, Concept− with− all−AttributesC) =

Concept− with− all−AttributesC.

Let C be a FormalContext. The functor ConceptLatticeC yielding a strict

non empty lattice structure is defined as follows:

(Def. 23) ConceptLatticeC = 〈B− carrierC,B− joinC,B−meetC〉.

The following proposition is true



introduction to concept lattices 241

(46) For every FormalContext C holds ConceptLatticeC is a lattice.

Let C be a FormalContext. One can verify that ConceptLatticeC is strict

non empty and lattice-like.

Let C be a FormalContext and let S be a non empty subset of the carrier

of ConceptLatticeC. We see that the element of S is a FormalConcept of C.

Let C be a FormalContext and let C2 be an element of the carrier of

ConceptLatticeC. The functor C2
T yielding a strict FormalConcept of C is

defined as follows:

(Def. 24) C2
T = C2.

One can prove the following two propositions:

(47) Let C be a FormalContext and C3, C4 be elements of the carrier of

ConceptLatticeC. Then C3 ⊑ C4 if and only if C3
T is SubConcept of C4

T.

(48) For every FormalContext C holds ConceptLatticeC is a complete lattice.

Let C be a FormalContext. Observe that ConceptLatticeC is complete.
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