The Construction of SCM over Ring

Artur Korniłowicz University of Białystok

MML Identifier: SCMRING1.

The terminology and notation used in this paper have been introduced in the following articles: [6], [11], [2], [3], [9], [4], [5], [7], [1], [10], and [8].

For simplicity, we follow the rules: i, k are natural numbers, I is an element of \mathbb{Z}_8 , i_1 is an element of Instr-Loc_{SCM}, d_1 is an element of Data-Loc_{SCM}, and S is a non empty 1-sorted structure.

Let us observe that every non empty loop structure which is trivial is also Abelian, add-associative, right zeroed, and right complementable and every non empty double loop structure which is trivial is also right unital and rightdistributive.

Let us note that every element of Data-Loc_{SCM} is natural.

One can check the following observations:

- * Data-Loc_{SCM} is non trivial,
- * Instr_{SCM} is non trivial, and
- * Instr-Loc_{SCM} is non trivial.

Let S be a non empty 1-sorted structure. The functor $\text{Instr}_{SCM}(S)$ yields a subset of $[\mathbb{Z}_8, (\bigcup \{\text{the carrier of } S\} \cup \mathbb{N})^*]$ and is defined by the condition (Def. 1).

(Def. 1) Instr_{SCM}(S) = { $\langle 0, \varepsilon \rangle$ } \cup { $\langle I, \langle a, b \rangle$ }; I ranges over elements of \mathbb{Z}_8 , a ranges over elements of Data-Loc_{SCM}, b ranges over elements of Data-Loc_{SCM}: $I \in \{1, 2, 3, 4\} \cup$ { $\langle 6, \langle i \rangle \rangle$: i ranges over elements of Instr-Loc_{SCM}} \cup { $\langle 7, \langle i, a \rangle \rangle$: i ranges over elements of Instr-Loc_{SCM}, a ranges over elements of Data-Loc_{SCM}} \cup { $\langle 5, \langle a, r \rangle \rangle$: a ranges over elements of Data-Loc_{SCM}, r ranges over elements of the carrier of S}.

Let S be a non empty 1-sorted structure. Note that $\text{Instr}_{\text{SCM}}(S)$ is non trivial.

C 1998 University of Białystok ISSN 1426-2630

ARTUR KORNIŁOWICZ

Let S be a non empty 1-sorted structure. We say that S is good if and only if:

(Def. 2) The carrier of $S \neq \text{Instr-Loc}_{\text{SCM}}$ and the carrier of $S \neq \text{Instr}_{\text{SCM}}(S)$.

One can verify that every non empty 1-sorted structure which is trivial is also good.

Let us observe that there exists a 1-sorted structure which is strict, trivial, and non empty.

Let us observe that there exists a double loop structure which is strict, trivial, and non empty.

One can check that there exists a ring which is strict and trivial.

In the sequel G denotes a good non empty 1-sorted structure.

Let S be a non empty 1-sorted structure. The functor $OK_{SCM}(S)$ yielding a function from \mathbb{N} into {the carrier of S} \cup {Instr_{SCM}(S), Instr-Loc_{SCM}} is defined as follows:

(Def. 3) $(OK_{SCM}(S))(0) = Instr-Loc_{SCM}$ and for every natural number k holds $(OK_{SCM}(S))(2 \cdot k + 1) =$ the carrier of S and $(OK_{SCM}(S))(2 \cdot k + 2) =$ $Instr_{SCM}(S).$

Let S be a non empty 1-sorted structure. An **SCM**-state over S is an element of $\prod OK_{SCM}(S)$.

Next we state several propositions:

- (1) Instr-Loc_{SCM} \neq Instr_{SCM}(S).
- (2) $(OK_{SCM}(G))(i) = Instr-Loc_{SCM} \text{ iff } i = 0.$
- (3) $(OK_{SCM}(G))(i)$ = the carrier of G iff there exists k such that $i = 2 \cdot k + 1$.
- (4) $(OK_{SCM}(G))(i) = Instr_{SCM}(G)$ iff there exists k such that $i = 2 \cdot k + 2$.
- (5) $(OK_{SCM}(G))(d_1) =$ the carrier of G.
- (6) $(OK_{SCM}(G))(i_1) = Instr_{SCM}(G).$
- (7) $\pi_0 \prod \text{OK}_{\text{SCM}}(S) = \text{Instr-Loc}_{\text{SCM}}.$
- (8) $\pi_{d_1} \prod \text{OK}_{\text{SCM}}(G) = \text{the carrier of } G.$
- (9) $\pi_{i_1} \prod \text{OK}_{\text{SCM}}(G) = \text{Instr}_{\text{SCM}}(G).$

Let S be a non empty 1-sorted structure and let s be an **SCM**-state over S. The functor IC_s yielding an element of Instr-Loc_{SCM} is defined by:

(Def. 4) $IC_s = s(0).$

Let R be a good non empty 1-sorted structure, let s be an **SCM**-state over R, and let u be an element of Instr-Loc_{SCM}. The functor $Chg_{SCM}(s, u)$ yielding an **SCM**-state over R is defined by:

(Def. 5) $\operatorname{Chg}_{\operatorname{SCM}}(s, u) = s + (0 \mapsto u).$

The following three propositions are true:

(10) For every **SCM**-state *s* over *G* and for every element *u* of Instr-Loc_{SCM} holds $(Chg_{SCM}(s, u))(0) = u$.

- (11) For every **SCM**-state *s* over *G* and for every element *u* of Instr-Loc_{SCM} and for every element m_1 of Data-Loc_{SCM} holds $(Chg_{SCM}(s, u))(m_1) = s(m_1)$.
- (12) For every **SCM**-state *s* over *G* and for all elements *u*, *v* of Instr-Loc_{SCM} holds $(Chg_{SCM}(s, u))(v) = s(v)$.

Let R be a good non empty 1-sorted structure, let s be an **SCM**-state over R, let t be an element of Data-Loc_{SCM}, and let u be an element of the carrier of R. The functor $\text{Chg}_{\text{SCM}}(s, t, u)$ yielding an **SCM**-state over R is defined as follows:

 $(\text{Def. 6}) \quad \text{Chg}_{\text{SCM}}(s,t,u) = s + \cdot (t { \longmapsto } u).$

One can prove the following propositions:

- (13) Let s be an **SCM**-state over G, t be an element of Data-Loc_{SCM}, and u be an element of the carrier of G. Then $(Chg_{SCM}(s,t,u))(0) = s(0)$.
- (14) Let s be an **SCM**-state over G, t be an element of Data-Loc_{SCM}, and u be an element of the carrier of G. Then $(Chg_{SCM}(s, t, u))(t) = u$.
- (15) Let s be an **SCM**-state over G, t be an element of Data-Loc_{SCM}, u be an element of the carrier of G, and m_1 be an element of Data-Loc_{SCM}. If $m_1 \neq t$, then $(\text{Chg}_{\text{SCM}}(s, t, u))(m_1) = s(m_1)$.
- (16) Let s be an **SCM**-state over G, t be an element of Data-Loc_{SCM}, u be an element of the carrier of G, and v be an element of Instr-Loc_{SCM}. Then $(Chg_{SCM}(s,t,u))(v) = s(v).$

Let R be a good non empty 1-sorted structure, let s be an **SCM**-state over R, and let a be an element of Data-Loc_{SCM}. Then s(a) is an element of R.

Let S be a non empty 1-sorted structure and let x be an element of $\text{Instr}_{\text{SCM}}(S)$. Let us assume that there exist elements m_1 , m_2 of Data-Loc_{SCM} and I such that $x = \langle I, \langle m_1, m_2 \rangle \rangle$. The functor x address₁ yielding an element of Data-Loc_{SCM} is defined by:

(Def. 7) There exists a finite sequence f of elements of Data-Loc_{SCM} such that $f = x_2$ and x address₁ = $\pi_1 f$.

The functor $x \text{ address}_2$ yields an element of Data-Loc_{SCM} and is defined by:

(Def. 8) There exists a finite sequence f of elements of Data-Loc_{SCM} such that $f = x_2$ and x address₂ = $\pi_2 f$.

One can prove the following proposition

(17) For every element x of $\text{Instr}_{\text{SCM}}(S)$ and for all elements m_1 , m_2 of Data-Loc_{SCM} such that $x = \langle I, \langle m_1, m_2 \rangle \rangle$ holds x address₁ = m_1 and x address₂ = m_2 .

Let R be a non empty 1-sorted structure and let x be an element of $\text{Instr}_{\text{SCM}}(R)$. Let us assume that there exist an element m_1 of $\text{Instr-Loc}_{\text{SCM}}$ and I such that $x = \langle I, \langle m_1 \rangle \rangle$. The functor x address_j yielding an element of Instr-Loc_{SCM} is defined as follows:

ARTUR KORNIŁOWICZ

(Def. 9) There exists a finite sequence f of elements of Instr-Loc_{SCM} such that $f = x_2$ and x address_j = $\pi_1 f$.

Next we state the proposition

(18) For every element x of $\text{Instr}_{\text{SCM}}(S)$ and for every element m_1 of Instr-Loc_{SCM} such that $x = \langle I, \langle m_1 \rangle \rangle$ holds x address_j = m_1 .

Let S be a non empty 1-sorted structure and let x be an element of $\text{Instr}_{\text{SCM}}(S)$. Let us assume that there exist an element m_1 of $\text{Instr}-\text{Loc}_{\text{SCM}}$, an element m_2 of Data-Loc_{SCM}, and I such that $x = \langle I, \langle m_1, m_2 \rangle \rangle$. The functor x address_j yields an element of Instr-Loc_{SCM} and is defined as follows:

(Def. 10) There exists an element m_1 of Instr-Loc_{SCM} and there exists an element m_2 of Data-Loc_{SCM} such that $\langle m_1, m_2 \rangle = x_2$ and $x \text{ address}_j = \pi_1 \langle m_1, m_2 \rangle$.

The functor $x \text{ address}_c$ yields an element of Data-Loc_{SCM} and is defined as follows:

(Def. 11) There exists an element m_1 of Instr-Loc_{SCM} and there exists an element m_2 of Data-Loc_{SCM} such that $\langle m_1, m_2 \rangle = x_2$ and $x \text{ address}_c = \pi_2 \langle m_1, m_2 \rangle$.

We now state the proposition

(19) Let x be an element of $\text{Instr}_{\text{SCM}}(S)$, m_1 be an element of $\text{Instr}_{\text{Loc}_{\text{SCM}}}$, and m_2 be an element of Data-Loc_{SCM}. If $x = \langle I, \langle m_1, m_2 \rangle \rangle$, then $x \text{ address}_i = m_1$ and $x \text{ address}_c = m_2$.

Let S be a non empty 1-sorted structure, let d be an element of Data-Loc_{SCM}, and let s be an element of the carrier of S. Then $\langle d, s \rangle$ is a finite sequence of elements of Data-Loc_{SCM} \cup the carrier of S.

Let S be a non empty 1-sorted structure and let x be an element of $\text{Instr}_{\text{SCM}}(S)$. Let us assume that there exist an element m_1 of Data-Loc_{SCM}, an element r of the carrier of S, and I such that $x = \langle I, \langle m_1, r \rangle \rangle$. The functor x const_address yields an element of Data-Loc_{SCM} and is defined as follows:

(Def. 12) There exists a finite sequence f of elements of Data-Loc_{SCM} \cup the carrier of S such that $f = x_2$ and x const_address $= \pi_1 f$.

The functor $x \operatorname{const_value}$ yields an element of the carrier of S and is defined by:

(Def. 13) There exists a finite sequence f of elements of Data-Loc_{SCM} \cup the carrier of S such that $f = x_2$ and x const_value $= \pi_2 f$.

We now state the proposition

(20) Let x be an element of $\text{Instr}_{\text{SCM}}(S)$, m_1 be an element of Data-Loc_{SCM}, and r be an element of the carrier of S. If $x = \langle I, \langle m_1, r \rangle \rangle$, then $x \text{ const}_{\text{address}} = m_1$ and $x \text{ const}_{\text{value}} = r$.

Let R be a good ring, let x be an element of $\text{Instr}_{\text{SCM}}(R)$, and let s be an **SCM**-state over R. The functor Exec-Res_{SCM}(x, s) yields an **SCM**-state over

298

R and is defined by:

(Def. 14) Exec-Res_{SCM}(x, s) =

 $Chg_{SCM}(Chg_{SCM}(s, x \text{ address}_1, s(x \text{ address}_2)), Next(IC_s)), \text{ if there}$ exist elements m_1, m_2 of Data-Loc_{SCM} such that $x = \langle 1, \langle m_1, m_2 \rangle \rangle$, $Chg_{SCM}(Chg_{SCM}(s, x \text{ address}_1, s(x \text{ address}_1) + s(x \text{ address}_2)), Next(IC_s)),$ if there exist elements m_1, m_2 of Data-Loc_{SCM} such that $x = \langle 2, \langle m_1, m_2 \rangle \rangle$, $Chg_{SCM}(Chg_{SCM}(s, x \text{ address}_1, s(x \text{ address}_1) - s(x \text{ address}_2)), Next(IC_s)),$ if there exist elements m_1, m_2 of Data-Loc_{SCM} such that $x = \langle 3, \langle m_1, m_2 \rangle \rangle$, $Chg_{SCM}(Chg_{SCM}(s, x \text{ address}_1, s(x \text{ address}_1) \cdot s(x \text{ address}_2)), Next(IC_s)),$ if there exist elements m_1, m_2 of Data-Loc_{SCM} such that $x = \langle 4, \langle m_1, m_2 \rangle \rangle$, $Chg_{SCM}(s, x \text{ address}_i)$, if there exists an element m_1 of Instr-Loc_{SCM} such that $x = \langle 6, \langle m_1 \rangle \rangle$, $\operatorname{Chg}_{\operatorname{SCM}}(s, (s(x \operatorname{address}_{c}) = 0_{R} \to x \operatorname{address}_{i}, \operatorname{Next}(\operatorname{IC}_{s}))), \text{ if there exists}$ an element m_1 of Instr-Loc_{SCM} and there exists an element m_2 of Data-Loc_{SCM} such that $x = \langle 7, \langle m_1, m_2 \rangle \rangle$, $Chg_{SCM}(Chg_{SCM}(s, x \text{ const_address}, x \text{ const_value}), Next(IC_s))$, if there exists an element m_1 of Data-Loc_{SCM} and there exists an element rof the carrier of R such that $x = \langle 5, \langle m_1, r \rangle \rangle$, s, otherwise.

Let S be a non empty 1-sorted structure, let f be a function from $\text{Instr}_{\text{SCM}}(S)$ into $(\prod \text{OK}_{\text{SCM}}(S))^{\prod \text{OK}_{\text{SCM}}(S)}$, and let x be an element of $\text{Instr}_{\text{SCM}}(S)$. One can check that f(x) is function-like and relation-like.

Let R be a good ring. The functor $\operatorname{Exec}_{\operatorname{SCM}}(R)$ yielding a function from $\operatorname{Instr}_{\operatorname{SCM}}(R)$ into $(\prod \operatorname{OK}_{\operatorname{SCM}}(R))^{\prod \operatorname{OK}_{\operatorname{SCM}}(R)}$ is defined as follows:

(Def. 15) For every element x of $\text{Instr}_{\text{SCM}}(R)$ and for every **SCM**-state y over R holds $(\text{Exec}_{\text{SCM}}(R))(x)(y) = \text{Exec-Res}_{\text{SCM}}(x, y).$

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241–250, 1992.
- [7] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Mathematics, 2(5):623-627, 1991.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [9] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

ARTUR KORNIŁOWICZ

[11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received November 29, 1998

300