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Summary. This article completes the Mizar formalization of Chapter I,
Section 2 from [12]. After presenting some preliminary material (not all of which
is later used in this article) we give the proof of theorem 2.7 (i), p.60. We do
not follow the hint from [12] suggesting using the equations 2.3, p. 58. The proof
is taken directly from the definition of continuous lattice. The goal of the last
section is to prove the correspondence between the set of all congruences of a
continuous lattice and the set of all kernel operators of the lattice which preserve
directed sups (Corollary 2.13).

MML Identifier: WAYBEL20.

The terminology and notation used here are introduced in the following articles:

[23], [19], [18], [7], [8], [6], [1], [2], [21], [13], [20], [17], [24], [25], [22], [11], [16],

[4], [10], [5], [3], [14], [26], [15], and [9].

1. Preliminaries

The following two propositions are true:

(1) For every set X and for every subset S of △X holds π1(S) = π2(S).

(2) For all non empty sets X, Y and for every function f from X into Y

holds [: f, f :]−1(△Y ) is an equivalence relation of X.

Let L1, L2, T1, T2 be relational structures, let f be a map from L1 into T1,

and let g be a map from L2 into T2. Then [: f, g :] is a map from [:L1, L2 :] into

[:T1, T2 :].

One can prove the following propositions:
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(3) For all functions f , g and for every set X holds π1([: f, g :]◦X) ⊆ f◦π1(X)

and π2([: f, g :]◦X) ⊆ g◦π2(X).

(4) For all functions f , g and for every set X such that X ⊆ [:dom f, dom g :]

holds π1([: f, g :]◦X) = f◦π1(X) and π2([: f, g :]◦X) = g◦π2(X).

(5) For every non empty antisymmetric relational structure S such that inf

∅ exists in S holds S is upper-bounded.

(6) For every non empty antisymmetric relational structure S such that sup

∅ exists in S holds S is lower-bounded.

(7) Let L1, L2 be antisymmetric non empty relational structures and D be

a subset of [:L1, L2 :]. If inf D exists in [:L1, L2 :], then infD = 〈〈 inf π1(D),

inf π2(D)〉〉.

(8) Let L1, L2 be antisymmetric non empty relational structures and D be a

subset of [:L1, L2 :]. If sup D exists in [:L1, L2 :], then supD = 〈〈 supπ1(D),

supπ2(D)〉〉.

(9) Let L1, L2, T1, T2 be antisymmetric non empty relational structures, f

be a map from L1 into T1, and g be a map from L2 into T2. Suppose f is

infs-preserving and g is infs-preserving. Then [: f, g :] is infs-preserving.

(10) Let L1, L2, T1, T2 be antisymmetric reflexive non empty relational struc-

tures, f be a map from L1 into T1, and g be a map from L2 into T2. Suppose

f is filtered-infs-preserving and g is filtered-infs-preserving. Then [: f, g :]

is filtered-infs-preserving.

(11) Let L1, L2, T1, T2 be antisymmetric non empty relational structures, f

be a map from L1 into T1, and g be a map from L2 into T2. Suppose f is

sups-preserving and g is sups-preserving. Then [: f, g :] is sups-preserving.

(12) Let L1, L2, T1, T2 be antisymmetric reflexive non empty relational struc-

tures, f be a map from L1 into T1, and g be a map from L2 into T2. Suppose

f is directed-sups-preserving and g is directed-sups-preserving. Then [: f,

g :] is directed-sups-preserving.

(13) Let L be an antisymmetric non empty relational structure and X be a

subset of [:L, L :]. Suppose X ⊆ △the carrier of L and inf X exists in [:L,

L :]. Then infX ∈ △the carrier of L.

(14) Let L be an antisymmetric non empty relational structure and X be a

subset of [:L, L :]. Suppose X ⊆ △the carrier of L and sup X exists in [:L,

L :]. Then supX ∈ △the carrier of L.

(15) Let L,M be non empty relational structures. If L andM are isomorphic

and L is reflexive, then M is reflexive.

(16) Let L,M be non empty relational structures. If L andM are isomorphic

and L is transitive, then M is transitive.

(17) Let L, M be non empty relational structures. Suppose L and M are

isomorphic and L is antisymmetric. Then M is antisymmetric.
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(18) Let L,M be non empty relational structures. If L andM are isomorphic

and L is complete, then M is complete.

(19) Let L be a non empty transitive relational structure and k be a map

from L into L. If k is infs-preserving, then k◦ is infs-preserving.

(20) Let L be a non empty transitive relational structure and k be a map from

L into L. If k is filtered-infs-preserving, then k◦ is filtered-infs-preserving.

(21) Let L be a non empty transitive relational structure and k be a map

from L into L. If k is sups-preserving, then k◦ is sups-preserving.

(22) Let L be a non empty transitive relational structure and k be a map

from L into L. If k is directed-sups-preserving, then k◦ is directed-sups-

preserving.

(23) Let S, T be reflexive antisymmetric non empty relational structures and

f be a map from S into T . If f is directed-sups-preserving, then f is

monotone.

(24) Let S, T be reflexive antisymmetric non empty relational structures and

f be a map from S into T . If f is filtered-infs-preserving, then f is mono-

tone.

(25) Let S, T be non empty relational structures and f be a map from S into

T . Suppose f is monotone. Let X be a subset of S. If X is filtered, then

f◦X is filtered.

(26) Let L1, L2, L3 be non empty relational structures, f be a map from L1

into L2, and g be a map from L2 into L3. Suppose f is infs-preserving and

g is infs-preserving. Then g · f is infs-preserving.

(27) Let L1, L2, L3 be non empty reflexive antisymmetric relational structu-

res, f be a map from L1 into L2, and g be a map from L2 into L3. Suppose

f is filtered-infs-preserving and g is filtered-infs-preserving. Then g · f is

filtered-infs-preserving.

(28) Let L1, L2, L3 be non empty relational structures, f be a map from L1

into L2, and g be a map from L2 into L3. Suppose f is sups-preserving

and g is sups-preserving. Then g · f is sups-preserving.

(29) Let L1, L2, L3 be non empty reflexive antisymmetric relational structu-

res, f be a map from L1 into L2, and g be a map from L2 into L3. Suppose

f is directed-sups-preserving and g is directed-sups-preserving. Then g · f

is directed-sups-preserving.
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2. Some Remarks on Lattice Product

We now state several propositions:

(30) Let I be a non empty set and J be a relational structure yielding no-

nempty many sorted set indexed by I. Suppose that for every element i of

I holds J(i) is a lower-bounded antisymmetric relational structure. Then
∏

J is lower-bounded.

(31) Let I be a non empty set and J be a relational structure yielding no-

nempty many sorted set indexed by I. Suppose that for every element i

of I holds J(i) is an upper-bounded antisymmetric relational structure.

Then
∏

J is upper-bounded.

(32) Let I be a non empty set and J be a relational structure yielding no-

nempty many sorted set indexed by I. Suppose that for every element i

of I holds J(i) is a lower-bounded antisymmetric relational structure. Let

i be an element of I. Then ⊥∏ J(i) = ⊥J(i).

(33) Let I be a non empty set and J be a relational structure yielding no-

nempty many sorted set indexed by I. Suppose that for every element i of

I holds J(i) is an upper-bounded antisymmetric relational structure. Let

i be an element of I. Then ⊤∏ J(i) = ⊤J(i).

(34) Let I be a non empty set and J be a relational structure yielding no-

nempty reflexive-yielding many sorted set indexed by I. Suppose that for

every element i of I holds J(i) is a continuous complete lattice. Then
∏

J

is continuous.

3. Kernel Projections and Quotient Lattices

We now state the proposition

(35) Let L, T be continuous complete lattices, g be a CLHomomorphism

of L, T , and S be a subset of the carrier of [:L, L :]. Suppose S = [: g,

g :]−1(△the carrier of T ). Then sub(S) is a continuous subframe of [:L, L :].

Let L be a relational structure and let R be a subset of the carrier of [:L, L :].

Let us assume that R is an equivalence relation of the carrier of L. The functor

EqRel(R) yields an equivalence relation of the carrier of L and is defined by:

(Def. 1) EqRel(R) = R.

Let L be a non empty relational structure and let R be a subset of [:L, L :].

We say that R is a continuous lattice congruence if and only if:

(Def. 2) R is an equivalence relation of the carrier of L and sub(R) is a continuous

subframe of [:L, L :].
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We now state the proposition

(36) Let L be a complete lattice and R be a non empty subset of [:L, L :].

Suppose R is a continuous lattice congruence. Let x be an element of the

carrier of L. Then 〈〈 inf([x]EqRel(R)), x〉〉 ∈ R.

Let L be a complete lattice and let R be a non empty subset of [:L, L :]. Let

us assume that R is a continuous lattice congruence. The kernel operation of R

yields a kernel map from L into L and is defined by:

(Def. 3) For every element x of L holds (the kernel operation of R)(x) =

inf([x]EqRel(R)).

Next we state three propositions:

(37) Let L be a complete lattice and R be a non empty subset of [:L, L :].

Suppose R is a continuous lattice congruence. Then

(i) the kernel operation of R is directed-sups-preserving, and

(ii) R = [: the kernel operation of R, the kernel operation of

R :]−1(△the carrier of L).

(38) Let L be a continuous complete lattice, R be a subset of [:L, L :], and k

be a kernel map from L into L. Suppose k is directed-sups-preserving and

R = [: k, k :]−1(△the carrier of L). Then there exists a continuous complete

strict lattice L4 such that

(i) the carrier of L4 = Classes EqRel(R),

(ii) the internal relation of L4 = {〈〈[x]EqRel(R), [y]EqRel(R)〉〉; x ranges over

elements of L, y ranges over elements of L: k(x) ¬ k(y)}, and

(iii) for every map g from L into L4 such that for every element x of L holds

g(x) = [x]EqRel(R) holds g is a CLHomomorphism of L, L4.

(39) Let L be a continuous complete lattice and R be a subset of [:L, L :].

Suppose that

(i) R is an equivalence relation of the carrier of L, and

(ii) there exists a continuous complete lattice L4 such that the carrier of

L4 = Classes EqRel(R) and for every map g from L into L4 such that for

every element x of L holds g(x) = [x]EqRel(R) holds g is a CLHomomor-

phism of L, L4.

Then sub(R) is a continuous subframe of [:L, L :].

Let L be a non empty reflexive relational structure. Observe that there exists

a map from L into L which is directed-sups-preserving and kernel.

Let L be a non empty reflexive relational structure and let k be a kernel

map from L into L. The kernel congruence of k yields a non empty subset of

[:L, L :] and is defined by:

(Def. 4) The kernel congruence of k = [: k, k :]−1(△the carrier of L).

We now state two propositions:
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(40) Let L be a non empty reflexive relational structure and k be a kernel

map from L into L. Then the kernel congruence of k is an equivalence

relation of the carrier of L.

(41) Let L be a continuous complete lattice and k be a directed-sups-

preserving kernel map from L into L. Then the kernel congruence of k

is a continuous lattice congruence.

Let L be a continuous complete lattice and let R be a non empty subset of

[:L, L :]. Let us assume that R is a continuous lattice congruence. The functor
L/R yielding a continuous complete strict lattice is defined by:

(Def. 5) The carrier of L/R = Classes EqRel(R) and for all elements x, y of L/R

holds x ¬ y iff ⌈−⌉Lx ¬ ⌈−⌉Ly.

The following propositions are true:

(42) Let L be a continuous complete lattice and R be a non empty subset

of [:L, L :]. Suppose R is a continuous lattice congruence. Let x be a set.

Then x is an element of L/R if and only if there exists an element y of L

such that x = [y]EqRel(R).

(43) Let L be a continuous complete lattice and R be a non empty subset

of [:L, L :]. Suppose R is a continuous lattice congruence. Then R = the

kernel congruence of the kernel operation of R.

(44) Let L be a continuous complete lattice and k be a directed-sups-

preserving kernel map from L into L. Then k = the kernel operation

of the kernel congruence of k.

(45) Let L be a continuous complete lattice and p be a projection map from

L into L. Suppose p is infs-preserving. Then Im p is a continuous lattice

and Im p is infs-inheriting.
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