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Summary. This article introduces the monotone increasing and the mo-
notone decreasing of sinus and cosine, and definitions of hyperbolic sinus, hyper-
bolic cosine and hyperbolic tangent, and some related formulas about them.

MML Identifier: SIN COS2.

The papers [21], [6], [17], [22], [4], [14], [15], [20], [2], [19], [3], [18], [13], [5], [7],

[8], [16], [9], [10], [1], [23], [11], and [12] provide the notation and terminology

for this paper.

1. Monotone Increasing and Monotone Decreasing of Sinus and

Cosine

We adopt the following rules: p, q, r, t1 are elements of R and n is a natural

number.

Next we state a number of propositions:

(1) If p  0 and r  0, then p + r  2 · √p · r.
(2) sin is increasing on ]0, Pai2 [.

(3) sin is decreasing on ]Pai2 ,Pai[.

(4) cos is decreasing on ]0, Pai2 [.

(5) cos is decreasing on ]Pai2 ,Pai[.

(6) sin is decreasing on ]Pai, 3
2 · Pai[.

(7) sin is increasing on ]32 · Pai, 2 · Pai[.
(8) cos is increasing on ]Pai, 3

2 · Pai[.
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(9) cos is increasing on ]32 · Pai, 2 · Pai[.
(10) (sin)(t1) = (sin)(2 · Pai ·n + t1).

(11) (cos)(t1) = (cos)(2 · Pai ·n + t1).

2. Hyperbolic Sinus, Hyperbolic Cosine and Hyperbolic Tangent

The partial function sinh from R to R is defined as follows:

(Def. 1) dom sinh = R and for every real number d holds (sinh)(d) =
(exp)(d)−(exp)(−d)

2 .

Let d be a real number. The functor sinh d yielding an element of R is defined

by:

(Def. 2) sinh d = (sinh)(d).

The partial function cosh from R to R is defined as follows:

(Def. 3) dom cosh = R and for every real number d holds (cosh)(d) =
(exp)(d)+(exp)(−d)

2 .

Let d be a real number. The functor cosh d yields an element of R and is

defined as follows:

(Def. 4) cosh d = (cosh)(d).

The partial function tanh from R to R is defined as follows:

(Def. 5) dom tanh = R and for every real number d holds (tanh)(d) =
(exp)(d)−(exp)(−d)
(exp)(d)+(exp)(−d) .

Let d be a real number. The functor tanh d yields an element of R and is

defined as follows:

(Def. 6) tanh d = (tanh)(d).

We now state a number of propositions:

(12) (exp)(p + q) = (exp)(p) · (exp)(q).
(13) (exp)(0) = 1.

(14) (cosh)(p)2 − (sinh)(p)2 = 1 and (cosh)(p) · (cosh)(p) − (sinh)(p) ·
(sinh)(p) = 1.

(15) (cosh)(p) 6= 0 and (cosh)(p) > 0 and (cosh)(0) = 1.

(16) (sinh)(0) = 0.

(17) (tanh)(p) = (sinh)(p)
(cosh)(p) .

(18) (sinh)(p)2 = 1
2 · ((cosh)(2 · p)− 1) and (cosh)(p)2 = 1

2 · ((cosh)(2 · p)+ 1).

(19) (cosh)(−p) = (cosh)(p) and (sinh)(−p) = −(sinh)(p) and (tanh)(−p) =

−(tanh)(p).

(20) (cosh)(p+ r) = (cosh)(p) · (cosh)(r)+ (sinh)(p) · (sinh)(r) and (cosh)(p−
r) = (cosh)(p) · (cosh)(r)− (sinh)(p) · (sinh)(r).
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(21) (sinh)(p + r) = (sinh)(p) · (cosh)(r) + (cosh)(p) · (sinh)(r) and (sinh)(p−
r) = (sinh)(p) · (cosh)(r)− (cosh)(p) · (sinh)(r).

(22) (tanh)(p+r) = (tanh)(p)+(tanh)(r)
1+(tanh)(p)·(tanh)(r) and (tanh)(p−r) = (tanh)(p)−(tanh)(r)

1−(tanh)(p)·(tanh)(r) .

(23) (sinh)(2 ·p) = 2 · (sinh)(p) · (cosh)(p) and (cosh)(2 ·p) = 2 · (cosh)(p)2−1

and (tanh)(2 · p) = 2·(tanh)(p)
1+(tanh)(p)2

.

(24) (sinh)(p)2 − (sinh)(q)2 = (sinh)(p + q) · (sinh)(p − q) and (sinh)(p +

q) · (sinh)(p − q) = (cosh)(p)2 − (cosh)(q)2 and (sinh)(p)2 − (sinh)(q)2 =

(cosh)(p)2 − (cosh)(q)2.

(25) (sinh)(p)2 + (cosh)(q)2 = (cosh)(p + q) · (cosh)(p − q) and (cosh)(p +

q) · (cosh)(p− q) = (cosh)(p)2 + (sinh)(q)2 and (sinh)(p)2 + (cosh)(q)2 =

(cosh)(p)2 + (sinh)(q)2.

(26) (sinh)(p) + (sinh)(r) = 2 · (sinh)(p
2 + r

2) · (cosh)(p
2 −

r
2) and (sinh)(p) −

(sinh)(r) = 2 · (sinh)(p
2 −

r
2) · (cosh)(p

2 + r
2).

(27) (cosh)(p) + (cosh)(r) = 2 · (cosh)(p
2 + r

2) · (cosh)(p
2 −

r
2) and (cosh)(p)−

(cosh)(r) = 2 · (sinh)(p
2 −

r
2) · (sinh)(p

2 + r
2).

(28) (tanh)(p) + (tanh)(r) = (sinh)(p+r)
(cosh)(p)·(cosh)(r) and (tanh)(p) − (tanh)(r) =

(sinh)(p−r)
(cosh)(p)·(cosh)(r) .

(29) ((cosh)(p) + (sinh)(p))n
N

= (cosh)(n · p) + (sinh)(n · p).

One can check the following observations:

∗ sinh is total,
∗ cosh is total, and
∗ tanh is total.
One can prove the following propositions:

(30) dom sinh = R and domcosh = R and dom tanh = R.

(31) sinh is differentiable in p and (sinh)′(p) = (cosh)(p).

(32) cosh is differentiable in p and (cosh)′(p) = (sinh)(p).

(33) tanh is differentiable in p and (tanh)′(p) = 1
(cosh)(p)2

.

(34) sinh is differentiable on R and (sinh)′(p) = (cosh)(p).

(35) cosh is differentiable on R and (cosh)′(p) = (sinh)(p).

(36) tanh is differentiable on R and (tanh)′(p) = 1
(cosh)(p)2

.

(37) (cosh)(p)  1.

(38) sinh is continuous in p.

(39) cosh is continuous in p.

(40) tanh is continuous in p.

(41) sinh is continuous on R.

(42) cosh is continuous on R.

(43) tanh is continuous on R.
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(44) (tanh)(p) < 1 and (tanh)(p) > −1.
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