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Summary. Quite a number of lemmas for the Jordan curve theorem, as
yet in the case of the special polygonal curves, have been proved. By ”special”

we mean, that it is a polygonal curve with edges parallel to axes and actually the

lemmas have been proved, mostly, for the triangulations i.e. for finite sequences

that define the curve. Moreover some of the results deal only with a special case:

- finite sequences are clockwise oriented,

- the first member of the sequence is the member with the lowest ordinate

among those with the highest abscissa (N-min f, where f is a finite sequence,

in the Mizar jargon).

In the change of the orientation one has to reverse the sequence (the operation

introduced in [7]) and to change the second restriction one has to rotate the sequ-

ence (the operation introduced in [26]). The goal of the paper is to prove, mostly

simple, facts about the relationship between properties and attributes of the fi-

nite sequence and its rotation (similar results about reversing had been proved

in [7]). Some of them deal with recounting parameters, others with properties

that are invariant under the rotation. We prove also that the finite sequence is

either clockwise oriented or it is such after reversing. Everything is proved for

the so called standard finite sequences, which means that if a point belongs to it

then every point with the same abscissa or with the same ordinate, that belongs

to the polygon, belongs also to the finite sequence. It does not seem that this

requirement causes serious technical obstacles.

MML Identifier: REVROT 1.

The terminology and notation used here are introduced in the following articles:

[24], [29], [12], [2], [23], [20], [1], [4], [6], [3], [5], [13], [28], [14], [7], [26], [22], [30],

[21], [9], [10], [11], [15], [16], [18], [25], [8], [17], [27], and [19].
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1. Preliminaries

For simplicity, we use the following convention: i, k, m, n are natural num-

bers, D is a non empty set, p is an element of D, and f is a finite sequence of

elements of D.

Let S be a non trivial 1-sorted structure. Observe that the carrier of S is

non trivial.

Let D be a non empty set and let f be a finite sequence of elements of D.

Let us observe that f is constant if and only if:

(Def. 1) For all n, m such that n ∈ dom f and m ∈ dom f holds πnf = πmf.

One can prove the following three propositions:

(1) Let D be a non empty set and f be a finite sequence of elements of D.

If f yields πlen ff just once, then (πlen ff) " f = len f.

(2) For every non empty set D and for every finite sequence f of elements

of D holds f⇂len f = ∅.

(3) For every non empty set D and for every non empty finite sequence f of

elements of D holds πlen ff ∈ rng f.

Let D be a non empty set, let f be a finite sequence of elements of D, and

let y be a set. Let us observe that f yields y just once if and only if:

(Def. 2) There exists a set x such that x ∈ dom f and y = πxf and for every set

z such that z ∈ dom f and z 6= x holds πzf 6= y.

The following propositions are true:

(4) Let D be a non empty set and f be a finite sequence of elements of D.

If f yields πlen ff just once, then f −: πlen ff = f.

(5) Let D be a non empty set and f be a finite sequence of elements of D.

If f yields πlen ff just once, then f :− πlen ff = 〈πlen ff〉.

(6) 1 ¬ len(f :− p).

(7) Let D be a non empty set, p be an element of D, and f be a finite

sequence of elements of D. If p ∈ rng f, then len(f :− p) ¬ len f.

(8) For every non empty set D and for every circular non empty finite se-

quence f of elements of D holds Rev(f) is circular.

2. About the Rotation

In the sequel D denotes a non empty set, p denotes an element of D, and f

denotes a finite sequence of elements of D.

We now state several propositions:
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(9) If p ∈ rng f and 1 ¬ i and i ¬ len(f :− p), then πif
p
ª = π(i−′1)+p"ff.

(10) If p ∈ rng f and p " f ¬ i and i ¬ len f, then πif = π(i+1)−′p"ff
p
ª.

(11) If p ∈ rng f, then πlen(f :−p)f
p
ª = πlen ff.

(12) If p ∈ rng f and len(f :− p) < i and i ¬ len f, then πif
p
ª =

π(i+p"f)−′len ff.

(13) If p ∈ rng f and 1 < i and i ¬ p " f, then πif = π(i+len f)−′p"ff
p
ª.

(14) len(fp
ª) = len f.

(15) dom(fp
ª) = dom f.

(16) Let D be a non empty set, f be a circular finite sequence of elements of

D, and p be an element of D. If for every i such that 1 < i and i < len f

holds πif 6= π1f, then (fp
ª)π1f

ª = f.

3. Rotating Circular Ones

In the sequel f is a circular finite sequence of elements of D.

The following propositions are true:

(17) If p ∈ rng f and len(f :− p) ¬ i and i ¬ len f, then πif
p
ª =

π(i+p"f)−′len ff.

(18) If p ∈ rng f and 1 ¬ i and i ¬ p " f, then πif = π(i+len f)−′p"ff
p
ª.

LetD be a non trivial set. Note that there exists a finite sequence of elements

of D which is non constant and circular.

Let D be a non trivial set, let p be an element of D, and let f be a non

constant circular finite sequence of elements of D. Note that fp
ª is non constant.

4. Finite Sequence on the Plane

The following proposition is true

(19) For every non empty natural number n holds 0En

T
6= 1.REALn.

Let n be a non empty natural number. Note that En
T
is non trivial.

In the sequel f , g are finite sequences of elements of E2
T
.

Next we state four propositions:

(20) If rng f ⊆ rng g, then rngX-coordinate(f) ⊆ rngX-coordinate(g).

(21) If rng f = rng g, then rngX-coordinate(f) = rngX-coordinate(g).

(22) If rng f ⊆ rng g, then rngY-coordinate(f) ⊆ rngY-coordinate(g).

(23) If rng f = rng g, then rngY-coordinate(f) = rngY-coordinate(g).
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5. Rotating Finite Sequence on the Plane

In the sequel p denotes a point of E2
T
and f denotes a finite sequence of

elements of E2
T
.

Let p be a point of E2
T
and let f be a special circular finite sequence of

elements of E2
T
. Observe that f

p
ª is special.

The following propositions are true:

(24) If p ∈ rng f and 1 ¬ i and i < len(f :− p), then L(fp
ª, i) = L(f, (i−′ 1)+

p " f).

(25) If p ∈ rng f and p " f ¬ i and i < len f, then L(f, i) = L(fp
ª, (i−′ p "

f) + 1).

(26) For every circular finite sequence f of elements of E2
T
holds

Inc(X-coordinate(f)) = Inc(X-coordinate(fp
ª)).

(27) For every circular finite sequence f of elements of E2
T
holds

Inc(Y-coordinate(f)) = Inc(Y-coordinate(fp
ª)).

(28) For every non empty circular finite sequence f of elements of E2
T
holds

the Go-board of fp
ª = the Go-board of f .

(29) For every non constant standard special circular sequence f holds

Rev(fp
ª) = (Rev(f))p

ª.

6. Rotating Circular Ones (on the Plane)

In the sequel f is a circular finite sequence of elements of E2
T
.

We now state two propositions:

(30) For every circular s.c.c. finite sequence f of elements of E2
T
such that

len f > 4 holds L(f, len f −′ 1) ∩ L(f, 1) = {π1f}.

(31) If p ∈ rng f and len(f :−p) ¬ i and i < len f, then L(fp
ª, i) = L(f, (i+p "

f)−′ len f).

Let p be a point of E2
T
and let f be a circular s.c.c. finite sequence of elements

of E2
T
. One can check that f

p
ª is s.c.c..

Let p be a point of E2
T
and let f be a non constant standard special circular

sequence. Observe that f
p
ª is unfolded.

Next we state three propositions:

(32) If p ∈ rng f and 1 ¬ i and i < p " f, then L(f, i) = L(fp
ª, (i + len f)−′

p " f).

(33) L̃(fp
ª) = L̃(f).

(34) Let G be a Go-board. Then f is a sequence which elements belong to G

if and only if fp
ª is a sequence which elements belong to G.
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Let p be a point of E2
T
and let f be a standard non empty circular finite

sequence of elements of E2
T
. One can verify that f

p
ª is standard.

One can prove the following three propositions:

(35) Let f be a non constant standard special circular sequence and given p, k.

If p ∈ rng f and 1 ¬ k and k < p " f, then leftcell(f, k) = leftcell(fp
ª, (k+

len f)−′ p " f).

(36) For every non constant standard special circular sequence f holds

LeftComp(fp
ª) = LeftComp(f).

(37) For every non constant standard special circular sequence f holds

RightComp(fp
ª) = RightComp(f).

7. The Orientation

Let p be a point of E2
T
and let f be a clockwise oriented non constant standard

special circular sequence. One can verify that f
p
ª is clockwise oriented.

One can prove the following proposition

(38) Let f be a non constant standard special circular sequence. Then f is

clockwise oriented or Rev(f) is clockwise oriented.
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