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The articles [6], [7], [12], [1], [8], [2], [3], [10], [4], [11], [9], and [5] provide the

terminology and notation for this paper.

1. SCM over Ring

In this paper I is an element of Z8, S is a non empty 1-sorted structure, t is

an element of the carrier of S, and x is a set.

Let R be a good ring. The functor SCM(R) yields a strict AMI over {the

carrier of R} and is defined by the conditions (Def. 1).

(Def. 1)(i) The objects of SCM(R) = N,

(ii) the instruction counter of SCM(R) = 0,

(iii) the instruction locations of SCM(R) = Instr-LocSCM,

(iv) the instruction codes of SCM(R) = Z8,

(v) the instructions of SCM(R) = InstrSCM(R),

(vi) the object kind of SCM(R) = OKSCM(R), and

(vii) the execution of SCM(R) = ExecSCM(R).

Let R be a good ring, let s be a state of SCM(R), and let a be an element

of Data-LocSCM. Then s(a) is an element of R.

Let R be a good ring. An object of SCM(R) is called a Data-Location of R

if:

(Def. 2) It ∈ (the objects of SCM(R)) \ (Instr-LocSCM ∪ {0}).

For simplicity, we use the following convention: R is a good ring, r is an

element of the carrier of R, a, b, c, d1, d2 are Data-Location of R, and i1 is an

instruction-location of SCM(R).

Next we state the proposition
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(1) x is a Data-Location of R iff x ∈ Data-LocSCM.

Let R be a good ring, let s be a state of SCM(R), and let a be a Data-

Location of R. Then s(a) is an element of R.

We now state several propositions:

(2) 〈〈0, ε〉〉 ∈ InstrSCM(S).

(3) 〈〈0, ε〉〉 is an instruction of SCM(R).

(4) If x ∈ {1, 2, 3, 4}, then 〈〈x, 〈d1, d2〉〉〉 ∈ InstrSCM(S).

(5) 〈〈5, 〈d1, t〉〉〉 ∈ InstrSCM(S).

(6) 〈〈6, 〈i1〉〉〉 ∈ InstrSCM(S).

(7) 〈〈7, 〈i1, d1〉〉〉 ∈ InstrSCM(S).

Let R be a good ring and let a, b be Data-Location of R. The functor a:=b

yielding an instruction of SCM(R) is defined by:

(Def. 3) a:=b = 〈〈1, 〈a, b〉〉〉.

The functor AddTo(a, b) yielding an instruction of SCM(R) is defined by:

(Def. 4) AddTo(a, b) = 〈〈2, 〈a, b〉〉〉.

The functor SubFrom(a, b) yielding an instruction of SCM(R) is defined by:

(Def. 5) SubFrom(a, b) = 〈〈3, 〈a, b〉〉〉.

The functor MultBy(a, b) yielding an instruction of SCM(R) is defined as fol-

lows:

(Def. 6) MultBy(a, b) = 〈〈4, 〈a, b〉〉〉.

Let R be a good ring, let a be a Data-Location of R, and let r be an element

of the carrier of R. The functor a:=r yields an instruction of SCM(R) and is

defined by:

(Def. 7) a:=r = 〈〈5, 〈a, r〉〉〉.

Let R be a good ring and let l be an instruction-location of SCM(R). The

functor goto l yielding an instruction of SCM(R) is defined by:

(Def. 8) goto l = 〈〈6, 〈l〉〉〉.

Let R be a good ring, let l be an instruction-location of SCM(R), and let

a be a Data-Location of R. The functor if a = 0 goto l yielding an instruction

of SCM(R) is defined as follows:

(Def. 9) if a = 0 goto l = 〈〈7, 〈l, a〉〉〉.

One can prove the following proposition

(8) Let I be a set. Then I is an instruction of SCM(R) if and only if one

of the following conditions is satisfied:

(i) I = 〈〈0, ε〉〉, or

(ii) there exist a, b such that I = a:=b, or

(iii) there exist a, b such that I = AddTo(a, b), or

(iv) there exist a, b such that I = SubFrom(a, b), or
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(v) there exist a, b such that I = MultBy(a, b), or

(vi) there exists i1 such that I = goto i1, or

(vii) there exist a, i1 such that I = if a = 0 goto i1, or

(viii) there exist a, r such that I = a:=r.

In the sequel s denotes a state of SCM(R).

Let us consider R. Observe that SCM(R) is von Neumann.

The following two propositions are true:

(9) ICSCM(R) = 0.

(10) For every SCM-state S over R such that S = s holds ICs = ICS .

Let R be a good ring and let i1 be an instruction-location of SCM(R). The

functor Next(i1) yields an instruction-location of SCM(R) and is defined by:

(Def. 10) There exists an element m1 of Instr-LocSCM such that m1 = i1 and

Next(i1) = Next(m1).

The following propositions are true:

(11) For every instruction-location i1 of SCM(R) and for every element m1

of Instr-LocSCM such that m1 = i1 holds Next(m1) = Next(i1).

(12) Let I be an instruction of SCM(R) and i be an element of InstrSCM(R).

If i = I, then for every SCM-state S over R such that S = s holds

Exec(I, s) = Exec-ResSCM(i, S).

2. Users Guide

Next we state several propositions:

(13) (Exec(a:=b, s))(ICSCM(R)) = Next(ICs) and (Exec(a:=b, s))(a) = s(b)

and for every c such that c 6= a holds (Exec(a:=b, s))(c) = s(c).

(14) (Exec(AddTo(a, b), s))(ICSCM(R)) = Next(ICs) and

(Exec(AddTo(a, b), s))(a) = s(a) + s(b) and for every c such that c 6= a

holds (Exec(AddTo(a, b), s))(c) = s(c).

(15) (Exec(SubFrom(a, b), s))(ICSCM(R)) = Next(ICs) and

(Exec(SubFrom(a, b), s))(a) = s(a)− s(b) and for every c such that c 6= a

holds (Exec(SubFrom(a, b), s))(c) = s(c).

(16) (Exec(MultBy(a, b), s))(ICSCM(R)) = Next(ICs) and

(Exec(MultBy(a, b), s))(a) = s(a) · s(b) and for every c such that c 6= a

holds (Exec(MultBy(a, b), s))(c) = s(c).

(17) (Exec(goto i1, s))(ICSCM(R)) = i1 and (Exec(goto i1, s))(c) = s(c).

(18) If s(a) = 0R, then (Exec(if a = 0 goto i1, s))(ICSCM(R)) = i1 and if

s(a) 6= 0R, then (Exec(if a = 0 goto i1, s))(ICSCM(R)) = Next(ICs) and

(Exec(if a = 0 goto i1, s))(c) = s(c).
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(19) (Exec(a:=r, s))(ICSCM(R)) = Next(ICs) and (Exec(a:=r, s))(a) = r

and for every c such that c 6= a holds (Exec(a:=r, s))(c) = s(c).

3. Halt Instruction

The following two propositions are true:

(20) For every instruction I of SCM(R) such that there exists s such that

(Exec(I, s))(ICSCM(R)) = Next(ICs) holds I is non halting.

(21) For every instruction I of SCM(R) such that I = 〈〈0, ε〉〉 holds I is

halting.

Let us consider R, a, b. One can check the following observations:

∗ a:=b is non halting,

∗ AddTo(a, b) is non halting,

∗ SubFrom(a, b) is non halting, and

∗ MultBy(a, b) is non halting.

Let us consider R, i1. Observe that goto i1 is non halting.

Let us consider R, a, i1. Observe that if a = 0 goto i1 is non halting.

Let us consider R, a, r. Note that a:=r is non halting.

Let us consider R. One can check that SCM(R) is halting definite data-

oriented steady-programmed and realistic.

One can prove the following propositions:

(29)1 For every instruction I of SCM(R) such that I is halting holds I =

haltSCM(R).

(30) haltSCM(R) = 〈〈0, ε〉〉.
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