
FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999

University of Białystok

Computation and Program Shift in the

SCMPDS Computer1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. A finite partial state is said to be autonomic if the computation
results in any two states containing it are same on its domain. On the basis of
this definition, this article presents some computation results about autonomic
finite partial states of the SCMPDS computer. Because the instructions of the
SCMPDS computer are more complicated than those of the SCMFSA computer,
the results given by this article are weaker than those reported previously by the
article on the SCMFSA computer. The second task of this article is to define the
notion of program shift. The importance of this notion is that the computation of
some program blocks can be simplified by shifting a program block to the initial
position.

MML Identifier: SCMPDS 3.

The papers [5], [18], [24], [2], [12], [25], [4], [23], [6], [21], [1], [7], [16], [3], [11],

[8], [13], [14], [19], [17], [10], [9], [22], [15], and [20] provide the notation and

terminology for this paper.

1. Preliminaries

In this paper k, m, n denote natural numbers.

Next we state several propositions:

(1) Suppose n ¬ 13. Then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or

n = 5 or n = 6 or n = 7 or n = 8 or n = 9 or n = 10 or n = 11 or n = 12

or n = 13.

1This work was done while the author visited Shinshu University March–April 1999.

193
c© 1999 University of Białystok

ISSN 1426–2630

194 jing-chao chen

(2) For every integer k1 and for all states s1, s2 of SCMPDS such that

IC(s1) = IC(s2) holds ICplusConst(s1, k1) = ICplusConst(s2, k1).

(3) Let k1 be an integer, a be a Int position, and s1, s2 be states of SCMPDS.

If s1↾Data-LocSCM = s2↾Data-LocSCM, then s1(DataLoc(s1(a), k1)) =

s2(DataLoc(s2(a), k1)).

(4) For every Int position a and for all states s1, s2 of SCMPDS such that

s1↾Data-LocSCM = s2↾Data-LocSCM holds s1(a) = s2(a).

(5) The objects of SCMPDS = {ICSCMPDS}∪Data-LocSCM∪the instruction

locations of SCMPDS.

(6) ICSCMPDS /∈ Data-LocSCM.

(7) For all states s1, s2 of SCMPDS such that s1↾(Data-LocSCM ∪

{ICSCMPDS}) = s2↾(Data-LocSCM ∪ {ICSCMPDS}) and for every instruc-

tion l of SCMPDS holds Exec(l, s1)↾(Data-LocSCM ∪ {ICSCMPDS}) =

Exec(l, s2)↾(Data-LocSCM ∪ {ICSCMPDS}).

(8) For every instruction i of SCMPDS and for every state s of SCMPDS

holds Exec(i, s)↾Instr-LocSCM = s↾Instr-LocSCM.

2. Finite Partial States of SCMPDS

Next we state two propositions:

(9) For every finite partial state p of SCMPDS holds DataPart(p) =

p↾Data-LocSCM.

(10) For every finite partial state p of SCMPDS holds p is data-only iff

dom p ⊆ Data-LocSCM.

Let us mention that there exists a finite partial state of SCMPDS which is

data-only.

Next we state two propositions:

(11) For every finite partial state p of SCMPDS holds domDataPart(p) ⊆

Data-LocSCM.

(12) For every finite partial state p of SCMPDS holds domProgramPart(p) ⊆

the instruction locations of SCMPDS.

Let I1 be a partial function from FinPartSt(SCMPDS) to FinPartSt(SCMPDS).

We say that I1 is data-only if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let p be a finite partial state of SCMPDS. Suppose p ∈ dom I1. Then

p is data-only and for every finite partial state q of SCMPDS such that

q = I1(p) holds q is data-only.

Let us observe that there exists a partial function from FinPartSt(SCMPDS)

to FinPartSt(SCMPDS) which is data-only.

computation and program shift in the . . . 195

Next we state three propositions:

(13) Let i be an instruction of SCMPDS, s be a state of SCMPDS, and p

be a programmed finite partial state of SCMPDS. Then Exec(i, s+·p) =

Exec(i, s)+·p.

(14) For every state s of SCMPDS and for every instruction-location i1 of

SCMPDS and for every Int position a holds s(a) = (s+·Start-At(i1))(a).

(15) For all states s, t of SCMPDS holds s+·t↾Data-LocSCM is a state of

SCMPDS.

3. Autonomic Finite Partial States of SCMPDS and its

Computation

Let l1 be a Int position and let a be an integer. Then l1 7−→
. a is a finite partial

state of SCMPDS.

Next we state the proposition

(16) For every autonomic finite partial state p of SCMPDS such that

DataPart(p) 6= ∅ holds ICSCMPDS ∈ dom p.

Let us observe that there exists a finite partial state of SCMPDS which is

autonomic and non programmed.

One can prove the following propositions:

(17) For every autonomic non programmed finite partial state p of SCMPDS

holds ICSCMPDS ∈ dom p.

(18) Let s1, s2 be states of SCMPDS and k1, k2, m be integers. If IC(s1) =

IC(s2) and k1 6= k2 and m = IC(s1) and (m− 2)+2 · k1 0 and (m− 2)+

2 · k2 0, then ICplusConst(s1, k1) 6= ICplusConst(s2, k2).

(19) For all states s1, s2 of SCMPDS and for all natural numbers k1, k2

such that IC(s1) = IC(s2) and k1 6= k2 holds ICplusConst(s1, k1) 6=

ICplusConst(s2, k2).

(20) For every state s of SCMPDS holds Next(ICs) = ICplusConst(s, 1).

(21) For every autonomic finite partial state p of SCMPDS such that

ICSCMPDS ∈ dom p holds ICp ∈ dom p.

(22) Let p be an autonomic non programmed finite partial state of SCMPDS

and s be a state of SCMPDS. If p ⊆ s, then for every natural number i

holds IC(Computation(s))(i) ∈ domProgramPart(p).

(23) Let p be an autonomic non programmed finite partial state of SCMPDS

and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2. Let i be

a natural number. Then IC(Computation(s1))(i) = IC(Computation(s2))(i) and

CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)).

196 jing-chao chen

(24) Let p be an autonomic non programmed finite partial state of SCMPDS

and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2.

Let i be a natural number, k1, k2 be integers, and a, b be Int po-

sition. Suppose CurInstr((Computation(s1))(i)) = (a, k1) := (b, k2)

and a ∈ dom p and DataLoc((Computation(s1))(i)(a), k1) ∈ dom p.

Then (Computation(s1))(i)(DataLoc((Computation(s1))(i)(b), k2)) =

(Computation(s2))(i)(DataLoc((Computation(s2))(i)(b), k2)).

(25) Let p be an autonomic non programmed finite partial state of SCMPDS

and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2.

Let i be a natural number, k1, k2 be integers, and a, b be Int po-

sition. Suppose CurInstr((Computation(s1))(i)) = AddTo(a, k1, b, k2)

and a ∈ dom p and DataLoc((Computation(s1))(i)(a), k1) ∈ dom p.

Then (Computation(s1))(i)(DataLoc((Computation(s1))(i)(b), k2)) =

(Computation(s2))(i)(DataLoc((Computation(s2))(i)(b), k2)).

(26) Let p be an autonomic non programmed finite partial state of SCMPDS

and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2.

Let i be a natural number, k1, k2 be integers, and a, b be Int po-

sition. Suppose CurInstr((Computation(s1))(i)) = SubFrom(a, k1, b, k2)

and a ∈ dom p and DataLoc((Computation(s1))(i)(a), k1) ∈ dom p.

Then (Computation(s1))(i)(DataLoc((Computation(s1))(i)(b), k2)) =

(Computation(s2))(i)(DataLoc((Computation(s2))(i)(b), k2)).

(27) Let p be an autonomic non programmed finite partial state of SCMPDS

and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2.

Let i be a natural number, k1, k2 be integers, and a, b be Int posi-

tion. Suppose CurInstr((Computation(s1))(i)) = MultBy(a, k1, b, k2) and

a ∈ dom p and DataLoc((Computation(s1))(i)(a), k1) ∈ dom p. Then

(Computation(s1))(i)(DataLoc((Computation(s1))(i)(a), k1))·

(Computation(s1))(i)(DataLoc((Computation(s1))(i)(b), k2)) =

(Computation(s2))(i)(DataLoc((Computation(s2))(i)(a), k1))·

(Computation(s2))(i)(DataLoc((Computation(s2))(i)(b), k2)).

(28) Let p be an autonomic non programmed finite partial state of SCMPDS

and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2. Let

i, m be natural numbers, a be a Int position, and k1, k2 be inte-

gers. Suppose CurInstr((Computation(s1))(i)) = (a, k1) <> 0 gotok2 and

m = IC(Computation(s1))(i) and (m − 2) + 2 · k2 0 and k2 6= 1. Then

(Computation(s1))(i)(DataLoc((Computation(s1))(i)(a), k1)) = 0 if and

only if (Computation(s2))(i)(DataLoc((Computation(s2))(i)(a), k1)) = 0.

(29) Let p be an autonomic non programmed finite partial state of SCMPDS

and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2. Let

i, m be natural numbers, a be a Int position, and k1, k2 be inte-

gers. Suppose CurInstr((Computation(s1))(i)) = (a, k1) <= 0 gotok2 and

computation and program shift in the . . . 197

m = IC(Computation(s1))(i) and (m − 2) + 2 · k2 0 and k2 6= 1. Then

(Computation(s1))(i)(DataLoc((Computation(s1))(i)(a), k1)) > 0 if and

only if (Computation(s2))(i)(DataLoc((Computation(s2))(i)(a), k1)) > 0.

(30) Let p be an autonomic non programmed finite partial state of SCMPDS

and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2. Let

i, m be natural numbers, a be a Int position, and k1, k2 be inte-

gers. Suppose CurInstr((Computation(s1))(i)) = (a, k1) >= 0 gotok2 and

m = IC(Computation(s1))(i) and (m − 2) + 2 · k2 0 and k2 6= 1. Then

(Computation(s1))(i)(DataLoc((Computation(s1))(i)(a), k1)) < 0 if and

only if (Computation(s2))(i)(DataLoc((Computation(s2))(i)(a), k1)) < 0.

4. Program Shift in the SCMPDS Computer

Let us consider k. The functor inspos k yielding an instruction-location of

SCMPDS is defined by:

(Def. 2) inspos k = ik.

One can prove the following two propositions:

(31) For all natural numbers k1, k2 such that k1 6= k2 holds inspos k1 6=

inspos k2.

(32) For every instruction-location i2 of SCMPDS there exists a natural num-

ber i such that i2 = inspos i.

Let l2 be an instruction-location of SCMPDS and let k be a natural number.

The functor l2 + k yields an instruction-location of SCMPDS and is defined as

follows:

(Def. 3) There exists a natural number m such that l2 = insposm and l2 + k =

insposm + k.

The functor l2 −
′ k yielding an instruction-location of SCMPDS is defined as

follows:

(Def. 4) There exists a natural number m such that l2 = insposm and l2 −
′ k =

insposm−′ k.

Next we state four propositions:

(33) For every instruction-location l of SCMPDS and for all m, n holds (l +

m) + n = l + (m + n).

(34) For every instruction-location l2 of SCMPDS and for every natural num-

ber k holds (l2 + k)−′ k = l2.

(35) For all instructions-locations l3, l4 of SCMPDS and for every natural

number k holds Start-At(l3 + k) = Start-At(l4 + k) iff Start-At(l3) =

Start-At(l4).

198 jing-chao chen

(36) For all instructions-locations l3, l4 of SCMPDS and for every natural

number k such that Start-At(l3) = Start-At(l4) holds Start-At(l3 −
′ k) =

Start-At(l4 −
′ k).

Let I1 be a finite partial state of SCMPDS. We say that I1 is initial if and

only if:

(Def. 5) For all m, n such that insposn ∈ dom I1 and m < n holds insposm ∈

dom I1.

The finite partial state SCMPDS− Stop of SCMPDS is defined as follows:

(Def. 6) SCMPDS− Stop = inspos 07−→. haltSCMPDS.

Let us observe that SCMPDS− Stop is non empty initial and programmed.

Let us observe that there exists a finite partial state of SCMPDS which is

initial, programmed, and non empty.

Let p be a programmed finite partial state of SCMPDS and let k be a

natural number. The functor Shift(p, k) yielding a programmed finite partial

state of SCMPDS is defined as follows:

(Def. 7) domShift(p, k) = {insposm+k : insposm ∈ dom p} and for everym such

that insposm ∈ dom p holds (Shift(p, k))(insposm + k) = p(insposm).

We now state several propositions:

(37) Let l be an instruction-location of SCMPDS, k be a natural number,

and p be a programmed finite partial state of SCMPDS. If l ∈ dom p, then

(Shift(p, k))(l + k) = p(l).

(38) Let p be a programmed finite partial state of SCMPDS and k be a

natural number. Then domShift(p, k) = {i2+k; i2 ranges over instructions-

locations of SCMPDS: i2 ∈ dom p}.

(39) For every programmed finite partial state I of SCMPDS holds

Shift(Shift(I, m), n) = Shift(I,m + n).

(40) Let s be a programmed finite partial state of SCMPDS, f be a function

from the instructions of SCMPDS into the instructions of SCMPDS, and

given n. Then Shift(f · s, n) = f · Shift(s, n).

(41) For all programmed finite partial states I, J of SCMPDS holds

Shift(I+·J, n) = Shift(I, n)+·Shift(J, n).

Acknowledgments

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

computation and program shift in the . . . 199

[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[6] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[8] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,
2(5):701–709, 1991.

[9] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[10] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175–182, 1999.

[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[14] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[16] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623–627, 1991.

[17] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[20] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[24] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 15, 1999

