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The papers [20], [14], [6], [7], [4], [17], [1], [18], [8], [13], [19], [15], [11], [10], [21],

[3], [2], [5], [12], [9], [22], and [16] provide the notation and terminology for this

paper.

1. Preliminaries

Let S be a finite 1-sorted structure. One can verify that the carrier of S is

finite.

Let S be a trivial 1-sorted structure. One can check that the carrier of S is

trivial.

One can check that every set which is trivial is also finite.

One can verify that every 1-sorted structure which is trivial is also finite.

Let us mention that every 1-sorted structure which is non trivial is also non

empty.

One can check the following observations:

∗ there exists a 1-sorted structure which is strict, non empty, and trivial,

∗ there exists a relational structure which is strict, non empty, and trivial,

and

∗ there exists a FR-structure which is strict, non empty, and trivial.

We now state the proposition

(1) For every T1 non empty topological space T holds every finite subset of

T is closed.
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Let T be a compact topological structure. Observe that ΩT is compact.

Let us observe that there exists a topological space which is strict, non

empty, and trivial.

Let us mention that every non empty topological space which is finite and

T1 is also discrete.

Let us observe that every topological space which is finite is also compact.

One can prove the following propositions:

(2) Every discrete non empty topological space is a T4 space.

(3) Every discrete non empty topological space is a T3 space.

(4) Every discrete non empty topological space is a T2 space.

(5) Every discrete non empty topological space is a T1 space.

One can check that every non empty topological space which is T4 and T1 is

also T3.

Let us observe that every non empty topological space which is T3 and T1 is

also T2.

Let us note that every topological space which is T2 is also T1.

One can check that every topological space which is T1 is also T0.

Next we state three propositions:

(6) Let S be a reflexive relational structure, T be a reflexive transitive rela-

tional structure, f be a map from S into T , and X be a subset of S. Then

↓(f◦X) ⊆ ↓(f◦↓X).

(7) Let S be a reflexive relational structure, T be a reflexive transitive rela-

tional structure, f be a map from S into T , and X be a subset of S. If f

is monotone, then ↓(f◦X) = ↓(f◦↓X).

(8) For every non empty poset N holds IdsMap(N) is one-to-one.

One can prove the following proposition

(9) For every finite lattice N holds SupMap(N) is one-to-one.

We now state three propositions:

(10) For every finite lattice N holds N and 〈Ids(N),⊆〉 are isomorphic.

(11) Let N be a complete non empty poset, x be an element of N , and X be

a non empty subset of N . Then x ⊓¤ preserves inf of X.

(12) For every complete non empty poset N and for every element x of N

holds x ⊓¤ is meet-preserving.
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2. On the Basis of Topological Spaces

Next we state several propositions:

(13) Let T be an anti-discrete non empty topological structure and p be a

point of T . Then {the carrier of T} is a basis of p.

(14) Let T be an anti-discrete non empty topological structure, p be a point

of T , and D be a basis of p. Then D = {the carrier of T}.

(15) Let T be a non empty topological space, P be a basis of T , and p be a

point of T . Then {A; A ranges over subsets of T : A ∈ P ∧ p ∈ A} is a

basis of p.

(16) Let T be a non empty topological structure, A be a subset of T , and p

be a point of T . Then p ∈ A if and only if for every basis K of p and for

every subset Q of T such that Q ∈ K holds A ∩Q 6= ∅.

(17) Let T be a non empty topological structure, A be a subset of T , and p

be a point of T . Then p ∈ A if and only if there exists a basis K of p such

that for every subset Q of T such that Q ∈ K holds A ∩Q 6= ∅.

Let T be a topological structure and let p be a point of T . A family of subsets

of T is said to be a generalized basis of p if:

(Def. 1) For every subset A of T such that p ∈ IntA there exists a subset P of T

such that P ∈ it and p ∈ IntP and P ⊆ A.

Let T be a non empty topological space and let p be a point of T . Let us note

that the generalized basis of p can be characterized by the following (equivalent)

condition:

(Def. 2) For every neighbourhood A of p there exists a neighbourhood P of p

such that P ∈ it and P ⊆ A.

The following propositions are true:

(18) Let T be a topological structure and p be a point of T . Then

2the carrier of T is a generalized basis of p.

(19) For every non empty topological space T and for every point p of T holds

every generalized basis of p is non empty.

Let T be a topological structure and let p be a point of T . Observe that

there exists a generalized basis of p which is non empty.

Let T be a topological structure, let p be a point of T , and let P be a

generalized basis of p. We say that P is correct if and only if:

(Def. 3) For every subset A of T holds A ∈ P iff p ∈ IntA.

Let T be a topological structure and let p be a point of T . Note that there

exists a generalized basis of p which is correct.

One can prove the following proposition
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(20) Let T be a topological structure and p be a point of T . Then {A; A

ranges over subsets of T : p ∈ IntA} is a correct generalized basis of p.

Let T be a non empty topological space and let p be a point of T . Observe

that there exists a generalized basis of p which is non empty and correct.

One can prove the following three propositions:

(21) Let T be an anti-discrete non empty topological structure and p be a

point of T . Then {the carrier of T} is a correct generalized basis of p.

(22) Let T be an anti-discrete non empty topological structure, p be a point

of T , and D be a correct generalized basis of p. Then D = {the carrier of

T}.

(23) For every non empty topological space T and for every point p of T holds

every basis of p is a generalized basis of p.

Let T be a topological structure. A family of subsets of T is said to be a

generalized basis of T if:

(Def. 4) For every point p of T holds it is a generalized basis of p.

Next we state two propositions:

(24) For every topological structure T holds 2the carrier of T is a generalized

basis of T .

(25) For every non empty topological space T holds every generalized basis

of T is non empty.

Let T be a topological structure. Note that there exists a generalized basis

of T which is non empty.

Next we state two propositions:

(26) For every non empty topological space T and for every generalized basis

P of T holds the topology of T ⊆ UniCl(IntP ).

(27) For every topological space T holds every basis of T is a generalized basis

of T .

Let T be a non empty topological space-like FR-structure. We say that T is

topological semilattice if and only if:

(Def. 5) For every map f from [:T, (T qua topological space) :] into T such that

f = ⊓T holds f is continuous.

Let us note that every non empty topological space-like FR-structure which

is reflexive and trivial is also topological semilattice.

Let us mention that there exists a FR-structure which is reflexive, trivial,

non empty, and topological space-like.

We now state the proposition

(28) Let T be a topological semilattice non empty topological space-like FR-

structure and x be an element of T . Then x ⊓¤ is continuous.
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