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The papers [20], [14], [6], [7], [4], [17], [1], [18], [8], [13], [19], [15], [11], [10], [21],
3], [2], [5], [12], [9], [22], and [16] provide the notation and terminology for this

paper.

1. PRELIMINARIES

Let S be a finite 1-sorted structure. One can verify that the carrier of S is
finite.

Let S be a trivial 1-sorted structure. One can check that the carrier of S is
trivial.

One can check that every set which is trivial is also finite.

One can verify that every 1-sorted structure which is trivial is also finite.

Let us mention that every 1-sorted structure which is non trivial is also non
empty.

One can check the following observations:

* there exists a 1-sorted structure which is strict, non empty, and trivial,

* there exists a relational structure which is strict, non empty, and trivial,

and
* there exists a FR-structure which is strict, non empty, and trivial.
We now state the proposition

(1) For every T} non empty topological space T holds every finite subset of
T is closed.
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Let T be a compact topological structure. Observe that Q7 is compact.

Let us observe that there exists a topological space which is strict, non
empty, and trivial.

Let us mention that every non empty topological space which is finite and
T is also discrete.

Let us observe that every topological space which is finite is also compact.
One can prove the following propositions:

2) Every discrete non empty topological space is a T space.

3) Every discrete non empty topological space is a T5 space.

4) Every discrete non empty topological space is a T space.

(
(
(
(5) Every discrete non empty topological space is a T} space.

One can check that every non empty topological space which is Ty and T} is

also T5.

Let us observe that every non empty topological space which is T3 and 17 is
also T5.

Let us note that every topological space which is T is also 1.
One can check that every topological space which is T} is also Tp.

Next we state three propositions:

(6) Let S be a reflexive relational structure, T' be a reflexive transitive rela-
tional structure, f be a map from S into T', and X be a subset of S. Then

L(fex) c L(fo1X).
(7) Let S be a reflexive relational structure, T' be a reflexive transitive rela-

tional structure, f be a map from S into 7', and X be a subset of S. If f
is monotone, then [(f°X) = [(f°]X).

(8) For every non empty poset N holds IdsMap(/N) is one-to-one.

One can prove the following proposition

(9) For every finite lattice N holds SupMap(/N) is one-to-one.

We now state three propositions:
(10) For every finite lattice NV holds NV and (Ids(/V), C) are isomorphic.

(11) Let N be a complete non empty poset, z be an element of N, and X be
a non empty subset of N. Then x M preserves inf of X.

(12) For every complete non empty poset N and for every element x of N
holds = M [ is meet-preserving.
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2. ON THE BASIS OF TOPOLOGICAL SPACES

Next we state several propositions:

(13) Let T be an anti-discrete non empty topological structure and p be a
point of T'. Then {the carrier of T'} is a basis of p.

(14) Let T be an anti-discrete non empty topological structure, p be a point
of T, and D be a basis of p. Then D = {the carrier of T'}.

(15) Let T be a non empty topological space, P be a basis of T', and p be a
point of T. Then {A; A ranges over subsets of T: A€ P AN p€ A} isa
basis of p.

(16) Let T be a non empty topological structure, A be a subset of T', and p
be a point of T. Then p € A if and only if for every basis K of p and for
every subset @ of T' such that @ € K holds AN Q # 0.

(17) Let T be a non empty topological structure, A be a subset of T', and p
be a point of T. Then p € A if and only if there exists a basis K of p such
that for every subset Q of T' such that Q € K holds AN Q # 0.

Let T be a topological structure and let p be a point of T'. A family of subsets
of T is said to be a generalized basis of p if:

(Def. 1) For every subset A of T such that p € Int A there exists a subset P of T
such that P € it and p € Int P and P C A.

Let T be a non empty topological space and let p be a point of T'. Let us note
that the generalized basis of p can be characterized by the following (equivalent)
condition:

(Def. 2) For every neighbourhood A of p there exists a neighbourhood P of p
such that P € it and P C A.
The following propositions are true:

(18) Let T be a topological structure and p be a point of 7. Then

gthe carrier of T 35 o generalized basis of p.

(19) For every non empty topological space T" and for every point p of T" holds
every generalized basis of p is non empty.
Let T be a topological structure and let p be a point of T. Observe that
there exists a generalized basis of p which is non empty.
Let T be a topological structure, let p be a point of 7', and let P be a
generalized basis of p. We say that P is correct if and only if:

(Def. 3) For every subset A of T holds A € P iff p € Int A.
Let T be a topological structure and let p be a point of T. Note that there
exists a generalized basis of p which is correct.
One can prove the following proposition
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(20) Let T be a topological structure and p be a point of 7. Then {A; A
ranges over subsets of T: p € Int A} is a correct generalized basis of p.
Let T be a non empty topological space and let p be a point of T". Observe
that there exists a generalized basis of p which is non empty and correct.
One can prove the following three propositions:
(21) Let T be an anti-discrete non empty topological structure and p be a
point of T. Then {the carrier of T'} is a correct generalized basis of p.
(22) Let T be an anti-discrete non empty topological structure, p be a point
of T, and D be a correct generalized basis of p. Then D = {the carrier of
T}.

(23) For every non empty topological space T" and for every point p of T" holds
every basis of p is a generalized basis of p.

Let T be a topological structure. A family of subsets of T is said to be a
generalized basis of T if:

(Def. 4) For every point p of T" holds it is a generalized basis of p.
Next we state two propositions:
(24) TFor every topological structure T holds 2the carrier of T is a generalized

basis of T'.

(25) For every non empty topological space T' holds every generalized basis
of T is non empty.

Let T be a topological structure. Note that there exists a generalized basis
of T" which is non empty.
Next we state two propositions:

(26) For every non empty topological space T" and for every generalized basis
P of T holds the topology of T' C UniCl(Int P).

(27) For every topological space T holds every basis of T' is a generalized basis
of T.

Let T be a non empty topological space-like FR-structure. We say that T is
topological semilattice if and only if:

(Def. 5) For every map f from [T, (T qua topological space) ] into T such that
f =T holds f is continuous.
Let us note that every non empty topological space-like FR-structure which
is reflexive and trivial is also topological semilattice.
Let us mention that there exists a FR-structure which is reflexive, trivial,
non empty, and topological space-like.
We now state the proposition
(28) Let T be a topological semilattice non empty topological space-like FR-
structure and x be an element of 1. Then x M [ is continuous.
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