Properties of the Trigonometric Function

Takashi Mitsuishi Shinshu University Nagano Yuguang Yang Shinshu University Nagano

Summary. This article introduces the monotone increasing and the monotone decreasing of *sinus* and *cosine*, and definitions of hyperbolic *sinus*, hyperbolic *cosine* and hyperbolic *tangent*, and some related formulas about them.

MML Identifier: SIN_COS2 .

The papers [21], [6], [17], [22], [4], [14], [15], [20], [2], [19], [3], [18], [13], [5], [7], [8], [16], [9], [10], [1], [23], [11], and [12] provide the notation and terminology for this paper.

1. Monotone Increasing and Monotone Decreasing of Sinus and Cosine

We adopt the following rules: p, q, r, t_1 are elements of \mathbb{R} and n is a natural number.

Next we state a number of propositions:

- (1) If $p \ge 0$ and $r \ge 0$, then $p + r \ge 2 \cdot \sqrt{p \cdot r}$.
- (2) sin is increasing on $]0, \frac{\text{Pai}}{2}[.$
- (3) sin is decreasing on $]\frac{\text{Pai}}{2}$, Pai[.
- (4) cos is decreasing on $]0, \frac{\text{Pai}}{2}[.$
- (5) cos is decreasing on] $\frac{\text{Pai}}{2}$, Pai[.
- (6) sin is decreasing on]Pai, $\frac{3}{2} \cdot \text{Pai}[.$
- (7) sin is increasing on $]\frac{3}{2} \cdot \text{Pai}, 2 \cdot \text{Pai}[.$
- (8) cos is increasing on]Pai, $\frac{3}{2} \cdot \text{Pai}[.$

103

C 1999 University of Białystok ISSN 1426-2630 (9) cos is increasing on] $\frac{3}{2}$ · Pai, 2 · Pai[.

- (10) $(\sin)(t_1) = (\sin)(2 \cdot \operatorname{Pai} \cdot n + t_1).$
- (11) $(\cos)(t_1) = (\cos)(2 \cdot \operatorname{Pai} \cdot n + t_1).$
- 2. Hyperbolic Sinus, Hyperbolic Cosine and Hyperbolic Tangent

The partial function \sinh from \mathbb{R} to \mathbb{R} is defined as follows:

(Def. 1) dom sinh = \mathbb{R} and for every real number d holds $(\sinh)(d) = \frac{(\exp)(d) - (\exp)(-d)}{2}$.

Let d be a real number. The functor $\sinh d$ yielding an element of $\mathbb R$ is defined by:

(Def. 2) $\sinh d = (\sinh)(d)$.

The partial function $\cosh \operatorname{from} \mathbb{R}$ to \mathbb{R} is defined as follows:

(Def. 3) dom cosh = \mathbb{R} and for every real number d holds $(\cosh)(d) = \frac{(\exp)(d) + (\exp)(-d)}{2}$.

Let d be a real number. The functor $\cosh d$ yields an element of \mathbb{R} and is defined as follows:

(Def. 4) $\cosh d = (\cosh)(d)$.

The partial function $\tanh \operatorname{from} \mathbb{R}$ to \mathbb{R} is defined as follows:

(Def. 5) dom tanh = \mathbb{R} and for every real number d holds $(tanh)(d) = \frac{(\exp)(d) - (\exp)(-d)}{(\exp)(d) + (\exp)(-d)}$.

Let d be a real number. The functor $\tanh d$ yields an element of \mathbb{R} and is defined as follows:

(Def. 6) $\tanh d = (\tanh)(d)$.

We now state a number of propositions:

- (12) $(\exp)(p+q) = (\exp)(p) \cdot (\exp)(q).$
- $(13) (\exp)(0) = 1.$
- (14) $(\cosh)(p)^2 (\sinh)(p)^2 = 1$ and $(\cosh)(p) \cdot (\cosh)(p) (\sinh)(p) \cdot (\sinh)(p) = 1.$
- (15) $(\cosh)(p) \neq 0$ and $(\cosh)(p) > 0$ and $(\cosh)(0) = 1$.
- $(16) \quad (\sinh)(0) = 0.$
- (17) $(\tanh)(p) = \frac{(\sinh)(p)}{(\cosh)(p)}.$
- (18) $(\sinh)(p)^2 = \frac{1}{2} \cdot ((\cosh)(2 \cdot p) 1) \text{ and } (\cosh)(p)^2 = \frac{1}{2} \cdot ((\cosh)(2 \cdot p) + 1).$
- (19) $(\cosh)(-p) = (\cosh)(p)$ and $(\sinh)(-p) = -(\sinh)(p)$ and $(\tanh)(-p) = -(\tanh)(p)$.
- (20) $(\cosh)(p+r) = (\cosh)(p) \cdot (\cosh)(r) + (\sinh)(p) \cdot (\sinh)(r)$ and $(\cosh)(p-r) = (\cosh)(p) \cdot (\cosh)(r) (\sinh)(p) \cdot (\sinh)(r)$.

104

- (21) $(\sinh)(p+r) = (\sinh)(p) \cdot (\cosh)(r) + (\cosh)(p) \cdot (\sinh)(r)$ and $(\sinh)(p-r) = (\sinh)(p) \cdot (\sinh)(r)$ $r) = (\sinh)(p) \cdot (\cosh)(r) - (\cosh)(p) \cdot (\sinh)(r).$
- (22) $(\tanh)(p+r) = \frac{(\tanh)(p)+(\tanh)(r)}{1+(\tanh)(p)\cdot(\tanh)(r)}$ and $(\tanh)(p-r) = \frac{(\tanh)(p)-(\tanh)(r)}{1-(\tanh)(p)\cdot(\tanh)(r)}$
- (23) $(\sinh)(2 \cdot p) = 2 \cdot (\sinh)(p) \cdot (\cosh)(p)$ and $(\cosh)(2 \cdot p) = 2 \cdot (\cosh)(p)^2 1$ and $(\tanh)(2 \cdot p) = \frac{2 \cdot (\tanh)(p)}{1 + (\tanh)(p)^2}$.
- (24) $(\sinh)(p)^2 (\sinh)(q)^2 = (\sinh)(p+q) \cdot (\sinh)(p-q)$ and $(\sinh)(p+q) \cdot (\sinh)(p+q) \cdot (\sinh)(p+q)$ $(q) \cdot (\sinh)(p-q) = (\cosh)(p)^2 - (\cosh)(q)^2$ and $(\sinh)(p)^2 - (\sinh)(q)^2 = (\sinh)(q)^2$ $(\cosh)(p)^2 - (\cosh)(q)^2.$
- (25) $(\sinh)(p)^2 + (\cosh)(q)^2 = (\cosh)(p+q) \cdot (\cosh)(p-q)$ and $(\cosh)(p+q) = (\cosh)(p+q) \cdot (\cosh)(p+q)$ $(\cosh)(p-q) = (\cosh)(p)^2 + (\sinh)(q)^2$ and $(\sinh)(p)^2 + (\cosh)(q)^2 = (\cosh)(p)^2 + (\cosh)(q)^2 = (\cosh)(p)^2 + (\cosh)(q)^2 = (\cosh)(p)^2 + (\cosh)(q)^2 = (\cosh)(p)^2 + (\cosh)(q)^2 = (\cosh)(q)^2 + (\cosh)(q)^2 = (\cosh)(q)^2 + (\cosh)(q)^2 + (\cosh)(q)^2 = (\cosh)(q)^2 + (\cosh)(q)^2 + (\cosh)(q)^2 + (\cosh)(q)^2 = (\cosh)(q)^2 + (\cosh)(q)^2 + (\cosh)(q)^2 + (\cosh)(q)^2 + (\cosh)(q)^2 = (\cosh)(q)^2 + (\cosh)(6)(6)^2 + (\cosh)(q)^2 + (\cosh)(q)^2 + (\cosh)(6)(6)^2 + (\cosh)(q)^2 + (\cosh)(q)^2 +$ $(\cosh)(p)^2 + (\sinh)(q)^2.$
- (26) $(\sinh)(p) + (\sinh)(r) = 2 \cdot (\sinh)(\frac{p}{2} + \frac{r}{2}) \cdot (\cosh)(\frac{p}{2} \frac{r}{2})$ and $(\sinh)(p) (\cosh)(\frac{p}{2} \frac{r}{2})$ $(\sinh)(r) = 2 \cdot (\sinh)(\frac{p}{2} - \frac{r}{2}) \cdot (\cosh)(\frac{p}{2} + \frac{r}{2}).$
- (27) $(\cosh)(p) + (\cosh)(r) = 2 \cdot (\cosh)(\frac{p}{2} + \frac{r}{2}) \cdot (\cosh)(\frac{p}{2} \frac{r}{2}) \text{ and } (\cosh)(p) \frac{r}{2} + \frac$
- $(\cosh)(r) = 2 \cdot (\sinh)(\frac{p}{2} \frac{r}{2}) \cdot (\sinh)(\frac{p}{2} + \frac{r}{2}).$ $(28) \quad (\tanh)(p) + (\tanh)(r) = \frac{(\sinh)(p+r)}{(\cosh)(p) \cdot (\cosh)(r)} \text{ and } (\tanh)(p) (\tanh)(r) =$ $(\sinh)(p-r)$ $\overline{(\cosh)(p)\cdot(\cosh)(r)}$

(29)
$$((\cosh)(p) + (\sinh)(p))_{\mathbb{N}}^n = (\cosh)(n \cdot p) + (\sinh)(n \cdot p).$$

One can check the following observations:

- sinh is total. *
- cosh is total, and
- tanh is total. *

One can prove the following propositions:

- dom sinh = \mathbb{R} and dom cosh = \mathbb{R} and dom tanh = \mathbb{R} . (30)
- sinh is differentiable in p and $(\sinh)'(p) = (\cosh)(p)$. (31)
- \cosh is differentiable in p and $(\cosh)'(p) = (\sinh)(p)$. (32)
- tanh is differentiable in p and $(\tanh)'(p) = \frac{1}{(\cosh)(p)^2}$. (33)
- sinh is differentiable on \mathbb{R} and $(\sinh)'(p) = (\cosh)(p)$. (34)
- (35) \cosh is differentiable on \mathbb{R} and $(\cosh)'(p) = (\sinh)(p)$.
- tanh is differentiable on \mathbb{R} and $(\tanh)'(p) = \frac{1}{(\cosh)(p)^2}$. (36)
- (37) $(\cosh)(p) \ge 1.$
- sinh is continuous in p. (38)
- (39) \cosh is continuous in p.
- (40) \tanh is continuous in p.
- sinh is continuous on \mathbb{R} . (41)
- \cosh is continuous on \mathbb{R} . (42)
- tanh is continuous on \mathbb{R} . (43)

(44) $(\tanh)(p) < 1$ and $(\tanh)(p) > -1$.

References

- Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121–124, 1993.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
- [9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [10] Jarosław Kotowicz. Properties of real functions. *Formalized Mathematics*, 1(4):781–786, 1990.
- Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [13] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125– 130, 1991.
- [14] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [15] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797–801, 1990.
- [16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
 [20] Zincida Turbulas. Properties of subsets. Formalized Mathematics, 1(1):67, 71, 1000.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [23] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received March 13, 1999