
FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999

University of Białystok

Computation of Two Consecutive Program

Blocks for SCMPDS1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. In this article, a program block without halting instructions is
called No-StopCode program block. If a program consists of two blocks, where
the first block is parahalting (i.e. halt for all states) and No-StopCode, and
the second block is parahalting and shiftable, it can be computed by combining
the computation results of the two blocks. For a program which consists of a
instruction and a block, we obtain a similar conclusion. For a large amount of
programs, the computation method given in the article is useful, but it is not
suitable to recursive programs.

MML Identifier: SCMPDS 5.

The terminology and notation used here have been introduced in the following

articles: [16], [20], [11], [21], [5], [6], [18], [2], [12], [13], [17], [14], [4], [10], [9],

[19], [7], [1], [15], [8], and [3].

1. Preliminaries

For simplicity, we use the following convention: x denotes a set, m, n de-

note natural numbers, a, b denote Int position, i denotes an instruction of

SCMPDS, s, s1, s2 denote states of SCMPDS, k1, k2 denote integers, l1 de-

notes an instruction-location of SCMPDS, I, J denote Program-block, and N

denotes a set with non empty elements.

One can prove the following propositions:

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

211
c© 1999 University of Białystok

ISSN 1426–2630



212 jing-chao chen

(1) Let S be a halting von Neumann definite AMI over N and s be a state

of S. If s = Following(s), then for every n holds (Computation(s))(n) = s.

(2) x ∈ domLoad(i) iff x = inspos 0.

(3) If l1 ∈ dom stop I and (stop I)(l1) 6= haltSCMPDS, then l1 ∈ dom I.

(4) domLoad(i) = {inspos 0} and (Load(i))(inspos 0) = i.

(5) inspos 0 ∈ domLoad(i).

(6) cardLoad(i) = 1.

(7) card stop I = card I + 1.

(8) card stopLoad(i) = 2.

(9) inspos 0 ∈ dom stopLoad(i) and inspos 1 ∈ dom stopLoad(i).

(10) (stopLoad(i))(inspos 0) = i and (stopLoad(i))(inspos 1) = haltSCMPDS.

(11) x ∈ dom stopLoad(i) iff x = inspos 0 or x = inspos 1.

(12) dom stopLoad(i) = {inspos 0, inspos 1}.

(13) inspos 0 ∈ dom Initialized(stopLoad(i)) and inspos 1 ∈ dom Initialized

(stopLoad(i)) and (Initialized(stopLoad(i)))(inspos 0) = i and (Initialized

(stopLoad(i)))(inspos 1) = haltSCMPDS.

(14) For all Program-block I, J holds Initialized(stop I;J) =

(I;(J ;SCMPDS− Stop))+·Start-At(inspos 0).

(15) For all Program-block I, J holds Initialized(I) ⊆ Initialized(stop I;J).

(16) dom stop I ⊆ dom stop I;J.

(17) For all Program-block I, J holds Initialized(stop I)+· Initialized(stop I;J)

= Initialized(stop I;J).

(18) If Initialized(I) ⊆ s, then ICs = inspos 0.

(19) (s+· Initialized(I))(a) = s(a).

(20) Let I be a parahalting Program-block. Suppose Initialized(stop I) ⊆

s1 and Initialized(stop I) ⊆ s2 and s1 and s2 are equal outside the

instruction locations of SCMPDS. Let k be a natural number. Then

(Computation(s1))(k) and (Computation(s2))(k) are equal outside the in-

struction locations of SCMPDS and CurInstr((Computation(s1))(k)) =

CurInstr((Computation(s2))(k)).

(21) Let I be a parahalting Program-block. Suppose Initialized(stop I) ⊆ s1

and Initialized(stop I) ⊆ s2 and s1 and s2 are equal outside the instruction

locations of SCMPDS. Then LifeSpan(s1) = LifeSpan(s2) and Result(s1)

and Result(s2) are equal outside the instruction locations of SCMPDS.

(22) For every Program-block I holds ICIExec(I,s) = ICResult(s+· Initialized(stop I)).

(23) Let I be a parahalting Program-block and J be a Program-block. Sup-

pose Initialized(stop I) ⊆ s. Let given m. Suppose m ¬ LifeSpan(s). Then

(Computation(s))(m) and (Computation(s+·(I;J)))(m) are equal outside

the instruction locations of SCMPDS.



computation of two consecutive program . . . 213

(24) Let I be a parahalting Program-block and J be a Program-block. Sup-

pose Initialized(stop I) ⊆ s. Let given m. Suppose m ¬ LifeSpan(s). Then

(Computation(s))(m) and (Computation(s+· Initialized(stop I;J)))(m)

are equal outside the instruction locations of SCMPDS.

2. Non Halting Instructions and Parahalting Instructions

Let i be an instruction of SCMPDS. We say that i is No-StopCode if and

only if:

(Def. 1) i 6= haltSCMPDS.

Let i be an instruction of SCMPDS. We say that i is parahalting if and only

if:

(Def. 2) Load(i) is parahalting.

One can verify that there exists an instruction of SCMPDS which is No-

StopCode, shiftable, and parahalting.

One can prove the following proposition

(25) If k1 6= 0, then goto k1 is No-StopCode.

Let us consider a. Observe that return a is No-StopCode.

Let us consider a, k1. Note that a:=k1 is No-StopCode and saveIC(a, k1) is

No-StopCode.

Let us consider a, k1, k2. One can check the following observations:

∗ (a, k1) <> 0 gotok2 is No-StopCode,

∗ (a, k1) <= 0 gotok2 is No-StopCode,

∗ (a, k1) >= 0 gotok2 is No-StopCode, and

∗ ak1
:=k2 is No-StopCode.

Let us consider a, k1, k2. Note that AddTo(a, k1, k2) is No-StopCode.

Let us consider a, b, k1, k2. One can verify the following observations:

∗ AddTo(a, k1, b, k2) is No-StopCode,

∗ SubFrom(a, k1, b, k2) is No-StopCode,

∗ MultBy(a, k1, b, k2) is No-StopCode,

∗ Divide(a, k1, b, k2) is No-StopCode, and

∗ (a, k1) := (b, k2) is No-StopCode.

Let us note that haltSCMPDS is parahalting.

Let i be a parahalting instruction of SCMPDS. Observe that Load(i) is

parahalting.

Let us consider a, k1. Observe that a:=k1 is parahalting.

Let us consider a, k1, k2. Note that ak1
:=k2 is parahalting and

AddTo(a, k1, k2) is parahalting.



214 jing-chao chen

Let us consider a, b, k1, k2. One can check the following observations:

∗ AddTo(a, k1, b, k2) is parahalting,

∗ SubFrom(a, k1, b, k2) is parahalting,

∗ MultBy(a, k1, b, k2) is parahalting,

∗ Divide(a, k1, b, k2) is parahalting, and

∗ (a, k1) := (b, k2) is parahalting.

Next we state the proposition

(26) If InsCode(i) = 1, then i is not parahalting.

Let I1 be a finite partial state of SCMPDS. We say that I1 is No-StopCode

if and only if:

(Def. 3) For every instruction-location x of SCMPDS such that x ∈ dom I1 holds

I1(x) 6= haltSCMPDS.

Let us observe that there exists a Program-block which is parahalting, shi-

ftable, and No-StopCode.

Let I, J be No-StopCode Program-block. Observe that I;J is No-StopCode.

Let i be a No-StopCode instruction of SCMPDS. Observe that Load(i) is

No-StopCode.

Let i be a No-StopCode instruction of SCMPDS and let J be a No-StopCode

Program-block. Note that i;J is No-StopCode.

Let I be a No-StopCode Program-block and let j be a No-StopCode instruc-

tion of SCMPDS. Observe that I;j is No-StopCode.

Let i, j be No-StopCode instructions of SCMPDS. Observe that i;j is No-

StopCode.

Next we state several propositions:

(27) For every parahalting No-StopCode Program-block I such that

Initialized(stop I) ⊆ s holds IC(Computation(s))(LifeSpan(s+· Initialized(stop I))) =

inspos card I.

(28) For every parahalting Program-block I and for every natural

number k such that k < LifeSpan(s+· Initialized(stop I)) holds

IC(Computation(s+· Initialized(stop I)))(k) ∈ dom I.

(29) Let I be a parahalting Program-block and k be a natural number.

Suppose Initialized(I) ⊆ s and k ¬ LifeSpan(s+· Initialized(stop I)).

Then (Computation(s))(k) and (Computation(s+· Initialized(stop I)))(k)

are equal outside the instruction locations of SCMPDS.

(30) For every parahalting No-StopCode Program-block I such that

Initialized(I) ⊆ s holds IC(Computation(s))(LifeSpan(s+· Initialized(stop I))) =

inspos card I.

(31) For every parahalting Program-block I such that Initialized(I) ⊆

s holds CurInstr((Computation(s))(LifeSpan(s+· Initialized(stop I)))) =

haltSCMPDS or IC(Computation(s))(LifeSpan(s+· Initialized(stop I))) = inspos card I.



computation of two consecutive program . . . 215

(32) Let I be a parahalting No-StopCode Program-block and k be a natural

number. If Initialized(I) ⊆ s and k < LifeSpan(s+· Initialized(stop I)),

then CurInstr((Computation(s))(k)) 6= haltSCMPDS.

(33) Let I be a parahalting Program-block, J be a Program-block, and k

be a natural number. Suppose k ¬ LifeSpan(s+· Initialized(stop I)). Then

(Computation(s+· Initialized(stop I)))(k) and (Computation(s+·((I;J)+·

Start-At(inspos 0))))(k) are equal outside the instruction locations of

SCMPDS.

(34) Let I be a parahalting Program-block, J be a Program-block, and k

be a natural number. Suppose k ¬ LifeSpan(s+· Initialized(stop I)). Then

(Computation(s+· Initialized(stop I)))(k) and (Computation(s+· Initialized

(stop I;J)))(k) are equal outside the instruction locations of SCMPDS.

Let I be a parahalting Program-block and let J be a parahalting shiftable

Program-block. One can verify that I;J is parahalting.

Let i be a parahalting instruction of SCMPDS and let J be a parahalting

shiftable Program-block. Note that i;J is parahalting.

Let I be a parahalting Program-block and let j be a parahalting shiftable

instruction of SCMPDS. Observe that I;j is parahalting.

Let i be a parahalting instruction of SCMPDS and let j be a parahalting

shiftable instruction of SCMPDS. One can check that i;j is parahalting.

Next we state the proposition

(35) Let s, s1 be states of SCMPDS and J be a parahalting shiftable

Program-block. If s = (Computation(s1+· Initialized(stopJ)))(m), then

Exec(CurInstr(s), s+·Start-At(ICs + n)) =

Following(s)+·Start-At(ICFollowing(s) + n).

3. Computation of two Consecutive Program Blocks

The following propositions are true:

(36) Let I be a parahalting No-StopCode Program-block, J be a para-

halting shiftable Program-block, and k be a natural number. Suppose

Initialized(stop I;J) ⊆ s. Then (Computation(Result(s+· Initialized

(stop I))+· Initialized(stopJ)))(k)+·Start-At

(IC(Computation(Result(s+· Initialized(stop I))+· Initialized(stop J)))(k) + card I) and

(Computation(s+· Initialized(stop I;J)))(LifeSpan(s+· Initialized(stop I))+

k) are equal outside the instruction locations of SCMPDS.

(37) Let I be a parahalting No-StopCode Program-block and J be a parahal-

ting shiftable Program-block. Then LifeSpan(s+· Initialized(stop I;J)) =

LifeSpan(s+· Initialized(stop I))+LifeSpan(Result(s+· Initialized(stop I))+·

Initialized(stopJ)).



216 jing-chao chen

(38) Let I be a parahalting No-StopCode Program-block and J

be a parahalting shiftable Program-block. Then IExec(I;J, s) =

IExec(J, IExec(I, s))+·Start-At(ICIExec(J,IExec(I,s)) + card I).

(39) Let I be a parahalting No-StopCode Program-block and J be

a parahalting shiftable Program-block. Then (IExec(I;J, s))(a) =

(IExec(J, IExec(I, s)))(a).

4. Computation of the Program Consisting of a Instruction and a

Block

Let s be a state of SCMPDS. The functor Initialized(s) yields a state of

SCMPDS and is defined by:

(Def. 4) Initialized(s) = s+·Start-At(inspos 0).

Next we state several propositions:

(40) ICInitialized(s) = inspos 0 and (Initialized(s))(a) = s(a) and

(Initialized(s))(l1) = s(l1).

(41) s1 and s2 are equal outside the instruction locations of SCMPDS iff

s1↾(Data-LocSCM ∪ {ICSCMPDS}) = s2↾(Data-LocSCM ∪ {ICSCMPDS}).

(42) If s1↾Data-LocSCM = s2↾Data-LocSCM, then s1(DataLoc(s1(a), k1)) =

s2(DataLoc(s2(a), k1)).

(43) If s1↾Data-LocSCM = s2↾Data-LocSCM and InsCode(i) 6= 3, then

Exec(i, s1)↾Data-LocSCM = Exec(i, s2)↾Data-LocSCM.

(44) For every shiftable instruction i of SCMPDS such that s1↾Data-LocSCM =

s2↾Data-LocSCM holds Exec(i, s1)↾Data-LocSCM = Exec(i, s2)↾Data-LocSCM.

(45) For every parahalting instruction i of SCMPDS holds

Exec(i, Initialized(s)) = IExec(Load(i), s).

(46) Let I be a parahalting No-StopCode Program-block and j be a pa-

rahalting shiftable instruction of SCMPDS. Then (IExec(I;j, s))(a) =

(Exec(j, IExec(I, s)))(a).

(47) Let i be a No-StopCode parahalting instruction of SCMPDS and j be

a shiftable parahalting instruction of SCMPDS. Then (IExec(i;j, s))(a) =

(Exec(j,Exec(i, Initialized(s))))(a).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.



computation of two consecutive program . . . 217

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[7] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193–199, 1999.

[8] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[9] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[10] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175–182, 1999.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[14] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 15, 1999


