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The articles [15], [8], [9], [10], [14], [11], [18], [2], [4], [6], [7], [5], [16], [1], [3], [19],
[20], [12], [17], and [13] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: a, b are data-locations, i1, i2, i3
are instruction-locations of SCM, s1, s2 are states of SCM, T is an instruction
type of SCM, and k is a natural number.

We now state a number of propositions:

(1) a /∈ the instruction locations of SCM.

(2) Data-LocSCM 6= the instruction locations of SCM.

(3) For every object o of SCM holds o = ICSCM or o ∈ the instruction
locations of SCM or o is a data-location.

(4) If i2 6= i3, then Next(i2) 6= Next(i3).
(5) If s1 and s2 are equal outside the instruction locations of SCM, then

s1(a) = s2(a).
(6) Let N be a set with non empty elements, S be a realistic IC-Ins-separated

definite non empty non void AMI over N , t, u be states of S, i1 be an
instruction-location of S, e be an element of ObjectKind(ICS), and I be
an element of ObjectKind(i1). If e = i1 and u = t+·[ICS 7−→ e, i1 7−→ I],
then u(i1) = I and ICu = i1 and ICFollowing(u) = (Exec(u(ICu), u))(ICS).

(7) AddressPart(haltSCM) = ∅.
(8) AddressPart(a:=b) = 〈a, b〉.
(9) AddressPart(AddTo(a, b)) = 〈a, b〉.

(10) AddressPart(SubFrom(a, b)) = 〈a, b〉.
(11) AddressPart(MultBy(a, b)) = 〈a, b〉.

1This work has been partially supported by TYPES grant IST-1999-29001.
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(12) AddressPart(Divide(a, b)) = 〈a, b〉.
(13) AddressPart(goto i2) = 〈i2〉.
(14) AddressPart(if a = 0 goto i2) = 〈i2, a〉.
(15) AddressPart(if a > 0 goto i2) = 〈i2, a〉.
(16) If T = 0, then AddressParts T = {0}.

Let us consider T . One can check that AddressParts T is non empty.
The following propositions are true:

(17) If T = 1, then dom
∏

AddressParts T = {1, 2}.
(18) If T = 2, then dom

∏
AddressParts T = {1, 2}.

(19) If T = 3, then dom
∏

AddressParts T = {1, 2}.
(20) If T = 4, then dom

∏
AddressParts T = {1, 2}.

(21) If T = 5, then dom
∏

AddressParts T = {1, 2}.
(22) If T = 6, then dom

∏
AddressParts T = {1}.

(23) If T = 7, then dom
∏

AddressParts T = {1, 2}.
(24) If T = 8, then dom

∏
AddressParts T = {1, 2}.

(25)
∏

AddressParts InsCode(a:=b)(1) = Data-LocSCM.

(26)
∏

AddressParts InsCode(a:=b)(2) = Data-LocSCM.

(27)
∏

AddressParts InsCode(AddTo(a,b))(1) = Data-LocSCM.

(28)
∏

AddressParts InsCode(AddTo(a,b))(2) = Data-LocSCM.

(29)
∏

AddressParts InsCode(SubFrom(a,b))(1) = Data-LocSCM.

(30)
∏

AddressParts InsCode(SubFrom(a,b))(2) = Data-LocSCM.

(31)
∏

AddressParts InsCode(MultBy(a,b))(1) = Data-LocSCM.

(32)
∏

AddressParts InsCode(MultBy(a,b))(2) = Data-LocSCM.

(33)
∏

AddressParts InsCode(Divide(a,b))(1) = Data-LocSCM.

(34)
∏

AddressParts InsCode(Divide(a,b))(2) = Data-LocSCM.

(35)
∏

AddressParts InsCode(goto i2)(1) = the instruction locations of SCM.

(36)
∏

AddressParts InsCode(if a=0 goto i2)(1) = the instruction locations of
SCM.

(37)
∏

AddressParts InsCode(if a=0 goto i2)(2) = Data-LocSCM.

(38)
∏

AddressParts InsCode(if a>0 goto i2)(1) = the instruction locations of
SCM.

(39)
∏

AddressParts InsCode(if a>0 goto i2)(2) = Data-LocSCM.

(40) NIC(haltSCM, i1) = {i1}.
Let us note that JUMP(haltSCM) is empty.
One can prove the following proposition

(41) NIC(a:=b, i1) = {Next(i1)}.
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Let us consider a, b. One can verify that JUMP(a:=b) is empty.
Next we state the proposition

(42) NIC(AddTo(a, b), i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP(AddTo(a, b)) is empty.
The following proposition is true

(43) NIC(SubFrom(a, b), i1) = {Next(i1)}.
Let us consider a, b. One can check that JUMP(SubFrom(a, b)) is empty.
Next we state the proposition

(44) NIC(MultBy(a, b), i1) = {Next(i1)}.
Let us consider a, b. Observe that JUMP(MultBy(a, b)) is empty.
The following proposition is true

(45) NIC(Divide(a, b), i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP(Divide(a, b)) is empty.
We now state two propositions:

(46) NIC(goto i2, i1) = {i2}.
(47) JUMP(goto i2) = {i2}.

Let us consider i2. One can check that JUMP(goto i2) is non empty and
trivial.

The following two propositions are true:

(48) i2 ∈ NIC(if a = 0 goto i2, i1) and NIC(if a = 0 goto i2, i1) ⊆
{i2, Next(i1)}.

(49) JUMP(if a = 0 goto i2) = {i2}.
Let us consider a, i2. Note that JUMP(if a = 0 goto i2) is non empty and

trivial.
One can prove the following propositions:

(50) i2 ∈ NIC(if a > 0 goto i2, i1) and NIC(if a > 0 goto i2, i1) ⊆
{i2, Next(i1)}.

(51) JUMP(if a > 0 goto i2) = {i2}.
Let us consider a, i2. One can check that JUMP(if a > 0 goto i2) is non

empty and trivial.
Next we state two propositions:

(52) SUCC(i1) = {i1, Next(i1)}.
(53) Let f be a function from N into the instruction locations of SCM. Sup-

pose that for every natural number k holds f(k) = ik. Then
(i) f is bijective, and
(ii) for every natural number k holds f(k +1) ∈ SUCC(f(k)) and for every

natural number j such that f(j) ∈ SUCC(f(k)) holds k ¬ j.

Let us note that SCM is standard.
One can prove the following three propositions:
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(54) ilSCM(k) = ik.

(55) Next(ilSCM(k)) = ilSCM(k + 1).
(56) Next(i1) = NextLoc i1.

Let us observe that InsCode(haltSCM) is jump-only.
Let us observe that haltSCM is jump-only.
Let us consider i2. Observe that InsCode(goto i2) is jump-only.
Let us consider i2. Note that goto i2 is jump-only non sequential and non

instruction location free.
Let us consider a, i2. One can verify that InsCode(if a = 0 goto i2) is jump-

only and InsCode(if a > 0 goto i2) is jump-only.
Let us consider a, i2. One can verify that if a = 0 goto i2 is jump-only non

sequential and non instruction location free and if a > 0 goto i2 is jump-only
non sequential and non instruction location free.

Let us consider a, b. One can verify the following observations:

∗ InsCode(a:=b) is non jump-only,

∗ InsCode(AddTo(a, b)) is non jump-only,

∗ InsCode(SubFrom(a, b)) is non jump-only,

∗ InsCode(MultBy(a, b)) is non jump-only, and

∗ InsCode(Divide(a, b)) is non jump-only.

Let us consider a, b. One can check the following observations:

∗ a:=b is non jump-only and sequential,

∗ AddTo(a, b) is non jump-only and sequential,

∗ SubFrom(a, b) is non jump-only and sequential,

∗ MultBy(a, b) is non jump-only and sequential, and

∗ Divide(a, b) is non jump-only and sequential.

Let us note that SCM is homogeneous and has explicit jumps and no implicit
jumps.

Let us observe that SCM is regular.
We now state three propositions:

(57) IncAddr(goto i2, k) = goto ilSCM(locnum(i2) + k).
(58) IncAddr(if a = 0 goto i2, k) = if a = 0 goto ilSCM(locnum(i2) + k).
(59) IncAddr(if a > 0 goto i2, k) = if a > 0 goto ilSCM(locnum(i2) + k).

Let us note that SCM is IC-good and Exec-preserving.
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The terminology and notation used here are introduced in the following articles:
[10], [5], [9], [6], [13], [1], [7], [4], [2], [11], [3], [12], and [8].

1. Preliminaries

In this paper N is a set with non empty elements.
One can prove the following propositions:

(1) For all sets x, y, z such that x 6= y and x 6= z holds {x, y, z}\{x} = {y, z}.
(2) For every non empty non void AMI A over N and for every state s of A

and for every object o of A holds s(o) ∈ ObjectKind(o).
(3) Let A be a realistic IC-Ins-separated definite non empty non void AMI

over N , s be a state of A, f be an instruction-location of A, and w be an
element of ObjectKind(ICA). Then (s +· (ICA, w))(f) = s(f).

Let N be a set with non empty elements, let A be an IC-Ins-separated
definite non empty non void AMI over N , let s be a state of A, let o be an
object of A, and let a be an element of ObjectKind(o). Then s+· (o, a) is a state
of A.

We now state several propositions:

(4) Let A be a steady-programmed IC-Ins-separated definite non empty
non void AMI over N , s be a state of A, o be an object of A, f be an
instruction-location of A, I be an instruction of A, and w be an element of
ObjectKind(o). If f 6= o, then (Exec(I, s))(f) = (Exec(I, s +· (o, w)))(f).

1This work has been partially supported by TYPES grant IST-1999-29001.
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(5) Let A be an IC-Ins-separated definite non empty non void AMI over N , s

be a state of A, o be an object of A, and w be an element of ObjectKind(o).
If o 6= ICA, then ICs = ICs+·(o,w).

(6) Let A be a standard IC-Ins-separated definite non empty non void AMI
over N , I be an instruction of A, s be a state of A, o be an object of A,
and w be an element of ObjectKind(o). If I is sequential and o 6= ICA,

then ICExec(I,s) = ICExec(I,s+·(o,w)).

(7) Let A be a standard IC-Ins-separated definite non empty non void AMI
over N , I be an instruction of A, s be a state of A, o be an object of A,
and w be an element of ObjectKind(o). If I is sequential and o 6= ICA,

then ICExec(I,s+·(o,w)) = ICExec(I,s)+·(o,w).

(8) Let A be a standard steady-programmed IC-Ins-separated definite non
empty non void AMI over N , I be an instruction of A, s be a state of
A, o be an object of A, w be an element of ObjectKind(o), and i be an
instruction-location of A. Then (Exec(I, s +· (o, w)))(i) = (Exec(I, s) +·
(o, w))(i).

2. Input and Output of Instructions

Let N be a set and let A be an AMI over N . We say that A has non trivial
instruction set if and only if:

(Def. 1) The instructions of A are non trivial.

Let N be a set and let A be a non empty AMI over N . We say that A has
non trivial ObjectKinds if and only if:

(Def. 2) For every object o of A holds ObjectKind(o) is non trivial.

Let N be a set with non empty elements. One can verify that STC(N) has
non trivial ObjectKinds.

Let N be a set with non empty elements. Observe that there exists a regu-
lar standard IC-Ins-separated definite non empty non void AMI over N which
is halting, realistic, steady-programmed, programmable, IC-good, and Exec-
preserving and has explicit jumps, no implicit jumps, non trivial ObjectKinds,
and non trivial instruction set.

Let N be a set with non empty elements. Note that every definite non empty
non void AMI over N which has non trivial ObjectKinds has also non trivial
instruction set.

Let N be a set with non empty elements. One can check that every IC-Ins-
separated non empty AMI over N which has non trivial ObjectKinds has also
non trivial instruction locations.
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Let N be a set with non empty elements, let A be a non empty AMI over
N with non trivial ObjectKinds, and let o be an object of A. Observe that
ObjectKind(o) is non trivial.

Let N be a set with non empty elements and let A be an AMI over N with
non trivial instruction set. Note that the instructions of A is non trivial.

Let N be a set with non empty elements and let A be an IC-Ins-separated non
empty AMI over N with non trivial instruction locations. Note that ObjectKind(ICA)
is non trivial.

Let N be a set with non empty elements, let A be a non empty non void
AMI over N , and let I be an instruction of A. The functor Output I yielding a
subset of the carrier of A is defined as follows:

(Def. 3) For every object o of A holds o ∈ Output I iff there exists a state s of A

such that s(o) 6= (Exec(I, s))(o).

Let N be a set with non empty elements, let A be an IC-Ins-separated
definite non empty non void AMI over N , and let I be an instruction of A. The
functor IODiff I yielding a subset of the carrier of A is defined by the condition
(Def. 4).

(Def. 4) Let o be an object of A. Then o ∈ IODiff I if and only if for every
state s of A and for every element a of ObjectKind(o) holds Exec(I, s) =
Exec(I, s +· (o, a)).

The functor IOSum I yielding a subset of the carrier of A is defined by the
condition (Def. 5).

(Def. 5) Let o be an object of A. Then o ∈ IOSum I if and only if there exists
a state s of A and there exists an element a of ObjectKind(o) such that
Exec(I, s +· (o, a)) 6= Exec(I, s) +· (o, a).

Let N be a set with non empty elements, let A be an IC-Ins-separated
definite non empty non void AMI over N , and let I be an instruction of A. The
functor Input I yielding a subset of the carrier of A is defined as follows:

(Def. 6) Input I = IOSum I \ IODiff I.

The following propositions are true:

(9) Let A be an IC-Ins-separated definite non empty non void AMI over N

and I be an instruction of A. Then IODiff I misses Input I.

(10) Let A be an IC-Ins-separated definite non empty non void AMI over
N with non trivial ObjectKinds and I be an instruction of A. Then
IODiff I ⊆ Output I.

(11) For every IC-Ins-separated definite non empty non void AMI A over N

and for every instruction I of A holds Output I ⊆ IOSum I.

(12) For every IC-Ins-separated definite non empty non void AMI A over N

and for every instruction I of A holds Input I ⊆ IOSum I.
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(13) Let A be an IC-Ins-separated definite non empty non void AMI over
N with non trivial ObjectKinds and I be an instruction of A. Then
IODiff I = Output I \ Input I.

(14) Let A be an IC-Ins-separated definite non empty non void AMI over
N with non trivial ObjectKinds and I be an instruction of A. Then
IOSum I = Output I ∪ Input I.

(15) Let A be an IC-Ins-separated definite non empty non void AMI over N ,
I be an instruction of A, and o be an object of A. If ObjectKind(o) is
trivial, then o /∈ IOSum I.

(16) Let A be an IC-Ins-separated definite non empty non void AMI over N ,
I be an instruction of A, and o be an object of A. If ObjectKind(o) is
trivial, then o /∈ Input I.

(17) Let A be an IC-Ins-separated definite non empty non void AMI over N ,
I be an instruction of A, and o be an object of A. If ObjectKind(o) is
trivial, then o /∈ Output I.

(18) Let A be an IC-Ins-separated definite non empty non void AMI over N

and I be an instruction of A. Then I is halting if and only if Output I is
empty.

(19) Let A be an IC-Ins-separated definite non empty non void AMI over N

with non trivial ObjectKinds and I be an instruction of A. If I is halting,
then IODiff I is empty.

(20) Let A be an IC-Ins-separated definite non empty non void AMI over N

and I be an instruction of A. If I is halting, then IOSum I is empty.

(21) Let A be an IC-Ins-separated definite non empty non void AMI over N

and I be an instruction of A. If I is halting, then Input I is empty.

Let N be a set with non empty elements, let A be a halting IC-Ins-separated
definite non empty non void AMI over N , and let I be a halting instruction of
A. One can verify the following observations:

∗ Input I is empty,

∗ Output I is empty, and

∗ IOSum I is empty.

Let N be a set with non empty elements, let A be a halting IC-Ins-separated
definite non empty non void AMI over N with non trivial ObjectKinds, and let
I be a halting instruction of A. Note that IODiff I is empty.

The following propositions are true:

(22) Let A be a steady-programmed IC-Ins-separated definite non empty non
void AMI over N with non trivial instruction set, f be an instruction-
location of A, and I be an instruction of A. Then f /∈ IODiff I.

(23) Let A be a standard IC-Ins-separated definite non empty non void AMI
over N and I be an instruction of A. If I is sequential, then ICA /∈ IODiff I.
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(24) Let A be an IC-Ins-separated definite non empty non void AMI over
N and I be an instruction of A. If there exists a state s of A such that
(Exec(I, s))(ICA) 6= ICs, then ICA ∈ Output I.

(25) Let A be a standard IC-Ins-separated definite non empty non void AMI
over N and I be an instruction of A. If I is sequential, then ICA ∈
Output I.

(26) Let A be an IC-Ins-separated definite non empty non void AMI over
N and I be an instruction of A. If there exists a state s of A such that
(Exec(I, s))(ICA) 6= ICs, then ICA ∈ IOSum I.

(27) Let A be a standard IC-Ins-separated definite non empty non void AMI
over N and I be an instruction of A. If I is sequential, then ICA ∈
IOSum I.

(28) Let A be an IC-Ins-separated definite non empty non void AMI over N ,
f be an instruction-location of A, and I be an instruction of A. Suppose
that for every state s of A and for every programmed finite partial state
p of A holds Exec(I, s+·p) = Exec(I, s)+·p. Then f /∈ IOSum I.

(29) Let A be an IC-Ins-separated definite non empty non void AMI over N ,
I be an instruction of A, and o be an object of A. If I is jump-only, then
if o ∈ Output I, then o = ICA.

3. Input and Output of the Instructions of SCM

In the sequel a, b are data-locations, f is an instruction-location of SCM,
and I is an instruction of SCM.

We now state two propositions:

(30) For every state s of SCM and for every element w of
ObjectKind(ICSCM) holds (s +· (ICSCM, w))(a) = s(a).

(31) f 6= Next(f).
Let s be a state of SCM, let d1 be a data-location, and let k be an integer.

Then s +· (d1, k) is a state of SCM.
Let us observe that SCM has non trivial ObjectKinds.
Next we state a number of propositions:

(32) IODiff(a:=a) = ∅.
(33) If a 6= b, then IODiff(a:=b) = {a}.
(34) IODiff AddTo(a, b) = ∅.
(35) IODiff SubFrom(a, a) = {a}.
(36) If a 6= b, then IODiff SubFrom(a, b) = ∅.
(37) IODiff MultBy(a, b) = ∅.
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(38) IODiff Divide(a, a) = {a}.
(39) If a 6= b, then IODiff Divide(a, b) = ∅.
(40) IODiff goto f = {ICSCM}.
(41) IODiff(if a = 0 goto f) = ∅.
(42) IODiff(if a > 0 goto f) = ∅.
(43) Output(a:=a) = {ICSCM}.
(44) If a 6= b, then Output(a:=b) = {a, ICSCM}.
(45) Output AddTo(a, b) = {a, ICSCM}.
(46) Output SubFrom(a, b) = {a, ICSCM}.
(47) Output MultBy(a, b) = {a, ICSCM}.
(48) Output Divide(a, b) = {a, b, ICSCM}.
(49) Output goto f = {ICSCM}.
(50) Output(if a = 0 goto f) = {ICSCM}.
(51) Output(if a > 0 goto f) = {ICSCM}.
(52) f /∈ IOSum I.

(53) IOSum(a:=a) = {ICSCM}.
(54) If a 6= b, then IOSum(a:=b) = {a, b, ICSCM}.
(55) IOSum AddTo(a, b) = {a, b, ICSCM}.
(56) IOSum SubFrom(a, b) = {a, b, ICSCM}.
(57) IOSum MultBy(a, b) = {a, b, ICSCM}.
(58) IOSum Divide(a, b) = {a, b, ICSCM}.
(59) IOSum goto f = {ICSCM}.
(60) IOSum(if a = 0 goto f) = {a, ICSCM}.
(61) IOSum(if a > 0 goto f) = {a, ICSCM}.
(62) Input(a:=a) = {ICSCM}.
(63) If a 6= b, then Input(a:=b) = {b, ICSCM}.
(64) Input AddTo(a, b) = {a, b, ICSCM}.
(65) Input SubFrom(a, a) = {ICSCM}.
(66) If a 6= b, then Input SubFrom(a, b) = {a, b, ICSCM}.
(67) Input MultBy(a, b) = {a, b, ICSCM}.
(68) Input Divide(a, a) = {ICSCM}.
(69) If a 6= b, then Input Divide(a, b) = {a, b, ICSCM}.
(70) Input goto f = ∅.
(71) Input(if a = 0 goto f) = {a, ICSCM}.
(72) Input(if a > 0 goto f) = {a, ICSCM}.
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The articles [18], [10], [11], [12], [22], [5], [14], [3], [6], [20], [7], [8], [9], [4], [19], [1],
[2], [23], [24], [17], [16], [13], [21], and [15] provide the terminology and notation
for this paper.

For simplicity, we use the following convention: a, b are integer locations, f

is a finite sequence location, i1, i2, i3 are instruction-locations of SCMFSA, T

is an instruction type of SCMFSA, and k is a natural number.
Next we state two propositions:

(1) For every function f and for all sets a, A, b, B, c, C such that a 6= b and
a 6= c holds (f+·(a 7−→. A)+·(b7−→. B)+·(c7−→. C))(a) = A.

(2) For all sets a, b holds 〈a〉+· (1, b) = 〈b〉.
Let l1, l2 be integer locations and let a, b be integers. Then [l1 7−→ a, l2 7−→ b]

is a finite partial state of SCMFSA.
One can prove the following propositions:

(3) a /∈ the instruction locations of SCMFSA.

(4) f /∈ the instruction locations of SCMFSA.

(5) Data-LocSCMFSA 6= the instruction locations of SCMFSA.

(6) Data∗-LocSCMFSA 6= the instruction locations of SCMFSA.

(7) Let o be an object of SCMFSA. Then
(i) o = ICSCMFSA , or
(ii) o ∈ the instruction locations of SCMFSA, or
(iii) o is an integer location or a finite sequence location.

(8) If i2 6= i3, then Next(i2) 6= Next(i3).
(9) a:=b = 〈〈1, 〈a, b〉〉〉.

(10) AddTo(a, b) = 〈〈2, 〈a, b〉〉〉.
1This work has been partially supported by TYPES grant IST-1999-29001.
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(11) SubFrom(a, b) = 〈〈3, 〈a, b〉〉〉.
(12) MultBy(a, b) = 〈〈4, 〈a, b〉〉〉.
(13) Divide(a, b) = 〈〈5, 〈a, b〉〉〉.
(14) goto i1 = 〈〈6, 〈i1〉〉〉.
(15) if a = 0 goto i1 = 〈〈7, 〈i1, a〉〉〉.
(16) if a > 0 goto i1 = 〈〈8, 〈i1, a〉〉〉.
(17) AddressPart(haltSCMFSA) = ∅.
(18) AddressPart(a:=b) = 〈a, b〉.
(19) AddressPart(AddTo(a, b)) = 〈a, b〉.
(20) AddressPart(SubFrom(a, b)) = 〈a, b〉.
(21) AddressPart(MultBy(a, b)) = 〈a, b〉.
(22) AddressPart(Divide(a, b)) = 〈a, b〉.
(23) AddressPart(goto i2) = 〈i2〉.
(24) AddressPart(if a = 0 goto i2) = 〈i2, a〉.
(25) AddressPart(if a > 0 goto i2) = 〈i2, a〉.
(26) AddressPart(b:=fa) = 〈b, f, a〉.
(27) AddressPart(fa:=b) = 〈b, f, a〉.
(28) AddressPart(a:=lenf) = 〈a, f〉.
(29) AddressPart(f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉) = 〈a, f〉.

(30) If T = 0, then AddressParts T = {0}.
Let us consider T . Observe that AddressParts T is non empty.
Next we state a number of propositions:

(31) If T = 1, then dom
∏

AddressParts T = {1, 2}.
(32) If T = 2, then dom

∏
AddressParts T = {1, 2}.

(33) If T = 3, then dom
∏

AddressParts T = {1, 2}.
(34) If T = 4, then dom

∏
AddressParts T = {1, 2}.

(35) If T = 5, then dom
∏

AddressParts T = {1, 2}.
(36) If T = 6, then dom

∏
AddressParts T = {1}.

(37) If T = 7, then dom
∏

AddressParts T = {1, 2}.
(38) If T = 8, then dom

∏
AddressParts T = {1, 2}.

(39) If T = 9, then dom
∏

AddressParts T = {1, 2, 3}.
(40) If T = 10, then dom

∏
AddressParts T = {1, 2, 3}.

(41) If T = 11, then dom
∏

AddressParts T = {1, 2}.
(42) If T = 12, then dom

∏
AddressParts T = {1, 2}.

(43)
∏

AddressParts InsCode(a:=b)(1) = Data-LocSCMFSA .

(44)
∏

AddressParts InsCode(a:=b)(2) = Data-LocSCMFSA .
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(45)
∏

AddressParts InsCode(AddTo(a,b))(1) = Data-LocSCMFSA .

(46)
∏

AddressParts InsCode(AddTo(a,b))(2) = Data-LocSCMFSA .

(47)
∏

AddressParts InsCode(SubFrom(a,b))(1) = Data-LocSCMFSA .

(48)
∏

AddressParts InsCode(SubFrom(a,b))(2) = Data-LocSCMFSA .

(49)
∏

AddressParts InsCode(MultBy(a,b))(1) = Data-LocSCMFSA .

(50)
∏

AddressParts InsCode(MultBy(a,b))(2) = Data-LocSCMFSA .

(51)
∏

AddressParts InsCode(Divide(a,b))(1) = Data-LocSCMFSA .

(52)
∏

AddressParts InsCode(Divide(a,b))(2) = Data-LocSCMFSA .

(53)
∏

AddressParts InsCode(goto i2)(1) = the instruction locations of SCMFSA.

(54)
∏

AddressParts InsCode(if a=0 goto i2)(1) = the instruction locations of
SCMFSA.

(55)
∏

AddressParts InsCode(if a=0 goto i2)(2) = Data-LocSCMFSA .

(56)
∏

AddressParts InsCode(if a>0 goto i2)(1) = the instruction locations of
SCMFSA.

(57)
∏

AddressParts InsCode(if a>0 goto i2)(2) = Data-LocSCMFSA .

(58)
∏

AddressParts InsCode(b:=fa)(1) = Data-LocSCMFSA .

(59)
∏

AddressParts InsCode(b:=fa)(2) = Data∗-LocSCMFSA .

(60)
∏

AddressParts InsCode(b:=fa)(3) = Data-LocSCMFSA .

(61)
∏

AddressParts InsCode(fa:=b)(1) = Data-LocSCMFSA .

(62)
∏

AddressParts InsCode(fa:=b)(2) = Data∗-LocSCMFSA .

(63)
∏

AddressParts InsCode(fa:=b)(3) = Data-LocSCMFSA .

(64)
∏

AddressParts InsCode(a:=lenf)(1) = Data-LocSCMFSA .

(65)
∏

AddressParts InsCode(a:=lenf)(2) = Data∗-LocSCMFSA .

(66)
∏

AddressParts InsCode(f :=〈0, . . . , 0︸ ︷︷ ︸
a

〉)(1) = Data-LocSCMFSA .

(67)
∏

AddressParts InsCode(f :=〈0, . . . , 0︸ ︷︷ ︸
a

〉)(2) = Data∗-LocSCMFSA .

(68) NIC(haltSCMFSA , i1) = {i1}.
One can verify that JUMP(haltSCMFSA) is empty.
We now state the proposition

(69) NIC(a:=b, i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP(a:=b) is empty.
One can prove the following proposition

(70) NIC(AddTo(a, b), i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP(AddTo(a, b)) is empty.
Next we state the proposition

(71) NIC(SubFrom(a, b), i1) = {Next(i1)}.
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Let us consider a, b. Note that JUMP(SubFrom(a, b)) is empty.
One can prove the following proposition

(72) NIC(MultBy(a, b), i1) = {Next(i1)}.
Let us consider a, b. Note that JUMP(MultBy(a, b)) is empty.
Next we state the proposition

(73) NIC(Divide(a, b), i1) = {Next(i1)}.
Let us consider a, b. One can verify that JUMP(Divide(a, b)) is empty.
We now state two propositions:

(74) NIC(goto i2, i1) = {i2}.
(75) JUMP(goto i2) = {i2}.

Let us consider i2. One can verify that JUMP(goto i2) is non empty and
trivial.

We now state two propositions:

(76) i2 ∈ NIC(if a = 0 goto i2, i1) and NIC(if a = 0 goto i2, i1) ⊆
{i2, Next(i1)}.

(77) JUMP(if a = 0 goto i2) = {i2}.
Let us consider a, i2. One can check that JUMP(if a = 0 goto i2) is non

empty and trivial.
One can prove the following two propositions:

(78) i2 ∈ NIC(if a > 0 goto i2, i1) and NIC(if a > 0 goto i2, i1) ⊆
{i2, Next(i1)}.

(79) JUMP(if a > 0 goto i2) = {i2}.
Let us consider a, i2. Note that JUMP(if a > 0 goto i2) is non empty and

trivial.
The following proposition is true

(80) NIC(a:=fb, i1) = {Next(i1)}.
Let us consider a, b, f . Observe that JUMP(a:=fb) is empty.
Next we state the proposition

(81) NIC(fb:=a, i1) = {Next(i1)}.
Let us consider a, b, f . One can check that JUMP(fb:=a) is empty.
The following proposition is true

(82) NIC(a:=lenf, i1) = {Next(i1)}.
Let us consider a, f . Observe that JUMP(a:=lenf) is empty.
The following proposition is true

(83) NIC(f :=〈0, . . . , 0︸ ︷︷ ︸
a

〉, i1) = {Next(i1)}.

Let us consider a, f . Note that JUMP(f :=〈0, . . . , 0︸ ︷︷ ︸
a

〉) is empty.

The following two propositions are true:
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(84) SUCC(i1) = {i1, Next(i1)}.
(85) Let f be a function from N into the instruction locations of SCMFSA.

Suppose that for every natural number k holds f(k) = insloc(k). Then
(i) f is bijective, and
(ii) for every natural number k holds f(k +1) ∈ SUCC(f(k)) and for every

natural number j such that f(j) ∈ SUCC(f(k)) holds k ¬ j.

Let us observe that SCMFSA is standard.
The following propositions are true:

(86) ilSCMFSA(k) = insloc(k).

(87) Next(ilSCMFSA(k)) = ilSCMFSA(k + 1).

(88) Next(i1) = NextLoc i1.

Let us mention that InsCode(haltSCMFSA) is jump-only.
Let us mention that haltSCMFSA is jump-only.
Let us consider i2. One can verify that InsCode(goto i2) is jump-only.
Let us consider i2. Observe that goto i2 is jump-only non sequential and non

instruction location free.
Let us consider a, i2. One can check that InsCode(if a = 0 goto i2) is jump-

only and InsCode(if a > 0 goto i2) is jump-only.
Let us consider a, i2. Observe that if a = 0 goto i2 is jump-only non sequ-

ential and non instruction location free and if a > 0 goto i2 is jump-only non
sequential and non instruction location free.

Let us consider a, b. One can verify the following observations:

∗ InsCode(a:=b) is non jump-only,

∗ InsCode(AddTo(a, b)) is non jump-only,

∗ InsCode(SubFrom(a, b)) is non jump-only,

∗ InsCode(MultBy(a, b)) is non jump-only, and

∗ InsCode(Divide(a, b)) is non jump-only.

Let us consider a, b. One can verify the following observations:

∗ a:=b is non jump-only and sequential,

∗ AddTo(a, b) is non jump-only and sequential,

∗ SubFrom(a, b) is non jump-only and sequential,

∗ MultBy(a, b) is non jump-only and sequential, and

∗ Divide(a, b) is non jump-only and sequential.

Let us consider a, b, f . One can check that InsCode(b:=fa) is non jump-only
and InsCode(fa:=b) is non jump-only.

Let us consider a, b, f . Observe that b:=fa is non jump-only and sequential
and fa:=b is non jump-only and sequential.
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Let us consider a, f . One can check that InsCode(a:=lenf) is non jump-only
and InsCode(f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉) is non jump-only.

Let us consider a, f . Note that a:=lenf is non jump-only and sequential and
f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉 is non jump-only and sequential.

One can verify that SCMFSA is homogeneous and has explicit jumps and
no implicit jumps.

Let us note that SCMFSA is regular.
The following propositions are true:

(89) IncAddr(goto i2, k) = goto ilSCMFSA(locnum(i2) + k).
(90) IncAddr(if a = 0 goto i2, k) = if a = 0 goto ilSCMFSA(locnum(i2) +

k).
(91) IncAddr(if a > 0 goto i2, k) = if a > 0 goto ilSCMFSA(locnum(i2) +

k).
Let us note that SCMFSA is IC-good and Exec-preserving.
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Summary. In the early 1930s, Huntington proposed several axiom sys-
tems for Boolean algebras. Robbins slightly changed one of them and asked if
the resulted system is still a basis for variety of Boolean algebras. The solution
(afirmative answer) was given in 1996 by McCune with the help of automated
theorem prover EQP/Otter. Some simplified and restucturized versions of this
proof are known. In our version of proof that all Robbins algebras are Boolean
we use the results of McCune [5], Huntington [2, 4, 3] and Dahn [1].

MML Identifier: ROBBINS1.

The papers [7] and [6] provide the terminology and notation for this paper.

1. Preliminaries

We introduce complemented lattice structures which are extensions of t-
semi lattice structure and are systems
〈 a carrier, a join operation, a complement operation 〉,

where the carrier is a set, the join operation is a binary operation on the carrier,
and the complement operation is a unary operation on the carrier.

We introduce ortholattice structures which are extensions of complemented
lattice structure and lattice structure and are systems
〈 a carrier, a join operation, a meet operation, a complement operation 〉,

where the carrier is a set, the join operation and the meet operation are binary
operations on the carrier, and the complement operation is a unary operation
on the carrier.

The strict complemented lattice structure TrivComplLat is defined as fol-
lows:

1This work has been partially supported by TYPES grant IST-1999-29001.
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(Def. 1) TrivComplLat = 〈{∅}, op2, op1〉.
The strict ortholattice structure TrivOrtLat is defined by:

(Def. 2) TrivOrtLat = 〈{∅}, op2, op2, op1〉.
Let us note that TrivComplLat is non empty and trivial and TrivOrtLat is

non empty and trivial.
Let us mention that there exists an ortholattice structure which is strict,

non empty, and trivial and there exists a complemented lattice structure which
is strict, non empty, and trivial.

Let L be a non empty complemented lattice structure and let x be an element
of the carrier of L. The functor xc yielding an element of L is defined as follows:

(Def. 3) xc = (the complement operation of L)(x).

Let L be a non empty complemented lattice structure and let x, y be elements
of the carrier of L. We introduce x + y as a synonym of x t y.

Let L be a non empty complemented lattice structure and let x, y be elements
of the carrier of L. The functor x ∗ y yields an element of L and is defined by:

(Def. 4) x ∗ y = (xc t yc)c.

Let L be a non empty complemented lattice structure. We say that L is
Robbins if and only if:

(Def. 5) For all elements x, y of the carrier of L holds ((x+ y)c +(x+ yc)c)c = x.

We say that L is Huntington if and only if:

(Def. 6) For all elements x, y of the carrier of L holds (xc + yc)c + (xc + y)c = x.

Let G be a non empty t-semi lattice structure. We say that G is join-
idempotent if and only if:

(Def. 7) For every element x of the carrier of G holds x t x = x.

Let us observe that TrivComplLat is join-commutative join-associative Rob-
bins Huntington and join-idempotent and TrivOrtLat is join-commutative join-
associative Huntington and Robbins.

Let us mention that TrivOrtLat is meet-commutative meet-associative meet-
absorbing and join-absorbing.

One can verify that there exists a non empty complemented lattice structure
which is strict, join-associative, join-commutative, Robbins, join-idempotent,
and Huntington.

Let us observe that there exists a non empty ortholattice structure which is
strict, lattice-like, Robbins, and Huntington.

Let L be a join-commutative non empty complemented lattice structure and
let x, y be elements of the carrier of L. Let us observe that the functor x + y is
commutative.

Next we state several propositions:
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(1) Let L be a Huntington join-commutative join-associative non empty
complemented lattice structure and a, b be elements of the carrier of L.
Then a ∗ b + a ∗ bc = a.

(2) Let L be a Huntington join-commutative join-associative non empty
complemented lattice structure and a be an element of the carrier of L.
Then a + ac = ac + (ac)c.

(3) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and x be an element of the carrier of L.
Then (xc)c = x.

(4) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of the carrier of L.
Then a + ac = b + bc.

(5) Let L be a join-commutative join-associative join-idempotent Hunting-
ton non empty complemented lattice structure. Then there exists an ele-
ment c of the carrier of L such that for every element a of the carrier of L

holds
c + a = c and a + ac = c.

(6) Every join-commutative join-associative join-idempotent Huntington
non empty complemented lattice structure is upper-bounded.

One can verify that every non empty complemented lattice structure which
is join-commutative, join-associative, join-idempotent, and Huntington is also
upper-bounded.

Let L be a join-commutative join-associative join-idempotent Huntington
non empty complemented lattice structure. Then >L can be characterized by
the condition:

(Def. 8) There exists an element a of the carrier of L such that >L = a + ac.

One can prove the following propositions:

(7) Let L be a join-commutative join-associative join-idempotent Hunting-
ton non empty complemented lattice structure. Then there exists an ele-
ment c of the carrier of L such that for every element a of the carrier of L

holds
c ∗ a = c and (a + ac)c = c.

(8) Let L be a join-commutative join-associative non empty complemented
lattice structure and a, b be elements of the carrier of L. Then a∗b = b∗a.

Let L be a join-commutative join-associative non empty complemented lat-
tice structure and let x, y be elements of the carrier of L. Let us note that the
functor x ∗ y is commutative.

Let L be a join-commutative join-associative join-idempotent Huntington
non empty complemented lattice structure. The functor ⊥C

L yielding an element
of L is defined as follows:
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(Def. 9) For every element a of the carrier of L holds ⊥C
L ∗ a = ⊥C

L.

One can prove the following propositions:

(9) Let L be a join-commutative join-associative join-idempotent Hunting-
ton non empty complemented lattice structure and a be an element of the
carrier of L. Then ⊥C

L = (a + ac)c.

(10) Let L be a join-commutative join-associative join-idempotent Hunting-
ton non empty complemented lattice structure. Then (>L)c = ⊥C

L and
>L = (⊥C

L)c.

(11) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of the carrier of L. If
ac = bc, then a = b.

(12) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of the carrier of L.
Then a + (b + bc)c = a.

(13) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a be an element of the carrier of L.
Then a + a = a.

Let us note that every non empty complemented lattice structure which is
join-commutative, join-associative, and Huntington is also join-idempotent.

One can prove the following propositions:

(14) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a be an element of the carrier of L.
Then a +⊥C

L = a.

(15) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a be an element of the carrier of L.
Then a ∗ >L = a.

(16) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a be an element of the carrier of L.
Then a ∗ ac = ⊥C

L.

(17) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b, c be elements of the carrier of L.
Then a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(18) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of the carrier of L.
Then a + b = (ac ∗ bc)c.

(19) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a be an element of the carrier of L.
Then a ∗ a = a.

(20) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a be an element of the carrier of L.
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Then a +>L = >L.

(21) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of the carrier of L.
Then a + a ∗ b = a.

(22) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of the carrier of L.
Then a ∗ (a + b) = a.

(23) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of the carrier of L. If
ac + b = >L and bc + a = >L, then a = b.

(24) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b be elements of the carrier of L. If
a + b = >L and a ∗ b = ⊥C

L, then ac = b.

(25) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b, c be elements of the carrier of L.
Then a ∗ b ∗ c + a ∗ b ∗ cc + a ∗ bc ∗ c + a ∗ bc ∗ cc + ac ∗ b ∗ c + ac ∗ b ∗ cc +
ac ∗ bc ∗ c + ac ∗ bc ∗ cc = >L.

(26) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b, c be elements of the carrier of L.
Then

(i) a ∗ c ∗ (b ∗ cc) = ⊥C
L,

(ii) a ∗ b ∗ c ∗ (ac ∗ b ∗ c) = ⊥C
L,

(iii) a ∗ bc ∗ c ∗ (ac ∗ b ∗ c) = ⊥C
L,

(iv) a ∗ b ∗ c ∗ (ac ∗ bc ∗ c) = ⊥C
L,

(v) a ∗ b ∗ cc ∗ (ac ∗ bc ∗ cc) = ⊥C
L, and

(vi) a ∗ bc ∗ c ∗ (ac ∗ b ∗ c) = ⊥C
L.

(27) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b, c be elements of the carrier of L.
Then a ∗ b + a ∗ c = a ∗ b ∗ c + a ∗ b ∗ cc + a ∗ bc ∗ c.

(28) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b, c be elements of the carrier of L.
Then (a∗ (b+ c))c = a∗ bc ∗ cc +ac ∗ b∗ c+ac ∗ b∗ cc +ac ∗ bc ∗ c+ac ∗ bc ∗ cc.

(29) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b, c be elements of the carrier of L.
Then a ∗ b + a ∗ c + (a ∗ (b + c))c = >L.

(30) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b, c be elements of the carrier of L.
Then (a ∗ b + a ∗ c) ∗ (a ∗ (b + c))c = ⊥C

L.

(31) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b, c be elements of the carrier of L.
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Then a ∗ (b + c) = a ∗ b + a ∗ c.

(32) Let L be a join-commutative join-associative Huntington non empty
complemented lattice structure and a, b, c be elements of the carrier of L.
Then a + b ∗ c = (a + b) ∗ (a + c).

2. Pre-Ortholattices

Let L be a non empty ortholattice structure. We say that L is well-comple-
mented if and only if:

(Def. 10) For every element a of the carrier of L holds ac is a complement of a.

Let us observe that TrivOrtLat is Boolean and well-complemented.
A pre-ortholattice is a lattice-like non empty ortholattice structure.
Let us mention that there exists a pre-ortholattice which is strict, Boolean,

and well-complemented.
We now state two propositions:

(33) Let L be a distributive well-complemented pre-ortholattice and x be an
element of the carrier of L. Then (xc)c = x.

(34) Let L be a bounded distributive well-complemented pre-ortholattice and
x, y be elements of the carrier of L. Then x u y = (xc t yc)c.

3. Correspondence between Boolean Pre-OrthoLattices and
Boolean Lattices

Let L be a non empty complemented lattice structure. The functor CLatt L

yielding a strict ortholattice structure is defined by the conditions (Def. 11).

(Def. 11)(i) The carrier of CLatt L = the carrier of L,
(ii) the join operation of CLatt L = the join operation of L,
(iii) the complement operation of CLatt L = the complement operation of

L, and
(iv) for all elements a, b of the carrier of L holds (the meet operation of

CLatt L)(a, b) = a ∗ b.

Let L be a non empty complemented lattice structure. One can verify that
CLatt L is non empty.

Let L be a join-commutative non empty complemented lattice structure.
One can check that CLatt L is join-commutative.

Let L be a join-associative non empty complemented lattice structure. One
can check that CLatt L is join-associative.
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Let L be a join-commutative join-associative non empty complemented lat-
tice structure. Observe that CLatt L is meet-commutative.

The following proposition is true

(35) Let L be a non empty complemented lattice structure, a, b be elements
of the carrier of L, and a′, b′ be elements of the carrier of CLatt L. If a = a′

and b = b′, then a ∗ b = a′ u b′ and a + b = a′ t b′ and ac = a′c.

Let L be a join-commutative join-associative Huntington non empty comple-
mented lattice structure. Observe that CLatt L is meet-associative join-absorbing
and meet-absorbing.

Let L be a Huntington non empty complemented lattice structure. Note that
CLatt L is Huntington.

Let L be a join-commutative join-associative Huntington non empty com-
plemented lattice structure. Note that CLatt L is lower-bounded.

We now state the proposition

(36) For every join-commutative join-associative Huntington non empty com-
plemented lattice structure L holds ⊥C

L = ⊥CLatt L.

Let L be a join-commutative join-associative Huntington non empty com-
plemented lattice structure. One can check that CLatt L is complemented di-
stributive and bounded.

4. Proofs according to Bernd Ingo Dahn

Let G be a non empty complemented lattice structure and let x be an element
of the carrier of G. We introduce −x as a synonym of xc.

Let G be a join-commutative non empty complemented lattice structure. Let
us observe that G is Huntington if and only if:

(Def. 12) For all elements x, y of the carrier of G holds −(−x +−y)+−(x +−y) =
y.

Let G be a non empty complemented lattice structure. We say that G has
idempotent element if and only if:

(Def. 13) There exists an element x of the carrier of G such that x + x = x.

In the sequel G is a Robbins join-associative join-commutative non empty
complemented lattice structure and x, y, z are elements of the carrier of G.

Let G be a non empty complemented lattice structure and let x, y be ele-
ments of the carrier of G. The functor δ(x, y) yielding an element of G is defined
by:

(Def. 14) δ(x, y) = −(−x + y).
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Let G be a non empty complemented lattice structure and let x, y be ele-
ments of the carrier of G. The functor Expand(x, y) yields an element of G and
is defined by:

(Def. 15) Expand(x, y) = δ(x + y, δ(x, y)).
Let G be a non empty complemented lattice structure and let x be an element

of the carrier of G. The functor x0 yielding an element of G is defined by:

(Def. 16) x0 = −(−x + x).
The functor 2x yielding an element of G is defined as follows:

(Def. 17) 2x = x + x.

Let G be a non empty complemented lattice structure and let x be an element
of the carrier of G. The functor x1 yielding an element of G is defined by:

(Def. 18) x1 = x0 + x.

The functor x2 yields an element of G and is defined as follows:

(Def. 19) x2 = x0 + 2x.

The functor x3 yields an element of G and is defined by:

(Def. 20) x3 = x0 + (2x + x).
The functor x4 yielding an element of G is defined as follows:

(Def. 21) x4 = x0 + (2x + 2x).
We now state a number of propositions:

(37) δ(x + y, δ(x, y)) = y.

(38) Expand(x, y) = y.

(39) δ(−x + y, z) = −(δ(x, y) + z).
(40) δ(x, x) = x0.

(41) δ(2x, x0) = x.

(42) δ(x2, x) = x0.

(43) x2 + x = x3.

(44) x4 + x0 = x3 + x1.

(45) x3 + x0 = x2 + x1.

(46) x3 + x = x4.

(47) δ(x3, x0) = x.

(48) If −x = −y, then δ(x, z) = δ(y, z).
(49) δ(x,−y) = δ(y,−x).
(50) δ(x3, x) = x0.

(51) δ(x1 + x3, x) = x0.

(52) δ(x1 + x2, x) = x0.

(53) δ(x1 + x3, x0) = x.
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Let us consider G, x. The functor β(x) yielding an element of G is defined
as follows:

(Def. 22) β(x) = −(x1 + x3) + x +−x3.

We now state three propositions:

(54) δ(β(x), x) = −x3.

(55) δ(β(x), x) = −(x1 + x3).
(56) There exist y, z such that −(y + z) = −z.

5. Proofs according to William McCune

One can prove the following two propositions:

(57) If for every z holds −−z = z, then G is Huntington.

(58) If G has idempotent element, then G is Huntington.

Let us observe that TrivComplLat has idempotent element.
One can check that every Robbins join-associative join-commutative non

empty complemented lattice structure which has idempotent element is Hun-
tington.

One can prove the following two propositions:

(59) If there exist elements c, d of the carrier of G such that c + d = c, then
G is Huntington.

(60) There exist y, z such that y + z = z.

One can verify that every join-associative join-commutative non empty com-
plemented lattice structure which is Robbins is also Huntington.

Let L be a non empty ortholattice structure. We say that L is de Morgan if
and only if:

(Def. 23) For all elements x, y of the carrier of L holds x u y = (xc t yc)c.

Let L be a non empty complemented lattice structure. One can verify that
CLatt L is de Morgan.

Next we state two propositions:

(61) Let L be a well-complemented join-commutative meet-commutative non
empty ortholattice structure and x be an element of the carrier of L. Then
x + xc = >L and x u xc = ⊥L.

(62) For every bounded distributive well-complemented pre-ortholattice L

holds (>L)c = ⊥L.

Let us observe that TrivOrtLat is de Morgan.
One can verify that there exists a pre-ortholattice which is strict, de Morgan,

Boolean, Robbins, and Huntington.
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Let us note that every non empty ortholattice structure which is join-associative,
join-commutative, and de Morgan is also meet-commutative.

One can prove the following proposition

(63) For every Huntington de Morgan pre-ortholattice L holds ⊥C
L = ⊥L.

One can verify that every well-complemented pre-ortholattice which is Bo-
olean is also Huntington.

Let us note that every de Morgan pre-ortholattice which is Huntington is
also Boolean.

One can verify that every pre-ortholattice which is Robbins and de Morgan
is also Boolean and every well-complemented pre-ortholattice which is Boolean
is also Robbins.
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Summary. In this article, we introduce four fuzzy relations and the com-
position, and some useful properties are shown by them. In section 2, the defini-
tion of converse relation R−1 of fuzzy relation R and properties concerning it are
described. In the next section, we define the composition of the fuzzy relation
and show some properties. In the final section we describe the identity relation,
the universe relation and the zero relation.

MML Identifier: FUZZY 4.

The notation and terminology used here are introduced in the following papers:
[5], [6], [2], [9], [4], [3], [8], [7], and [1].

1. Basic Properties of the Membership Function

We follow the rules: x, y, z are sets and C1, C2, C3 are non empty sets.
Let C1 be a non empty set and let F be a membership function of C1. One

can check that rng F is non empty.
Next we state four propositions:

(1) Let F be a membership function of C1. Then rng F is bounded and for
every x such that x ∈ dom F holds F (x) ¬ sup rng F and for every x such
that x ∈ dom F holds F (x) ­ inf rng F.

(2) For all membership functions F , G of C1 such that for every x such that
x ∈ C1 holds F (x) ¬ G(x) holds sup rng F ¬ sup rng G.
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(3) For every Membership function f of C1, C2 and for every element c of
[:C1, C2 :] holds 0 ¬ f(c) and f(c) ¬ 1.

(4) For every Membership function f of C1, C2 and for all x, y such that
〈〈x, y〉〉 ∈ [:C1, C2 :] holds 0 ¬ f(〈〈x, y〉〉) and f(〈〈x, y〉〉) ¬ 1.

2. Definition of Converse Fuzzy Relation and some Properties

Let C1, C2 be non empty sets and let h be a Membership function of C2,
C1. The functor converse h yielding a Membership function of C1, C2 is defined
by:

(Def. 1) For all x, y such that 〈〈x, y〉〉 ∈ [:C1, C2 :] holds (converse h)(〈〈x, y〉〉) =
h(〈〈y, x〉〉).

Let C1, C2 be non empty sets, let f be a Membership function of C2, C1, and
let R be a fuzzy relation of C2, C1, f . The functor R−1 yields a fuzzy relation
of C1, C2, converse f and is defined by:

(Def. 2) R−1 = [: [:C1, C2 :], (converse f)◦[:C1, C2 :] :].
The following propositions are true:

(5) For every Membership function f of C1, C2 holds converse converse f =
f.

(6) For every Membership function f of C1, C2 and for every fuzzy relation
R of C1, C2, f holds (R−1)−1 = R.

(7) For every Membership function f of C1, C2 holds 1-minus converse f =
converse 1-minus f.

(8) For every Membership function f of C1, C2 and for every fuzzy relation
R of C1, C2, f holds (R−1)c = (Rc)−1.

(9) For all Membership functions f , g of C1, C2 holds converse max(f, g) =
max(converse f, converse g).

(10) Let f , g be Membership functions of C1, C2, R be a fuzzy relation of C1,
C2, f , and S be a fuzzy relation of C1, C2, g. Then (R∪S)−1 = R−1∪S−1.

(11) For all Membership functions f , g of C1, C2 holds converse min(f, g) =
min(converse f, converse g).

(12) Let f , g be Membership functions of C1, C2, R be a fuzzy relation of C1,
C2, f , and S be a fuzzy relation of C1, C2, g. Then (R∩S)−1 = R−1∩S−1.

(13) Let f , g be Membership functions of C1, C2 and given x, y. If x ∈ C1

and y ∈ C2, then if f(〈〈x, y〉〉) ¬ g(〈〈x, y〉〉), then (converse f)(〈〈y, x〉〉) ¬
(converse g)(〈〈y, x〉〉).

(14) Let f , g be Membership functions of C1, C2, R be a fuzzy relation of C1,
C2, f , and S be a fuzzy relation of C1, C2, g. If R ⊆ S, then R−1 ⊆ S−1.
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(15) For all Membership functions f , g of C1, C2 holds
converse min(f, 1-minus g) = min(converse f, 1-minus converse g).

(16) Let f , g be Membership functions of C1, C2, R be a fuzzy relation of C1,
C2, f , and S be a fuzzy relation of C1, C2, g. Then (R\S)−1 = R−1 \S−1.

(17) For all Membership functions f , g of C1, C2 holds converse
max(min(f, 1-minus g), min(1-minus f, g)) =
max(min(converse f, 1-minus converse g),
min(1-minus converse f, converse g)).

(18) Let f , g be Membership functions of C1, C2, R be a fuzzy relation of C1,
C2, f , and S be a fuzzy relation of C1, C2, g. Then (R−. S)−1 = R−1−. S−1.

3. Definition of the Composition and some Properties

Let C1, C2, C3 be non empty sets, let h be a Membership function of C1,
C2, let g be a Membership function of C2, C3, and let x, z be sets. Let us
assume that x ∈ C1 and z ∈ C3. The functor min(h, g, x, z) yields a membership
function of C2 and is defined by:

(Def. 3) For every element y of C2 holds (min(h, g, x, z))(y) = min(h(〈〈x,

y〉〉), g(〈〈y, z〉〉)).
Let C1, C2, C3 be non empty sets, let h be a Membership function of C1,

C2, and let g be a Membership function of C2, C3. The functor h g yields a
Membership function of C1, C3 and is defined by:

(Def. 4) For all x, z such that 〈〈x, z〉〉 ∈ [:C1, C3 :] holds (h g)(〈〈x, z〉〉) =
sup rng min(h, g, x, z).

Let C1, C2, C3 be non empty sets, let f be a Membership function of C1,
C2, let g be a Membership function of C2, C3, let R be a fuzzy relation of C1,
C2, f , and let S be a fuzzy relation of C2, C3, g. The functor R S yields a fuzzy
relation of C1, C3, f g and is defined as follows:

(Def. 5) R S = [: [:C1, C3 :], (f g)◦[:C1, C3 :] :].

Next we state a number of propositions:

(19) For every Membership function f of C1, C2 and for all Membership
functions g, h of C2, C3 holds f max(g, h) = max(f g, f h).

(20) Let f be a Membership function of C1, C2, g, h be Membership functions
of C2, C3, R be a fuzzy relation of C1, C2, f , S be a fuzzy relation of C2,
C3, g, and T be a fuzzy relation of C2, C3, h. Then R (S∪T ) = R S∪R T.

(21) For all Membership functions f , g of C1, C2 and for every Membership
function h of C2, C3 holds max(f, g) h = max(f h, g h).
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(22) Let f , g be Membership functions of C1, C2, h be a Membership function
of C2, C3, R be a fuzzy relation of C1, C2, f , S be a fuzzy relation of C1,
C2, g, and T be a fuzzy relation of C2, C3, h. Then (R∪S) T = R T ∪S T.

(23) Let f be a Membership function of C1, C2, g, h be Membership functions
of C2, C3, and x, z be sets. If x ∈ C1 and z ∈ C3, then (f min(g, h))(〈〈x,

z〉〉) ¬ (min(f g, f h))(〈〈x, z〉〉).
(24) Let f be a Membership function of C1, C2, g, h be Membership functions

of C2, C3, R be a fuzzy relation of C1, C2, f , S be a fuzzy relation of C2, C3,
g, and T be a fuzzy relation of C2, C3, h. Then R (S∩T ) ⊆ (R S)∩ (R T ).

(25) Let f , g be Membership functions of C1, C2, h be a Membership function
of C2, C3, and x, z be sets. If x ∈ C1 and z ∈ C3, then (min(f, g) h)(〈〈x,

z〉〉) ¬ (min(f h, g h))(〈〈x, z〉〉).
(26) Let f , g be Membership functions of C1, C2, h be a Membership function

of C2, C3, R be a fuzzy relation of C1, C2, f , S be a fuzzy relation of C1, C2,
g, and T be a fuzzy relation of C2, C3, h. Then (R∩S) T ⊆ (R T )∩ (S T ).

(27) For every Membership function f of C1, C2 and for every Membership
function g of C2, C3 holds converse f g = converse g converse f.

(28) Let f be a Membership function of C1, C2, g be a Membership function
of C2, C3, R be a fuzzy relation of C1, C2, f , and S be a fuzzy relation of
C2, C3, g. Then (R S)−1 = S−1 R−1.

(29) Let f , g be Membership functions of C1, C2, h, k be Membership func-
tions of C2, C3, and x, z be sets. Suppose x ∈ C1 and z ∈ C3 and for every
set y such that y ∈ C2 holds f(〈〈x, y〉〉) ¬ g(〈〈x, y〉〉) and h(〈〈y, z〉〉) ¬ k(〈〈y,

z〉〉). Then (f h)(〈〈x, z〉〉) ¬ (g k)(〈〈x, z〉〉).
(30) Let f , g be Membership functions of C1, C2, h, k be Membership func-

tions of C2, C3, R be a fuzzy relation of C1, C2, f , S be a fuzzy relation
of C1, C2, g, T be a fuzzy relation of C2, C3, h, and W be a fuzzy relation
of C2, C3, k. If R ⊆ S and T ⊆W, then R T ⊆ S W.

4. Definition of Identity Relation and Properties of Universe and
Zero Relation

Let C1, C2 be non empty sets. The functor Imf(C1, C2) yields a Membership
function of C1, C2 and is defined as follows:

(Def. 6) For all x, y such that 〈〈x, y〉〉 ∈ [:C1, C2 :] holds if x = y, then
(Imf(C1, C2))(〈〈x, y〉〉) = 1 and if x 6= y, then (Imf(C1, C2))(〈〈x, y〉〉) = 0.

One can prove the following propositions:

(31) For every element c of [:C1, C2 :] holds (Zmf(C1, C2))(c) = 0 and
(Umf(C1, C2))(c) = 1.
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(32) For all x, y such that 〈〈x, y〉〉 ∈ [:C1, C2 :] holds (Zmf(C1, C2))(〈〈x, y〉〉) = 0
and (Umf(C1, C2))(〈〈x, y〉〉) = 1.

(33) Let f be a Membership function of C2, C3, O1 be a zero relation of C1,
C2, O2 be a zero relation of C1, C3, and R be a fuzzy relation of C2, C3,
f . Then O1 R = O2.

(34) For every Membership function f of C1, C2 holds f Zmf(C2, C3) =
Zmf(C1, C3).

(35) Let f be a Membership function of C1, C2, O1 be a zero relation of C2,
C3, O2 be a zero relation of C1, C3, and R be a fuzzy relation of C1, C2,
f . Then R O1 = O2.

(36) For every Membership function f of C1, C1 holds f Zmf(C1, C1) =
Zmf(C1, C1) f.

(37) Let f be a Membership function of C1, C1, O be a zero relation of C1,
C1, and R be a fuzzy relation of C1, C1, f . Then R O = O R.
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Nagano

Summary. We have proven the “Fashoda Meet Theorem” in [12]. Here
we prove the outside version of it. It says that if Britain and France intended to
set the courses for ships to the opposite side of Africa, they must also meet.

MML Identifier: JGRAPH 2.

The articles [19], [8], [1], [2], [3], [4], [12], [13], [11], [5], [14], [7], [10], [20], [17],
[18], [16], [9], [15], and [6] provide the terminology and notation for this paper.

One can prove the following propositions:

(1) For all real numbers a, b such that a 6= 0 and b 6= 0 holds a
b · b

a = 1.

(2) For every real number a such that 1 ¬ a holds a ¬ a2.

(3) For every real number a such that −1 ­ a holds −a ¬ a2.

(4) For every real number a such that −1 > a holds −a < a2.

(5) For all real numbers a, b such that b2 ¬ a2 and a ­ 0 holds −a ¬ b and
b ¬ a.

(6) For all real numbers a, b such that b2 < a2 and a ­ 0 holds −a < b and
b < a.

(7) For all real numbers a, b such that −a ¬ b and b ¬ a holds b2 ¬ a2.

(8) For all real numbers a, b such that −a < b and b < a holds b2 < a2.

In the sequel T , T1, T2, S denote non empty topological spaces.
Next we state a number of propositions:

(9) Let f be a map from T1 into S, g be a map from T2 into S, and F1, F2

be subsets of T . Suppose that T1 is a subspace of T and T2 is a subspace of
T and F1 = Ω(T1) and F2 = Ω(T2) and Ω(T1) ∪Ω(T2) = ΩT and F1 is closed
and F2 is closed and f is continuous and g is continuous and for every set
p such that p ∈ Ω(T1) ∩ Ω(T2) holds f(p) = g(p). Then there exists a map
h from T into S such that h = f+·g and h is continuous.
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(10) Let n be a natural number, q2 be a point of En, q be a point of En
T, and

r be a real number. If q = q2, then Ball(q2, r) = {q3; q3 ranges over points
of En

T: |q − q3| < r}.
(11) (0E2T)1 = 0 and (0E2T)2 = 0.

(12) 1.REAL 2 = 〈(1 qua real number), (1 qua real number)〉.
(13) (1.REAL 2)1 = 1 and (1.REAL 2)2 = 1.

(14) dom proj1 = the carrier of E2
T and dom proj1 = R2.

(15) dom proj2 = the carrier of E2
T and dom proj2 = R2.

(16) proj1 is a map from E2
T into R1.

(17) proj2 is a map from E2
T into R1.

(18) For every point p of E2
T holds p = [proj1(p), proj2(p)].

(19) For every subset B of the carrier of E2
T such that B = {0E2T} holds Bc 6= ∅

and (the carrier of E2
T) \B 6= ∅.

(20) Let X, Y be non empty topological spaces and f be a map from X into
Y . Then f is continuous if and only if for every point p of X and for every
subset V of Y such that f(p) ∈ V and V is open there exists a subset W

of X such that p ∈W and W is open and f◦W ⊆ V.

(21) Let p be a point of E2
T and G be a subset of E2

T. Suppose G is open and
p ∈ G. Then there exists a real number r such that r > 0 and {q; q ranges
over points of E2

T: p1−r < q1 ∧ q1 < p1+r ∧ p2−r < q2 ∧ q2 < p2+r} ⊆ G.

(22) Let X, Y , Z be non empty topological spaces, B be a subset of Y , C

be a subset of Z, f be a map from X into Y , and h be a map from Y ¹B
into Z¹C. Suppose f is continuous and h is continuous and rng f ⊆ B and
B 6= ∅ and C 6= ∅. Then there exists a map g from X into Z such that g

is continuous and g = h · f.

In the sequel p, q are points of E2
T.

The function OutInSq from (the carrier of E2
T) \ {0E2T} into (the carrier of

E2
T) \ {0E2T} is defined by the condition (Def. 1).

(Def. 1) Let p be a point of E2
T such that p 6= 0E2T . Then

(i) if p2 ¬ p1 and −p1 ¬ p2 or p2 ­ p1 and p2 ¬ −p1, then OutInSq(p) =

[ 1
p1

,
p2
p1
p1

], and
(ii) if p2 6¬ p1 or −p1 6¬ p2 and if p2 6­ p1 or p2 6¬ −p1, then OutInSq(p) =

[
p1
p2
p2

, 1
p2

].

Next we state a number of propositions:

(23) Let p be a point of E2
T. Suppose p2 6¬ p1 or −p1 6¬ p2 but p2 6­ p1 or

p2 6¬ −p1. Then p1 ¬ p2 and −p2 ¬ p1 or p1 ­ p2 and p1 ¬ −p2.

(24) Let p be a point of E2
T such that p 6= 0E2T . Then



on outside fashoda meet theorem 699

(i) if p1 ¬ p2 and −p2 ¬ p1 or p1 ­ p2 and p1 ¬ −p2, then OutInSq(p) =

[
p1
p2
p2

, 1
p2

], and
(ii) if p1 6¬ p2 or −p2 6¬ p1 and if p1 6­ p2 or p1 6¬ −p2, then OutInSq(p) =

[ 1
p1

,
p2
p1
p1

].

(25) Let D be a subset of E2
T and K0 be a subset of (E2

T)¹D. Suppose K0 =
{p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­ p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2T}. Then
rng(OutInSq ¹K0) ⊆ the carrier of (E2

T)¹D¹K0.

(26) Let D be a subset of E2
T and K0 be a subset of (E2

T)¹D. Suppose K0 =
{p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­ p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2T}. Then
rng(OutInSq ¹K0) ⊆ the carrier of (E2

T)¹D¹K0.

(27) Let K1 be a set and D be a non empty subset of E2
T. Suppose K1 = {p; p

ranges over points of E2
T: (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­ p1 ∧ p2 ¬

−p1) ∧ p 6= 0E2T} and Dc = {0E2T}. Then K1 is a non empty subset of
(E2

T)¹D and a non empty subset of E2
T.

(28) Let K1 be a set and D be a non empty subset of E2
T. Suppose K1 = {p; p

ranges over points of E2
T: (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­ p2 ∧ p1 ¬

−p2) ∧ p 6= 0E2T} and Dc = {0E2T}. Then K1 is a non empty subset of
(E2

T)¹D and a non empty subset of E2
T.

(29) Let X be a non empty topological space and f1, f2 be maps from X

into R1. Suppose f1 is continuous and f2 is continuous. Then there exists
a map g from X into R1 such that for every point p of X and for all real
numbers r1, r2 such that f1(p) = r1 and f2(p) = r2 holds g(p) = r1 + r2

and g is continuous.

(30) Let X be a non empty topological space and a be a real number. Then
there exists a map g from X into R1 such that for every point p of X holds
g(p) = a and g is continuous.

(31) Let X be a non empty topological space and f1, f2 be maps from X

into R1. Suppose f1 is continuous and f2 is continuous. Then there exists
a map g from X into R1 such that for every point p of X and for all real
numbers r1, r2 such that f1(p) = r1 and f2(p) = r2 holds g(p) = r1 − r2

and g is continuous.

(32) Let X be a non empty topological space and f1 be a map from X into
R1. Suppose f1 is continuous. Then there exists a map g from X into R1

such that for every point p of X and for every real number r1 such that
f1(p) = r1 holds g(p) = r1 · r1 and g is continuous.

(33) Let X be a non empty topological space, f1 be a map from X into R1,
and a be a real number. Suppose f1 is continuous. Then there exists a
map g from X into R1 such that for every point p of X and for every real
number r1 such that f1(p) = r1 holds g(p) = a · r1 and g is continuous.
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(34) Let X be a non empty topological space, f1 be a map from X into R1,
and a be a real number. Suppose f1 is continuous. Then there exists a
map g from X into R1 such that for every point p of X and for every real
number r1 such that f1(p) = r1 holds g(p) = r1 + a and g is continuous.

(35) Let X be a non empty topological space and f1, f2 be maps from X

into R1. Suppose f1 is continuous and f2 is continuous. Then there exists
a map g from X into R1 such that for every point p of X and for all real
numbers r1, r2 such that f1(p) = r1 and f2(p) = r2 holds g(p) = r1 · r2

and g is continuous.

(36) Let X be a non empty topological space and f1 be a map from X into
R1. Suppose f1 is continuous and for every point q of X holds f1(q) 6= 0.

Then there exists a map g from X into R1 such that for every point p of
X and for every real number r1 such that f1(p) = r1 holds g(p) = 1

r1
and

g is continuous.

(37) Let X be a non empty topological space and f1, f2 be maps from X into
R1. Suppose f1 is continuous and f2 is continuous and for every point q of
X holds f2(q) 6= 0. Then there exists a map g from X into R1 such that
for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r1
r2

and g is continuous.

(38) Let X be a non empty topological space and f1, f2 be maps from X into
R1. Suppose f1 is continuous and f2 is continuous and for every point q of
X holds f2(q) 6= 0. Then there exists a map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) =
r1
r2
r2

, and
(ii) g is continuous.

(39) Let K0 be a subset of E2
T and f be a map from (E2

T)¹K0 into R1. If for
every point p of (E2

T)¹K0 holds f(p) = proj1(p), then f is continuous.

(40) Let K0 be a subset of E2
T and f be a map from (E2

T)¹K0 into R1. If for
every point p of (E2

T)¹K0 holds f(p) = proj2(p), then f is continuous.

(41) Let K2 be a non empty subset of E2
T and f be a map from (E2

T)¹K2 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K2 holds
f(p) = 1

p1
, and

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K2 holds
q1 6= 0.

Then f is continuous.

(42) Let K2 be a non empty subset of E2
T and f be a map from (E2

T)¹K2 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K2 holds
f(p) = 1

p2
, and



on outside fashoda meet theorem 701

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K2 holds
q2 6= 0.

Then f is continuous.

(43) Let K2 be a non empty subset of E2
T and f be a map from (E2

T)¹K2 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K2 holds

f(p) =
p2
p1
p1

, and
(ii) for every point q of E2

T such that q ∈ the carrier of (E2
T)¹K2 holds

q1 6= 0.

Then f is continuous.

(44) Let K2 be a non empty subset of E2
T and f be a map from (E2

T)¹K2 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K2 holds

f(p) =
p1
p2
p2

, and
(ii) for every point q of E2

T such that q ∈ the carrier of (E2
T)¹K2 holds

q2 6= 0.

Then f is continuous.

(45) Let K0, B0 be subsets of E2
T, f be a map from (E2

T)¹K0 into (E2
T)¹B0,

and f1, f2 be maps from (E2
T)¹K0 into R1. Suppose that

(i) f1 is continuous,
(ii) f2 is continuous,
(iii) K0 6= ∅,
(iv) B0 6= ∅, and
(v) for all real numbers x, y, r, s such that [x, y] ∈ K0 and r = f1([x, y])

and s = f2([x, y]) holds f([x, y]) = [r, s].
Then f is continuous.

(46) Let K0, B0 be subsets of E2
T and f be a map from (E2

T)¹K0 into (E2
T)¹B0.

Suppose f = OutInSq ¹K0 and B0 = (the carrier of E2
T) \ {0E2T} and

K0 = {p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­ p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2T}.
Then f is continuous.

(47) Let K0, B0 be subsets of E2
T and f be a map from (E2

T)¹K0 into (E2
T)¹B0.

Suppose f = OutInSq ¹K0 and B0 = (the carrier of E2
T) \ {0E2T} and

K0 = {p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­ p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2T}.
Then f is continuous.

In this article we present several logical schemes. The scheme TopSubset
concerns a unary predicate P, and states that:

{p; p ranges over points of E2
T: P[p]} is a subset of E2

T
for all values of the parameters.

The scheme TopCompl deals with a subset A of E2
T and a unary predicate

P, and states that:
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−A = {p; p ranges over points of E2
T: not P[p]}

provided the parameters meet the following requirement:
• A = {p; p ranges over points of E2

T: P[p]}.
The scheme ClosedSubset deals with two unary functors F and G yielding

real numbers, and states that:
{p; p ranges over points of E2

T: F(p) ¬ G(p)} is a closed subset of
E2

T
provided the following conditions are met:
• For all points p, q of E2

T holds F(p − q) = F(p) − F(q) and
G(p− q) = G(p)− G(q), and

• For all points p, q of E2
T holds |p− q|2 = |F(p− q)|2 + |G(p− q)|2.

One can prove the following propositions:

(48) Let B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0, and f be a map
from (E2

T)¹B0¹K0 into (E2
T)¹B0. Suppose f = OutInSq ¹K0 and B0 = (the

carrier of E2
T) \ {0E2T} and K0 = {p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­

p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2T}. Then f is continuous and K0 is closed.

(49) Let B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0, and f be a map
from (E2

T)¹B0¹K0 into (E2
T)¹B0. Suppose f = OutInSq ¹K0 and B0 = (the

carrier of E2
T) \ {0E2T} and K0 = {p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­

p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2T}. Then f is continuous and K0 is closed.

(50) Let D be a non empty subset of E2
T. Suppose Dc = {0E2T}. Then there

exists a map h from (E2
T)¹D into (E2

T)¹D such that h = OutInSq and h is
continuous.

(51) Let B, K0, K3 be subsets of E2
T. Suppose that

(i) B = {0E2T},
(ii) K0 = {p : −1 < p1 ∧ p1 < 1 ∧ −1 < p2 ∧ p2 < 1}, and
(iii) K3 = {q : −1 = q1 ∧ −1 ¬ q2 ∧ q2 ¬ 1 ∨ q1 = 1 ∧ −1 ¬ q2 ∧ q2 ¬

1 ∨ −1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1 ∨ 1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1}.
Then there exists a map f from (E2

T)¹Bc into (E2
T)¹Bc such that

(iv) f is continuous and one-to-one,
(v) for every point t of E2

T such that t ∈ K0 and t 6= 0E2T holds f(t) /∈
K0 ∪K3,

(vi) for every point r of E2
T such that r /∈ K0 ∪K3 holds f(r) ∈ K0, and

(vii) for every point s of E2
T such that s ∈ K3 holds f(s) = s.

(52) Let f , g be maps from I into E2
T, K0 be a subset of E2

T, and O, I be
points of I. Suppose that O = 0 and I = 1 and f is continuous and one-
to-one and g is continuous and one-to-one and K0 = {p : −1 < p1 ∧ p1 <

1 ∧ −1 < p2 ∧ p2 < 1} and f(O)1 = −1 and f(I)1 = 1 and −1 ¬ f(O)2
and f(O)2 ¬ 1 and −1 ¬ f(I)2 and f(I)2 ¬ 1 and g(O)2 = −1 and
g(I)2 = 1 and −1 ¬ g(O)1 and g(O)1 ¬ 1 and −1 ¬ g(I)1 and g(I)1 ¬ 1
and rng f ∩K0 = ∅ and rng g ∩K0 = ∅. Then rng f ∩ rng g 6= ∅.
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(53) Let A, B, C, D be real numbers and f be a map from E2
T into E2

T.
Suppose that for every point t of E2

T holds f(t) = [A · t1 + B,C · t2 + D].
Then f is continuous.

(54) Let f , g be maps from I into E2
T, a, b, c, d be real numbers, and O, I be

points of I. Suppose that O = 0 and I = 1 and f is continuous and one-to-
one and g is continuous and one-to-one and f(O)1 = a and f(I)1 = b and
c ¬ f(O)2 and f(O)2 ¬ d and c ¬ f(I)2 and f(I)2 ¬ d and g(O)2 = c

and g(I)2 = d and a ¬ g(O)1 and g(O)1 ¬ b and a ¬ g(I)1 and g(I)1 ¬ b

and a < b and c < d and it is not true that there exists a point r of I such
that a < f(r)1 and f(r)1 < b and c < f(r)2 and f(r)2 < d and it is not
true that there exists a point r of I such that a < g(r)1 and g(r)1 < b and
c < g(r)2 and g(r)2 < d. Then rng f ∩ rng g 6= ∅.

(55)(i) {p7; p7 ranges over points of E2
T: (p7)2 ¬ (p7)1} is a closed subset of

E2
T, and

(ii) {p7; p7 ranges over points of E2
T: (p7)1 ¬ (p7)2} is a closed subset of E2

T.

(56)(i) {p7; p7 ranges over points of E2
T: −(p7)1 ¬ (p7)2} is a closed subset of

E2
T, and

(ii) {p7; p7 ranges over points of E2
T: (p7)2 ¬ −(p7)1} is a closed subset of

E2
T.

(57)(i) {p7; p7 ranges over points of E2
T: −(p7)2 ¬ (p7)1} is a closed subset of

E2
T, and

(ii) {p7; p7 ranges over points of E2
T: (p7)1 ¬ −(p7)2} is a closed subset of

E2
T.
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Summary. We follow [23] in defining the set of primitive recursive func-
tions. The important helper notion is the homogeneous function from finite se-
quences of natural numbers into natural numbers where homogeneous means
that all the sequences in the domain are of the same length. The set of all such
functions is then used to define the notion of a set closed under composition
of functions and under primitive recursion. We call a set primitively recursively
closed iff it contains the initial functions (nullary constant function returning
0, unary successor and projection functions for all arities) and is closed under
composition and primitive recursion. The set of primitive recursive functions is
then defined as the smallest set of functions which is primitive recursively closed.
We show that this set can be obtained by primitive recursive approximation.
We finish with showing that some simple and well known functions are primitive
recursive.

MML Identifier: COMPUT 1.

The articles [17], [22], [3], [4], [6], [20], [18], [7], [8], [2], [5], [11], [1], [15], [9], [16],
[24], [25], [14], [12], [21], [19], [13], and [10] provide the notation and terminology
for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: i, j, k, c, m, n are natural
numbers, a, x, y, z, X, Y are sets, D, E are non empty sets, R is a binary
relation, f , g are functions, and p, q are finite sequences.
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Let X be a non empty set, let n be a natural number, let p be an element
of Xn, let i be a natural number, and let x be an element of X. Then p +· (i, x)
is an element of Xn.

Let n be a natural number, let t be an element of Nn, and let i be a natural
number. Then t(i) is an element of N.

The following propositions are true:

(3)2 〈x, y〉+· (1, z) = 〈z, y〉 and 〈x, y〉+· (2, z) = 〈x, z〉.
(5)3 If f +· (a, x) = g +· (a, y), then f +· (a, z) = g +· (a, z).
(6) (p +· (i, x))¹i = p¹i.
(7) If p +· (i, a) = q +· (i, a), then p¹i = q¹i.
(8) X0 = {∅}.
(9) If n 6= 0, then ∅n = ∅.

(10) If ∅ ∈ rng f, then
∏∗ f = ∅.

(11) If rng f = D, then rng
∏∗〈f〉 = D1.

(12) If 1 ¬ i and i ¬ n + 1, then for every element p of Dn+1 holds p¹i ∈ Dn.

(13) For every set X and for every set Y of finite sequences of X holds
Y ⊆ X∗.

2. Sets of Compatible Functions

Let X be a set. We say that X is compatible if and only if:

(Def. 1) For all functions f , g such that f ∈ X and g ∈ X holds f ≈ g.

Let us observe that there exists a set which is non empty, functional, and
compatible.

Let X be a functional compatible set. One can verify that
⋃

X is function-
like and relation-like.

The following proposition is true

(14) X is functional and compatible iff
⋃

X is a function.

Let X, Y be sets. One can verify that there exists a non empty set of partial
functions from X to Y which is non empty and compatible.

The following propositions are true:

(15) For every non empty functional compatible set X holds dom
⋃

X =⋃{dom f : f ranges over elements of X}.
(16) Let X be a functional compatible set and f be a function. If f ∈ X,

then dom f ⊆ dom
⋃

X and for every set x such that x ∈ dom f holds
(
⋃

X)(x) = f(x).
2The propositions (1) and (2) have been removed.
3The proposition (4) has been removed.
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(17) For every non empty functional compatible set X holds rng
⋃

X =⋃{rng f : f ranges over elements of X}.
Let us consider X, Y . Observe that every non empty set of partial functions

from X to Y is functional.
We now state the proposition

(18) Let P be a compatible non empty set of partial functions from X to Y .
Then

⋃
P is a partial function from X to Y .

3. Homogeneous Relations

Let f be a binary relation. We introduce f is into N as a synonym of f is
natural-yielding.

Let f be a binary relation. We say that f is from tuples on N if and only if:

(Def. 2) dom f ⊆ N∗.
One can check that there exists a function which is from tuples on N and

into N.
Let f be a binary relation from tuples on N. We say that f is length total if

and only if:

(Def. 3) For all finite sequences x, y of elements of N such that len x = len y and
x ∈ dom f holds y ∈ dom f.

Let f be a binary relation. We say that f is homogeneous if and only if:

(Def. 4) For all finite sequences x, y such that x ∈ dom f and y ∈ dom f holds
len x = len y.

One can prove the following proposition

(19) If dom R ⊆ Dn, then R is homogeneous.

Let us observe that ∅ is homogeneous.
Let p be a finite sequence and let x be a set. Observe that {p} 7−→ x is non

empty and homogeneous.
Let us note that there exists a function which is non empty and homogeneous.
Let f be a homogeneous function and let g be a function. Observe that g · f

is homogeneous.
Let X, Y be sets. Note that there exists a partial function from X∗ to Y

which is homogeneous.
Let X, Y be non empty sets. Observe that there exists a partial function

from X∗ to Y which is non empty and homogeneous.
Let X be a non empty set. Observe that there exists a partial function from

X∗ to X which is non empty, homogeneous, and quasi total.
One can check that there exists a function from tuples on N which is non

empty, homogeneous, into N, and length total.
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One can check that every partial function from N∗ to N is into N and from
tuples on N.

Let us observe that every partial function from N∗ to N which is quasi total
is also length total.

The following proposition is true

(20) Every length total function from tuples on N into N is a quasi total
partial function from N∗ to N.

Let f be a homogeneous binary relation. The functor arity f yielding a na-
tural number is defined by:

(Def. 5)(i) For every finite sequence x such that x ∈ dom f holds arity f = len x

if there exists a finite sequence x such that x ∈ dom f,

(ii) arity f = 0, otherwise.

The following propositions are true:

(21) arity ∅ = 0.

(22) For every homogeneous binary relation f such that dom f = {∅} holds
arity f = 0.

(23) For every homogeneous partial function f from X∗ to Y holds dom f ⊆
Xarity f .

(24) For every homogeneous function f from tuples on N holds dom f ⊆
Narity f .

(25) Let f be a homogeneous partial function from X∗ to X. Then f is quasi
total and non empty if and only if dom f = Xarity f .

(26) Let f be a homogeneous function into N and from tuples on N. Then f

is length total and non empty if and only if dom f = Narity f .

(27) For every non empty homogeneous partial function f from D∗ to D and
for every n such that dom f ⊆ Dn holds arity f = n.

(28) For every homogeneous partial function f from D∗ to D and for every
n such that dom f = Dn holds arity f = n.

Let R be a binary relation. We say that R has the same arity if and only if
the condition (Def. 6) is satisfied.

(Def. 6) Let f , g be functions such that f ∈ rng R and g ∈ rng R. Then
(i) if f is empty, then g is empty or dom g = {∅}, and
(ii) if f is non empty and g is non empty, then there exists a natural

number n and there exists a non empty set X such that dom f ⊆ Xn and
dom g ⊆ Xn.

Let us note that ∅ has the same arity.
One can check that there exists a finite sequence which has the same arity.

Let X be a set. One can verify that there exists a finite sequence of elements of
X which has the same arity and there exists an element of X∗ which has the
same arity.
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Let F be a binary relation with the same arity. The functor arity F yielding
a natural number is defined as follows:

(Def. 7)(i) For every homogeneous function f such that f ∈ rng F holds
arity F = arity f if there exists a homogeneous function f such that
f ∈ rng F,

(ii) arity F = 0, otherwise.

Next we state the proposition

(29) For every finite sequence F with the same arity such that len F = 0
holds arity F = 0.

Let X be a set. The functor HFuncs X yielding a non empty set of partial
functions from X∗ to X is defined by:

(Def. 8) HFuncs X = {f ; f ranges over elements of X∗→̇X : f is homogeneous}.
Next we state the proposition

(30) ∅ ∈ HFuncs X.

Let X be a non empty set. Note that there exists an element of HFuncs X

which is non empty, homogeneous, and quasi total.
Let X be a set. Observe that every element of HFuncs X is homogeneous.
Let X be a non empty set and let S be a non empty subset of HFuncs X.

Note that every element of S is homogeneous.
The following propositions are true:

(31) Every homogeneous function into N and from tuples on N is an element
of HFuncsN.

(32) Every length total homogeneous function from tuples on N into N is a
quasi total element of HFuncsN.

(33) Let X be a non empty set and F be a binary relation such that rng F ⊆
HFuncs X and for all homogeneous functions f , g such that f ∈ rng F and
g ∈ rng F holds arity f = arity g. Then F has the same arity.

Let n, m be natural numbers. The functor constn(m) yields a homogeneous
function into N and from tuples on N and is defined by:

(Def. 9) constn(m) = Nn 7−→ m.

We now state the proposition

(34) constn(m) ∈ HFuncsN.

Let n, m be natural numbers. One can check that constn(m) is length total
and non empty.

We now state two propositions:

(35) arity constn(m) = n.

(36) For every element t of Nn holds (constn(m))(t) = m.

Let n, i be natural numbers. The functor succn(i) yields a homogeneous
function into N and from tuples on N and is defined by:
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(Def. 10) dom succn(i) = Nn and for every element p of Nn holds (succn(i))(p) =
pi + 1.

We now state the proposition

(37) succn(i) ∈ HFuncsN.

Let n, i be natural numbers. One can check that succn(i) is length total and
non empty.

Next we state the proposition

(38) arity succn(i) = n.

Let n, i be natural numbers. The functor projn(i) yielding a homogeneous
function into N and from tuples on N is defined by:

(Def. 11) projn(i) = proj(n 7→ N, i).
The following two propositions are true:

(39) projn(i) ∈ HFuncsN.

(40) dom projn(i) = Nn and if 1 ¬ i and i ¬ n, then rng projn(i) = N.

Let n, i be natural numbers. One can verify that projn(i) is length total and
non empty.

We now state two propositions:

(41) arity projn(i) = n.

(42) For every element t of Nn holds (projn(i))(t) = t(i).
Let X be a set. Observe that HFuncs X is functional.
We now state three propositions:

(43) Let F be a function from D into HFuncs E. Suppose rng F is compatible
and for every element x of D holds dom F (x) ⊆ En. Then there exists an
element f of HFuncs E such that f =

⋃
F and dom f ⊆ En.

(44) For every function F from N into HFuncs D such that for every i holds
F (i) ⊆ F (i + 1) holds

⋃
F ∈ HFuncs D.

(45) For every finite sequence F of elements of HFuncs D with the same arity
holds dom

∏∗ F ⊆ Darity F .

Let X be a non empty set and let F be a finite sequence of elements of
HFuncs X with the same arity. Observe that

∏∗ F is homogeneous.
The following proposition is true

(46) Let f be an element of HFuncs D and F be a finite sequence of elements
of HFuncs D with the same arity. Then dom(f · ∏∗ F ) ⊆ Darity F and
rng(f ·∏∗ F ) ⊆ D and f ·∏∗ F ∈ HFuncs D.

Let X, Y be non empty sets, let P be a non empty set of partial functions
from X to Y , and let S be a non empty subset of P . We see that the element
of S is an element of P .

Let f be a homogeneous function from tuples on N. One can check that 〈f〉
has the same arity.
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Next we state several propositions:

(47) For every homogeneous function f into N and from tuples on N holds
arity〈f〉 = arity f.

(48) Let f , g be non empty elements of HFuncsN and F be a finite sequence
of elements of HFuncsN with the same arity. If g = f ·∏∗ F, then arity g =
arity F.

(49) Let f be a non empty quasi total element of HFuncs D and F be a
finite sequence of elements of HFuncs D with the same arity. Suppose
arity f = len F and F is non empty and for every element h of HFuncs D

such that h ∈ rng F holds h is quasi total and non empty. Then f ·∏∗ F is a
non empty quasi total element of HFuncs D and dom(f ·∏∗ F ) = Darity F .

(50) Let f be a quasi total element of HFuncs D and F be a finite sequence
of elements of HFuncs D with the same arity. Suppose arity f = len F and
for every element h of HFuncs D such that h ∈ rng F holds h is quasi total.
Then f ·∏∗ F is a quasi total element of HFuncs D.

(51) For all non empty quasi total elements f , g of HFuncs D such that
arity f = 0 and arity g = 0 and f(∅) = g(∅) holds f = g.

(52) Let f , g be non empty length total homogeneous functions from tuples
on N into N. If arity f = 0 and arity g = 0 and f(∅) = g(∅), then f = g.

4. Primitive Recursiveness

We adopt the following convention: f1, f2 are non empty homogeneous func-
tions into N and from tuples on N, e1, e2 are homogeneous functions into N and
from tuples on N, and p is an element of Narity f1+1.

Let g, f1, f2 be homogeneous functions into N and from tuples on N and let
i be a natural number. We say that g is primitive recursively expressed by f1,
f2 and i if and only if the condition (Def. 12) is satisfied.

(Def. 12) There exists a natural number n such that
(i) dom g ⊆ Nn,

(ii) i ­ 1,

(iii) i ¬ n,

(iv) arity f1 + 1 = n,

(v) n + 1 = arity f2, and
(vi) for every finite sequence p of elements of N such that len p = n holds

p +· (i, 0) ∈ dom g iff p¹i ∈ dom f1 and if p +· (i, 0) ∈ dom g, then g(p +·
(i, 0)) = f1(p¹i) and for every natural number n holds p+·(i, n+1) ∈ dom g

iff p +· (i, n) ∈ dom g and (p +· (i, n)) a 〈g(p +· (i, n))〉 ∈ dom f2 and if
p+·(i, n+1) ∈ dom g, then g(p+·(i, n+1)) = f2((p+·(i, n))a〈g(p+·(i, n))〉).
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Let f1, f2 be homogeneous functions into N and from tuples on N, let i be
a natural number, and let p be a finite sequence of elements of N. The functor
primrec(f1, f2, i, p) yielding an element of HFuncsN is defined by the condition
(Def. 13).

(Def. 13) There exists a function F from N into HFuncsN such that
(i) primrec(f1, f2, i, p) = F (pi),
(ii) if i ∈ dom p and p¹i ∈ dom f1, then F (0) = {p +· (i, 0)} 7−→ f1(p¹i),
(iii) if i /∈ dom p or p¹i /∈ dom f1, then F (0) = ∅, and
(iv) for every natural number m holds if i ∈ dom p and p +· (i,m) ∈

dom F (m) and (p+·(i,m))a〈F (m)(p+·(i,m))〉 ∈ dom f2, then F (m+1) =
F (m)+·({p+· (i,m+1)} 7−→ f2((p+· (i,m))a 〈F (m)(p+· (i,m))〉)) and if
i /∈ dom p or p+·(i,m) /∈ dom F (m) or (p+·(i,m))a 〈F (m)(p+·(i,m))〉 /∈
dom f2, then F (m + 1) = F (m).

We now state several propositions:

(53) For all finite sequences p, q of elements of N such that q ∈
dom primrec(e1, e2, i, p) there exists k such that q = p +· (i, k).

(54) For every finite sequence p of elements of N such that i /∈ dom p holds
primrec(e1, e2, i, p) = ∅.

(55) For all finite sequences p, q of elements of N holds primrec(e1, e2, i, p) ≈
primrec(e1, e2, i, q).

(56) For every finite sequence p of elements of N holds dom primrec(e1, e2, i, p) ⊆
N1+arity e1 .

(57) For every finite sequence p of elements of N such that e1 is empty holds
primrec(e1, e2, i, p) is empty.

(58) If f1 is length total and f2 is length total and arity f1 + 2 = arity f2 and
1 ¬ i and i ¬ 1 + arity f1, then p ∈ dom primrec(f1, f2, i, p).

Let f1, f2 be homogeneous functions into N and from tuples on N and let
i be a natural number. The functor primrec(f1, f2, i) yielding an element of
HFuncsN is defined as follows:

(Def. 14) There exists a function G from Narity f1+1 into HFuncsN such that
primrec(f1, f2, i) =

⋃
G and for every element p of Narity f1+1 holds

G(p) = primrec(f1, f2, i, p).

One can prove the following propositions:

(59) If e1 is empty, then primrec(e1, e2, i) is empty.

(60) dom primrec(f1, f2, i) ⊆ Narity f1+1.

(61) If f1 is length total and f2 is length total and arity f1 + 2 = arity f2 and
1 ¬ i and i ¬ 1 + arity f1, then dom primrec(f1, f2, i) = Narity f1+1 and
arity primrec(f1, f2, i) = arity f1 + 1.

(62) If i ∈ dom p, then p +· (i, 0) ∈ dom primrec(f1, f2, i) iff p¹i ∈ dom f1.
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(63) If i ∈ dom p and p +· (i, 0) ∈ dom primrec(f1, f2, i), then
(primrec(f1, f2, i))(p +· (i, 0)) = f1(p¹i).

(64) If i ∈ dom p and f1 is length total, then (primrec(f1, f2, i))(p +· (i, 0)) =
f1(p¹i).

(65) If i ∈ dom p, then p +· (i,m + 1) ∈ dom primrec(f1, f2, i) iff p +· (i, m) ∈
dom primrec(f1, f2, i) and (p+·(i,m))a 〈(primrec(f1, f2, i))(p+·(i,m))〉 ∈
dom f2.

(66) If i ∈ dom p and p +· (i, m + 1) ∈ dom primrec(f1, f2, i),
then (primrec(f1, f2, i))(p +· (i,m + 1)) = f2((p +· (i,m)) a

〈(primrec(f1, f2, i))(p +· (i,m))〉).
(67) Suppose f1 is length total and f2 is length total and arity f1+2 = arity f2

and 1 ¬ i and i ¬ 1 + arity f1. Then (primrec(f1, f2, i))(p +· (i,m + 1)) =
f2((p +· (i,m)) a 〈(primrec(f1, f2, i))(p +· (i,m))〉).

(68) If arity f1 + 2 = arity f2 and 1 ¬ i and i ¬ arity f1 + 1, then
primrec(f1, f2, i) is primitive recursively expressed by f1, f2 and i.

(69) Suppose 1 ¬ i and i ¬ arity f1+1. Let g be an element of HFuncsN. If g is
primitive recursively expressed by f1, f2 and i, then g = primrec(f1, f2, i).

5. The Set of Primitive Recursive Functions

Let X be a set. We say that X is composition closed if and only if the
condition (Def. 15) is satisfied.

(Def. 15) Let f be an element of HFuncsN and F be a finite sequence of elements
of HFuncsN with the same arity. If f ∈ X and arity f = len F and rng F ⊆
X, then f ·∏∗ F ∈ X.

We say that X is primitive recursion closed if and only if the condition (Def. 16)
is satisfied.

(Def. 16) Let g, f1, f2 be elements of HFuncsN and i be a natural number. Suppose
g is primitive recursively expressed by f1, f2 and i and f1 ∈ X and f2 ∈ X.

Then g ∈ X.

Let X be a set. We say that X is primitive recursively closed if and only if
the conditions (Def. 17) are satisfied.

(Def. 17)(i) const0(0) ∈ X,

(ii) succ1(1) ∈ X,

(iii) for all natural numbers n, i such that 1 ¬ i and i ¬ n holds projn(i) ∈
X, and

(iv) X is composition closed and primitive recursion closed.

We now state the proposition
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(70) HFuncsN is primitive recursively closed.

One can check that there exists a subset of HFuncsN which is primitive
recursively closed and non empty.

In the sequel P is a primitive recursively closed non empty subset of HFuncsN.

We now state several propositions:

(71) For every element g of HFuncsN such that e1 = ∅ and g is primitive
recursively expressed by e1, e2 and i holds g = ∅.

(72) Let g be an element of HFuncsN, f1, f2 be quasi total elements of
HFuncsN, and i be a natural number. Suppose g is primitive recursively
expressed by f1, f2 and i. Then g is quasi total and if f1 is non empty,
then g is non empty.

(73) constn(c) ∈ P.

(74) If 1 ¬ i and i ¬ n, then succn(i) ∈ P.

(75) ∅ ∈ P.

(76) Let f be an element of P and F be a finite sequence of elements of P

with the same arity. If arity f = len F, then f ·∏∗ F ∈ P.

(77) Let f1, f2 be elements of P . Suppose arity f1 + 2 = arity f2. Let i be a
natural number. If 1 ¬ i and i ¬ arity f1 + 1, then primrec(f1, f2, i) ∈ P.

The subset PrimRec of HFuncsN is defined as follows:

(Def. 18) PrimRec =
⋂{R; R ranges over elements of 2HFuncsN: R is primitive

recursively closed}.
The following proposition is true

(78) For every subset X of HFuncsN such that X is primitive recursively
closed holds PrimRec ⊆ X.

Let us observe that PrimRec is non empty and primitive recursively closed.
One can check that every element of PrimRec is homogeneous.
Let x be a set. We say that x is primitive recursive if and only if:

(Def. 19) x ∈ PrimRec .

Let us note that every set which is primitive recursive is also relation-like
and function-like.

Let us observe that every binary relation which is primitive recursive is also
homogeneous, into N, and from tuples on N.

Let us observe that every element of PrimRec is primitive recursive.
Let us note that there exists a function which is primitive recursive and there

exists an element of HFuncsN which is primitive recursive.
The initial functions constitute a subset of HFuncsN defined as follows:

(Def. 20) The initial functions = {const0(0), succ1(1)} ∪ {projn(i);n ranges over
natural numbers, i ranges over natural numbers: 1 ¬ i ∧ i ¬ n}.
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Let Q be a subset of HFuncsN. The primitive recursion closure of Q is a subset
of HFuncsN and is defined by the condition (Def. 21).

(Def. 21) The primitive recursion closure of Q = Q ∪ {g; g ranges over elements
of HFuncsN :

∨
f1,f2 : element of HFuncsN

∨
i : natural number (f1 ∈ Q ∧ f2 ∈

Q ∧ g is primitive recursively expressed by f1, f2 and i)}.
The composition closure of Q is a subset of HFuncsN and is defined by the
condition (Def. 22).

(Def. 22) The composition closure of Q = Q ∪ {f ·∏∗ F ; f ranges over elements
of HFuncsN, F ranges over elements of (HFuncsN)∗ with the same arity:
f ∈ Q ∧ arity f = len F ∧ rng F ⊆ Q}.

The function PrimRec≈ from N into 2HFuncsN is defined by the conditions
(Def. 23).

(Def. 23)(i) PrimRec≈(0) = the initial functions, and
(ii) for every natural number m holds PrimRec≈(m + 1) = (the pri-

mitive recursion closure of PrimRec≈(m)) ∪ (the composition closure of
PrimRec≈(m)).

One can prove the following propositions:

(79) If m ¬ n, then PrimRec≈(m) ⊆ PrimRec≈(n).
(80)

⋃
(PrimRec≈) is primitive recursively closed.

(81) PrimRec =
⋃

(PrimRec≈).
(82) For every element f of HFuncsN such that f ∈ PrimRec≈(m) holds f is

quasi total.

Let us note that every element of PrimRec is quasi total and homogeneous.
Let us observe that every element of HFuncsN which is primitive recursive

is also quasi total.
Let us observe that every function from tuples on N which is primitive re-

cursive is also length total and there exists an element of PrimRec which is non
empty.

6. Examples

Let f be a homogeneous binary relation. We say that f is nullary if and only
if:

(Def. 24) arity f = 0.

We say that f is unary if and only if:

(Def. 25) arity f = 1.

We say that f is binary if and only if:

(Def. 26) arity f = 2.



716 grzegorz bancerek and piotr rudnicki

We say that f is ternary if and only if:

(Def. 27) arity f = 3.

One can check the following observations:

∗ every homogeneous function which is unary is also non empty,

∗ every homogeneous function which is binary is also non empty, and

∗ every homogeneous function which is ternary is also non empty.

One can check the following observations:

∗ proj1(1) is primitive recursive,

∗ proj2(1) is primitive recursive,

∗ proj2(2) is primitive recursive,

∗ succ1(1) is primitive recursive, and

∗ succ3(3) is primitive recursive.

Let i be a natural number. One can check the following observations:

∗ const0(i) is nullary,

∗ const1(i) is unary,

∗ const2(i) is binary,

∗ const3(i) is ternary,

∗ proj1(i) is unary,

∗ proj2(i) is binary,

∗ proj3(i) is ternary,

∗ succ1(i) is unary,

∗ succ2(i) is binary, and

∗ succ3(i) is ternary.

Let j be a natural number. One can check that consti(j) is primitive recursive.
One can verify the following observations:

∗ there exists a homogeneous function which is nullary, primitive recursive,
and non empty,

∗ there exists a homogeneous function which is unary and primitive recur-
sive,

∗ there exists a homogeneous function which is binary and primitive re-
cursive, and

∗ there exists a homogeneous function which is ternary and primitive re-
cursive.

One can verify the following observations:

∗ there exists a homogeneous function from tuples on N which is non
empty, nullary, length total, and into N,
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∗ there exists a homogeneous function from tuples on N which is non
empty, unary, length total, and into N,

∗ there exists a homogeneous function from tuples on N which is non
empty, binary, length total, and into N, and

∗ there exists a homogeneous function from tuples on N which is non
empty, ternary, length total, and into N.

Let f be a nullary non empty primitive recursive function and let g be
a binary primitive recursive function. One can check that primrec(f, g, 1) is
primitive recursive and unary.

Let f be a unary primitive recursive function and let g be a ternary primitive
recursive function. One can verify that primrec(f, g, 1) is primitive recursive and
binary and primrec(f, g, 2) is primitive recursive and binary.

The following propositions are true:

(83) Let f1 be a unary length total homogeneous function from tuples on N
into N and f2 be a non empty homogeneous function into N and from
tuples on N. Then (primrec(f1, f2, 2))(〈i, 0〉) = f1(〈i〉).

(84) If f1 is length total and arity f1 = 0, then (primrec(f1, f2, 1))(〈0〉) =
f1(∅).

(85) Let f1 be a unary length total homogeneous function from tuples
on N into N and f2 be a ternary length total homogeneous function
from tuples on N into N. Then (primrec(f1, f2, 2))(〈i, j + 1〉) = f2(〈i, j,
(primrec(f1, f2, 2))(〈i, j〉)〉).

(86) If f1 is length total and f2 is length total and arity f1 = 0 and arity f2 =
2, then (primrec(f1, f2, 1))(〈i + 1〉) = f2(〈i, (primrec(f1, f2, 1))(〈i〉)〉).

Let g be a function. The functor 〈1,?,2〉g yielding a function is defined by:

(Def. 28) 〈1,?,2〉g = g ·∏∗〈proj3(1), proj3(3)〉.
Let g be a function into N and from tuples on N. Observe that 〈1,?,2〉g is into

N and from tuples on N.
Let g be a homogeneous function. Note that 〈1,?,2〉g is homogeneous.
Let g be a binary length total homogeneous function from tuples on N into

N. Observe that 〈1,?,2〉g is non empty ternary and length total.
The following propositions are true:

(87) Let f be a binary length total homogeneous function from tuples on N
into N. Then (〈1,?,2〉f)(〈i, j, k〉) = f(〈i, k〉).

(88) For every binary primitive recursive function g holds 〈1,?,2〉g ∈ PrimRec .

Let f be a binary primitive recursive homogeneous function. Observe that
〈1,?,2〉f is primitive recursive and ternary.

The binary primitive recursive function [+] is defined by:

(Def. 29) [+] = primrec(proj1(1), succ3(3), 2).
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We now state the proposition

(89) [+](〈i, j〉) = i + j.

The binary primitive recursive function [∗] is defined by:

(Def. 30) [∗] = primrec(const1(0), 〈1,?,2〉[+], 2).
Next we state the proposition

(90) For all natural numbers i, j holds [∗](〈i, j〉) = i · j.
Let g, h be binary primitive recursive homogeneous functions. Note that 〈g,

h〉 has the same arity.
Let f , g, h be binary primitive recursive functions. Observe that f ·∏∗〈g,

h〉 is primitive recursive.
Let f , g, h be binary primitive recursive functions. Observe that f ·∏∗〈g,

h〉 is binary.
Let f be a unary primitive recursive function and let g be a primitive recur-

sive function. Note that f ·∏∗〈g〉 is primitive recursive.
Let f be a unary primitive recursive function and let g be a binary primitive

recursive function. One can verify that f ·∏∗〈g〉 is binary.
The unary primitive recursive function [!] is defined by:

(Def. 31) [!] = primrec(const0(1), [∗] ·∏∗〈succ1(1) ·∏∗〈proj2(1)〉, proj2(2)〉, 1).
In this article we present several logical schemes. The scheme Primrec1 deals

with a unary length total homogeneous function A from tuples on N into N, a
binary length total homogeneous function B from tuples on N into N, a unary
functor F yielding a natural number, and a binary functor G yielding a natural
number, and states that:

For all natural numbers i, j holds (A·∏∗〈B〉)(〈i, j〉) = F(G(i, j))
provided the parameters meet the following requirements:
• For every natural number i holds A(〈i〉) = F(i), and
• For all natural numbers i, j holds B(〈i, j〉) = G(i, j).

The scheme Primrec2 deals with binary length total homogeneous functions
A, B, C from tuples on N into N and three binary functors F , G, and H yielding
natural numbers, and states that:

For all natural numbers i, j holds (A·∏∗〈B, C〉)(〈i, j〉) = F(G(i, j),H(i, j))
provided the parameters meet the following conditions:
• For all natural numbers i, j holds A(〈i, j〉) = F(i, j),
• For all natural numbers i, j holds B(〈i, j〉) = G(i, j), and
• For all natural numbers i, j holds C(〈i, j〉) = H(i, j).

The following proposition is true

(91) [!](〈i〉) = i!.
The binary primitive recursive function [∧] is defined by:

(Def. 32) [∧] = primrec(const1(1), 〈1,?,2〉[∗], 2).
One can prove the following proposition
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(92) [∧](〈i, j〉) = ij .

The unary primitive recursive function [pred] is defined as follows:

(Def. 33) [pred] = primrec(const0(0), proj2(1), 1).
The following proposition is true

(93) [pred](〈0〉) = 0 and [pred](〈i + 1〉) = i.

The binary primitive recursive function [−] is defined as follows:

(Def. 34) [−] = primrec(proj1(1), 〈1,?,2〉([pred] ·∏∗〈proj2(2)〉), 2).
The following proposition is true

(94) [−](〈i, j〉) = i−′ j.
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Summary. A Turing machine can be viewed as a simple kind of computer,
whose operations are constrainted to reading and writing symbols on a tape, or
moving along the tape to the left or right. In theory, one has proven that the
computability of Turing machines is equivalent to recursive functions. This ar-
ticle defines and verifies the Turing machines of summation and three primitive
functions which are successor, zero and project functions. It is difficult to com-
pute sophisticated functions by simple Turing machines. Therefore, we define the
combination of two Turing machines.

MML Identifier: TURING 1.

The notation and terminology used in this paper are introduced in the following
articles: [3], [4], [13], [2], [5], [18], [14], [6], [7], [8], [12], [17], [16], [1], [11], [20],
[10], [19], [15], and [9].

1. Preliminaries

In this paper n, i, j, k denote natural numbers.
Let A, B be non empty sets, let f be a function from A into B, and let g be

a partial function from A to B. Then f+·g is a function from A into B.
Let X, Y be non empty sets, let a be an element of X, and let b be an

element of Y . Then a 7−→. b is a partial function from X to Y .
Let n be a natural number. The functor SegM n yielding a subset of N is

defined as follows:

(Def. 1) SegM n = {k : k ¬ n}.
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Let n be a natural number. One can verify that SegM n is finite and non
empty.

One can prove the following propositions:

(1) k ∈ SegM n iff k ¬ n.

(2) For every function f and for all sets x, y, z, u, v such that u 6= x holds
(f+·(〈〈x, y〉〉7−→. z))(〈〈u, v〉〉) = f(〈〈u, v〉〉).

(3) For every function f and for all sets x, y, z, u, v such that v 6= y holds
(f+·(〈〈x, y〉〉7−→. z))(〈〈u, v〉〉) = f(〈〈u, v〉〉).

In the sequel i1, i2, i3, i4 denote elements of Z.
We now state three propositions:

(4)
∑〈i1, i2〉 = i1 + i2.

(5)
∑〈i1, i2, i3〉 = i1 + i2 + i3.

(6)
∑〈i1, i2, i3, i4〉 = i1 + i2 + i3 + i4.

Let f be a finite sequence of elements of N and let i be a natural number.
The functor Prefix(f, i) yields a finite sequence of elements of Z and is defined
by:

(Def. 2) Prefix(f, i) = f¹ Seg i.

Next we state two propositions:

(7) For all natural numbers x1, x2 holds
∑

Prefix(〈x1, x2〉, 1) = x1 and∑
Prefix(〈x1, x2〉, 2) = x1 + x2.

(8) For all natural numbers x1, x2, x3 holds
∑

Prefix(〈x1, x2, x3〉, 1) = x1

and
∑

Prefix(〈x1, x2, x3〉, 2) = x1+x2 and
∑

Prefix(〈x1, x2, x3〉, 3) = x1+
x2 + x3.

2. Definitions and Terminology for Turing Machine

We consider Turing machine structures as systems
〈 symbols, control states, a transition, an initial state, an accepting state 〉,

where the symbols and the control states constitute finite non empty sets, the
transition is a function from [: the control states, the symbols :] into [: the control
states, the symbols, {−1, 0, 1} :], and the initial state and the accepting state are
elements of the control states.

Let T be a Turing machine structure. A state of T is an element of the
control states of T . A tape of T is an element of (the symbols of T )Z. A symbol
of T is an element of the symbols of T .

Let T be a Turing machine structure, let t be a tape of T , let h be an integer,
and let s be a symbol of T . The functor Tape-Chg(t, h, s) yields a tape of T and
is defined as follows:
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(Def. 3) Tape-Chg(t, h, s) = t+·(h 7−→. s).
Let T be a Turing machine structure. A State of T is an element of [: the

control states of T , Z, (the symbols of T )Z :]. A transition-source of T is an
element of [: the control states of T , the symbols of T :]. A transition-target of
T is an element of [: the control states of T , the symbols of T , {−1, 0, 1} :].

Let T be a Turing machine structure and let g be a transition-target of T .
The functor offset(g) yields an integer and is defined as follows:

(Def. 4) offset(g) = g3.

Let T be a Turing machine structure and let s be a State of T . The functor
Head(s) yielding an integer is defined by:

(Def. 5) Head(s) = s2.

Let T be a Turing machine structure and let s be a State of T . The functor
s -target yielding a transition-target of T is defined by:

(Def. 6) s -target = (the transition of T )(〈〈s1, (s3 qua tape of T )(Head(s))〉〉).
Let T be a Turing machine structure and let s be a State of T . The functor

Following(s) yields a State of T and is defined as follows:

(Def. 7) Following(s) =





〈〈s -target1, Head(s) + offset(s -target),
Tape-Chg(s3, Head(s), s -target2)〉〉,
if s1 6= the accepting state of T ,

s, otherwise.
Let T be a Turing machine structure and let s be a State of T . The functor

Computation(s) yielding a function from N into [: the control states of T , Z,

(the symbols of T )Z :] is defined as follows:

(Def. 8) (Computation(s))(0) = s and for every i holds (Computation(s))(i+1) =
Following((Computation(s))(i)).

In the sequel T is a Turing machine structure and s is a State of T .
The following propositions are true:

(9) Let T be a Turing machine structure and s be a State of T . If s1 = the
accepting state of T , then s = Following(s).

(10) (Computation(s))(0) = s.

(11) (Computation(s))(k + 1) = Following((Computation(s))(k)).
(12) (Computation(s))(1) = Following(s).
(13) (Computation(s))(i + k) = (Computation((Computation(s))(i)))(k).
(14) If i ¬ j and Following((Computation(s))(i)) = (Computation(s))(i),

then (Computation(s))(j) = (Computation(s))(i).
(15) If i ¬ j and (Computation(s))(i)1 = the accepting state of T , then

(Computation(s))(j) = (Computation(s))(i).

Let T be a Turing machine structure and let s be a State of T . We say that
s is accepting if and only if:
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(Def. 9) There exists k such that (Computation(s))(k)1 = the accepting state of
T .

Let T be a Turing machine structure and let s be a State of T . Let us assume
that s is accepting. The functor Result(s) yielding a State of T is defined by:

(Def. 10) There exists k such that Result(s) = (Computation(s))(k) and
(Computation(s))(k)1 = the accepting state of T .

We now state the proposition

(16) Let T be a Turing machine structure and s be a State of T . Suppose s

is accepting. Then there exists a natural number k such that
(i) (Computation(s))(k)1 = the accepting state of T ,
(ii) Result(s) = (Computation(s))(k), and
(iii) for every natural number i such that i < k holds (Computation(s))(i)1 6=

the accepting state of T .

Let A, B be non empty sets and let y be a set. Let us assume that y ∈ B.

The functor id(A,B, y) yields a function from A into [:A, B :] and is defined as
follows:

(Def. 11) For every element x of A holds (id(A,B, y))(x) = 〈〈x, y〉〉.
The function SumTran from [: SegM 5, {0, 1} :] into [: SegM 5, {0, 1}, {−1, 0, 1} :]

is defined as follows:

(Def. 12) SumTran = id([: SegM 5, {0, 1} :], {−1, 0, 1}, 0)+·(〈〈0, 0〉〉7−→. 〈〈0, 0, 1〉〉)+·(〈〈0,

1〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1, 1〉〉7−→. 〈〈1, 1, 1〉〉)+·(〈〈1, 0〉〉7−→. 〈〈2, 1, 1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈2,

1, 1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0, −1〉〉)+·(〈〈3, 1〉〉7−→. 〈〈4, 0, −1〉〉)+·(〈〈4, 1〉〉7−→. 〈〈4, 1,

−1〉〉)+·(〈〈4, 0〉〉7−→. 〈〈5, 0, 0〉〉).
Next we state the proposition

(17) SumTran(〈〈0, 0〉〉) = 〈〈0, 0, 1〉〉 and SumTran(〈〈0, 1〉〉) = 〈〈1, 0, 1〉〉 and
SumTran(〈〈1, 1〉〉) = 〈〈1, 1, 1〉〉 and SumTran(〈〈1, 0〉〉) = 〈〈2, 1, 1〉〉 and
SumTran(〈〈2, 1〉〉) = 〈〈2, 1, 1〉〉 and SumTran(〈〈2, 0〉〉) = 〈〈3, 0, −1〉〉 and
SumTran(〈〈3, 1〉〉) = 〈〈4, 0, −1〉〉 and SumTran(〈〈4, 1〉〉) = 〈〈4, 1, −1〉〉 and
SumTran(〈〈4, 0〉〉) = 〈〈5, 0, 0〉〉.

Let T be a Turing machine structure, let t be a tape of T , and let i, j be
integers. We say that t is 1 between i, j if and only if:

(Def. 13) t(i) = 0 and t(j) = 0 and for every integer k such that i < k and k < j

holds t(k) = 1.

Let f be a finite sequence of elements of N, let T be a Turing machine
structure, and let t be a tape of T . We say that t stores data f if and only if:

(Def. 14) For every natural number i such that 1 ¬ i and i < len f holds t is 1
between

∑
Prefix(f, i) + 2 · (i− 1),

∑
Prefix(f, i + 1) + 2 · i.

We now state several propositions:
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(18) Let T be a Turing machine structure, t be a tape of T , and s, n be
natural numbers. If t stores data 〈s, n〉, then t is 1 between s, s + n + 2.

(19) Let T be a Turing machine structure, t be a tape of T , and s, n be
natural numbers. If t is 1 between s, s + n + 2, then t stores data 〈s, n〉.

(20) Let T be a Turing machine structure, t be a tape of T , and s, n be natural
numbers. Suppose t stores data 〈s, n〉. Then t(s) = 0 and t(s + n + 2) = 0
and for every integer i such that s < i and i < s + n + 2 holds t(i) = 1.

(21) Let T be a Turing machine structure, t be a tape of T , and s, n1, n2 be
natural numbers. Suppose t stores data 〈s, n1, n2〉. Then t is 1 between s,
s + n1 + 2 and 1 between s + n1 + 2, s + n1 + n2 + 4.

(22) Let T be a Turing machine structure, t be a tape of T , and s, n1, n2 be
natural numbers. Suppose t stores data 〈s, n1, n2〉. Then

(i) t(s) = 0,

(ii) t(s + n1 + 2) = 0,

(iii) t(s + n1 + n2 + 4) = 0,
(iv) for every integer i such that s < i and i < s + n1 + 2 holds t(i) = 1,

and
(v) for every integer i such that s + n1 + 2 < i and i < s + n1 + n2 + 4

holds t(i) = 1.

(23) Let f be a finite sequence of elements of N and s be a natural number. If
len f ­ 1, then

∑
Prefix(〈s〉 a f, 1) = s and

∑
Prefix(〈s〉 a f, 2) = s + f1.

(24) Let f be a finite sequence of elements of N and s be a natural number.
Suppose len f ­ 3. Then

∑
Prefix(〈s〉af, 1) = s and

∑
Prefix(〈s〉af, 2) =

s + f1 and
∑

Prefix(〈s〉 a f, 3) = s + f1 + f2 and
∑

Prefix(〈s〉 a f, 4) =
s + f1 + f2 + f3.

(25) Let T be a Turing machine structure, t be a tape of T , s be a natural
number, and f be a finite sequence of elements of N. If len f ­ 1 and t

stores data 〈s〉 a f, then t is 1 between s, s + f1 + 2.

(26) Let T be a Turing machine structure, t be a tape of T , s be a natural
number, and f be a finite sequence of elements of N. Suppose len f ­ 3
and t stores data 〈s〉 a f. Then t is 1 between s, s + f1 + 2, 1 between
s+f1 +2, s+f1 +f2 +4, and 1 between s+f1 +f2 +4, s+f1 +f2 +f3 +6.

3. Summation of Two Natural Numbers

The strict Turing machine structure SumTuring is defined by the conditions
(Def. 15).

(Def. 15)(i) The symbols of SumTuring = {0, 1},
(ii) the control states of SumTuring = SegM 5,
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(iii) the transition of SumTuring = SumTran,

(iv) the initial state of SumTuring = 0, and
(v) the accepting state of SumTuring = 5.

Next we state several propositions:

(27) Let T be a Turing machine structure, s be a State of T , and p, h, t be
sets. If s = 〈〈p, h, t〉〉, then Head(s) = h.

(28) Let T be a Turing machine structure, t be a tape of T , h be an integer,
and s be a symbol of T . If t(h) = s, then Tape-Chg(t, h, s) = t.

(29) Let T be a Turing machine structure, s be a State of T , and
p, h, t be sets. Suppose s = 〈〈p, h, t〉〉 and p 6= the accepting
state of T . Then Following(s) = 〈〈s -target1, Head(s) + offset(s -target),
Tape-Chg(s3, Head(s), s -target2)〉〉.

(30) Let T be a Turing machine structure, t be a tape of T , h be an integer,
s be a symbol of T , and i be a set. Then (Tape-Chg(t, h, s))(h) = s and if
i 6= h, then (Tape-Chg(t, h, s))(i) = t(i).

(31) Let s be a State of SumTuring, t be a tape of SumTuring, and h1, n1,
n2 be natural numbers. Suppose s = 〈〈0, h1, t〉〉 and t stores data 〈h1, n1,

n2〉. Then s is accepting and (Result(s))2 = 1+h1 and (Result(s))3 stores
data 〈1 + h1, n1 + n2〉.

Let T be a Turing machine structure and let F be a function. We say that
T computes F if and only if the condition (Def. 16) is satisfied.

(Def. 16) Let s be a State of T , t be a tape of T , a be a natural number, and x

be a finite sequence of elements of N. Suppose x ∈ dom F and s = 〈〈the
initial state of T , a, t〉〉 and t stores data 〈a〉 a x. Then s is accepting and
there exist natural numbers b, y such that (Result(s))2 = b and y = F (x)
and (Result(s))3 stores data 〈b〉 a 〈y〉.

Next we state two propositions:

(32) dom[+] ⊆ N2.

(33) SumTuring computes [+].

4. Computing Successor Function

The function SuccTran from [: SegM 4, {0, 1} :] into [: SegM 4, {0, 1}, {−1, 0, 1} :]
is defined as follows:

(Def. 17) SuccTran = id([: SegM 4, {0, 1} :], {−1, 0, 1}, 0)+·(〈〈0, 0〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1,

1〉〉7−→. 〈〈1, 1, 1〉〉)+·(〈〈1, 0〉〉7−→. 〈〈2, 1, 1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0, −1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈3,

0, −1〉〉)+·(〈〈3, 1〉〉7−→. 〈〈3, 1, −1〉〉)+·(〈〈3, 0〉〉7−→. 〈〈4, 0, 0〉〉).
We now state the proposition
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(34) SuccTran(〈〈0, 0〉〉) = 〈〈1, 0, 1〉〉 and SuccTran(〈〈1, 1〉〉) = 〈〈1, 1, 1〉〉 and
SuccTran(〈〈1, 0〉〉) = 〈〈2, 1, 1〉〉 and SuccTran(〈〈2, 0〉〉) = 〈〈3, 0, −1〉〉 and
SuccTran(〈〈2, 1〉〉) = 〈〈3, 0, −1〉〉 and SuccTran(〈〈3, 1〉〉) = 〈〈3, 1, −1〉〉 and
SuccTran(〈〈3, 0〉〉) = 〈〈4, 0, 0〉〉.

The strict Turing machine structure SuccTuring is defined by the conditions
(Def. 18).

(Def. 18)(i) The symbols of SuccTuring = {0, 1},
(ii) the control states of SuccTuring = SegM 4,

(iii) the transition of SuccTuring = SuccTran,

(iv) the initial state of SuccTuring = 0, and
(v) the accepting state of SuccTuring = 4.

The following propositions are true:

(36)1 Let s be a State of SuccTuring, t be a tape of SuccTuring, and h1, n be
natural numbers. Suppose s = 〈〈0, h1, t〉〉 and t stores data 〈h1, n〉. Then s

is accepting and (Result(s))2 = h1 and (Result(s))3 stores data 〈h1, n+1〉.
(37) SuccTuring computes succ1(1).

5. Computing Zero Function

The function ZeroTran from [: SegM 4, {0, 1} :] into [: SegM 4, {0, 1}, {−1, 0, 1} :]
is defined as follows:

(Def. 19) ZeroTran = id([: SegM 4, {0, 1} :], {−1, 0, 1}, 1)+·(〈〈0, 0〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1,

1〉〉7−→. 〈〈2, 1, 1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0, −1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈3, 0, −1〉〉)+·
(〈〈3, 1〉〉7−→. 〈〈4, 1, −1〉〉).

Next we state the proposition

(38) ZeroTran(〈〈0, 0〉〉) = 〈〈1, 0, 1〉〉 and ZeroTran(〈〈1, 1〉〉) = 〈〈2, 1, 1〉〉 and
ZeroTran(〈〈2, 0〉〉) = 〈〈3, 0, −1〉〉 and ZeroTran(〈〈2, 1〉〉) = 〈〈3, 0, −1〉〉 and
ZeroTran(〈〈3, 1〉〉) = 〈〈4, 1, −1〉〉.

The strict Turing machine structure ZeroTuring is defined by the conditions
(Def. 20).

(Def. 20)(i) The symbols of ZeroTuring = {0, 1},
(ii) the control states of ZeroTuring = SegM 4,

(iii) the transition of ZeroTuring = ZeroTran,

(iv) the initial state of ZeroTuring = 0, and
(v) the accepting state of ZeroTuring = 4.

We now state two propositions:

1The proposition (35) has been removed.
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(39) Let s be a State of ZeroTuring, t be a tape of ZeroTuring, h1 be a natural
number, and f be a finite sequence of elements of N. Suppose len f ­ 1
and s = 〈〈0, h1, t〉〉 and t stores data 〈h1〉 a f. Then s is accepting and
(Result(s))2 = h1 and (Result(s))3 stores data 〈h1, 0〉.

(40) If n ­ 1, then ZeroTuring computes constn(0).

6. Computing n-ary Project Function

The function n -proj3Tran from [: SegM 3, {0, 1} :] into
[: SegM 3, {0, 1}, {−1, 0, 1} :] is defined by:

(Def. 21) n -proj3Tran = id([: SegM 3, {0, 1} :], {−1, 0, 1}, 0)+·(〈〈0, 0〉〉7−→. 〈〈1, 0,

1〉〉)+·(〈〈1, 1〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1, 0〉〉7−→. 〈〈2, 0, 1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈2, 0, 1〉〉)+·(〈〈2,

0〉〉7−→. 〈〈3, 0, 0〉〉).
The following proposition is true

(41) n -proj3Tran(〈〈0, 0〉〉) = 〈〈1, 0, 1〉〉 and n -proj3Tran(〈〈1, 1〉〉) = 〈〈1, 0, 1〉〉 and
n -proj3Tran(〈〈1, 0〉〉) = 〈〈2, 0, 1〉〉 and n -proj3Tran(〈〈2, 1〉〉) = 〈〈2, 0, 1〉〉 and
n -proj3Tran(〈〈2, 0〉〉) = 〈〈3, 0, 0〉〉.

The strict Turing machine structure n -proj3Turing is defined by the condi-
tions (Def. 22).

(Def. 22)(i) The symbols of n -proj3Turing = {0, 1},
(ii) the control states of n -proj3Turing = SegM 3,

(iii) the transition of n -proj3Turing = n -proj3Tran,

(iv) the initial state of n -proj3Turing = 0, and
(v) the accepting state of n -proj3Turing = 3.

Next we state two propositions:

(42) Let s be a State of n -proj3Turing, t be a tape of n -proj3Turing, h1 be
a natural number, and f be a finite sequence of elements of N. Suppose
len f ­ 3 and s = 〈〈0, h1, t〉〉 and t stores data 〈h1〉a f. Then s is accepting
and (Result(s))2 = h1 + f1 + f2 + 4 and (Result(s))3 stores data 〈h1 +
f1 + f2 + 4, f3〉.

(43) If n ­ 3, then n -proj3Turing computes projn(3).

7. Combining Two Turing Machines into One

Let t1, t2 be Turing machine structures. The functor SeqStates(t1, t2) yiel-
ding a finite non empty set is defined by the condition (Def. 23).

(Def. 23) SeqStates(t1, t2) = [: the control states of t1, {the initial state of t2} :] ∪
[: {the accepting state of t1}, the control states of t2 :].
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One can prove the following four propositions:

(44) Let t1, t2 be Turing machine structures. Then
(i) 〈〈the initial state of t1, the initial state of t2〉〉 ∈ SeqStates(t1, t2), and
(ii) 〈〈the accepting state of t1, the accepting state of t2〉〉 ∈ SeqStates(t1, t2).

(45) For all Turing machine structures s, t and for every state x of s holds
〈〈x, the initial state of t〉〉 ∈ SeqStates(s, t).

(46) For all Turing machine structures s, t and for every state x of t holds
〈〈the accepting state of s, x〉〉 ∈ SeqStates(s, t).

(47) Let s, t be Turing machine structures and x be an element of
SeqStates(s, t). Then there exists a state x1 of s and there exists a state
x2 of t such that x = 〈〈x1, x2〉〉.

Let s, t be Turing machine structures and let x be a transition-target of
s. The functor 1stSeqTran(s, t, x) yielding an element of [: SeqStates(s, t), (the
symbols of s) ∪ (the symbols of t), {−1, 0, 1} :] is defined as follows:

(Def. 24) 1stSeqTran(s, t, x) = 〈〈〈〈x1, the initial state of t〉〉, x2, x3〉〉.
Let s, t be Turing machine structures and let x be a transition-target of

t. The functor 2ndSeqTran(s, t, x) yielding an element of [: SeqStates(s, t), (the
symbols of s) ∪ (the symbols of t), {−1, 0, 1} :] is defined as follows:

(Def. 25) 2ndSeqTran(s, t, x) = 〈〈〈〈the accepting state of s, x1〉〉, x2, x3〉〉.
Let s, t be Turing machine structures and let x be an element of SeqStates(s, t).

Then x1 is a state of s. Then x2 is a state of t.
Let s, t be Turing machine structures and let x be an element of [: SeqStates(s, t),

(the symbols of s)∪ (the symbols of t) :]. The functor 1stSeqState x yields a state
of s and is defined by:

(Def. 26) 1stSeqState x = (x1)1.

The functor 2ndSeqState x yielding a state of t is defined as follows:

(Def. 27) 2ndSeqState x = (x1)2.

Let X, Y , Z be non empty sets and let x be an element of [:X, Y ∪Z :]. Let
us assume that there exist a set u and an element y of Y such that x = 〈〈u, y〉〉.
The functor 1stSeqSymbol x yielding an element of Y is defined as follows:

(Def. 28) 1stSeqSymbol x = x2.

Let X, Y , Z be non empty sets and let x be an element of [:X, Y ∪Z :]. Let
us assume that there exist a set u and an element z of Z such that x = 〈〈u, z〉〉.
The functor 2ndSeqSymbol x yielding an element of Z is defined by:

(Def. 29) 2ndSeqSymbol x = x2.

Let s, t be Turing machine structures and let x be an element of [: SeqStates(s, t),
(the symbols of s)∪(the symbols of t) :]. The functor SeqTran(s, t, x) yielding an
element of [: SeqStates(s, t), (the symbols of s) ∪ (the symbols of t), {−1, 0, 1} :]
is defined by:
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(Def. 30) SeqTran(s, t, x) =





1stSeqTran(s, t, (the transition of s)(〈〈 1stSeqState x,

1stSeqSymbol x〉〉)), if there exists a state p of s

and there exists a symbol y of s such that x =
〈〈〈〈p, the initial state of t〉〉, y〉〉 and p 6= the accepting
state of s,

2ndSeqTran(s, t, (the transition of t)(〈〈 2ndSeqState x,

2ndSeqSymbol x〉〉)), if there exists a state q of t

and there exists a symbol y of t such that x =
〈〈〈〈the accepting state of s, q〉〉, y〉〉,
〈〈x1, x2, −1〉〉, otherwise.

Let s, t be Turing machine structures. The functor SeqTran(s, t) yielding
a function from [: SeqStates(s, t), (the symbols of s) ∪ (the symbols of t) :] into
[: SeqStates(s, t), (the symbols of s) ∪ (the symbols of t), {−1, 0, 1} :] is defined
by:

(Def. 31) For every element x of [: SeqStates(s, t), (the symbols of s)∪(the symbols
of t) :] holds (SeqTran(s, t))(x) = SeqTran(s, t, x).

Let T1, T2 be Turing machine structures. The functor T1; T2 yielding a strict
Turing machine structure is defined by the conditions (Def. 32).

(Def. 32)(i) The symbols of T1; T2 = (the symbols of T1) ∪ (the symbols of T2),
(ii) the control states of T1; T2 = SeqStates(T1, T2),
(iii) the transition of T1; T2 = SeqTran(T1, T2),
(iv) the initial state of T1; T2 = 〈〈the initial state of T1, the initial state of

T2〉〉, and
(v) the accepting state of T1; T2 = 〈〈the accepting state of T1, the accepting

state of T2〉〉.
We now state several propositions:

(48) Let T1, T2 be Turing machine structures, g be a transition-target of T1,
p be a state of T1, and y be a symbol of T1. Suppose p 6= the accepting
state of T1 and g = (the transition of T1)(〈〈p, y〉〉). Then (the transition of
T1; T2)(〈〈〈〈p, the initial state of T2〉〉, y〉〉) = 〈〈〈〈g1, the initial state of T2〉〉, g2,

g3〉〉.
(49) Let T1, T2 be Turing machine structures, g be a transition-target of T2,

q be a state of T2, and y be a symbol of T2. Suppose g = (the transition
of T2)(〈〈q, y〉〉). Then (the transition of T1; T2)(〈〈〈〈the accepting state of T1,
q〉〉, y〉〉) = 〈〈〈〈the accepting state of T1, g1〉〉, g2, g3〉〉.

(50) Let T1, T2 be Turing machine structures, s1 be a State of T1, h be a
natural number, t be a tape of T1, s2 be a State of T2, and s3 be a State
of T1; T2. Suppose that

(i) s1 is accepting,
(ii) s1 = 〈〈the initial state of T1, h, t〉〉,
(iii) s2 is accepting,
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(iv) s2 = 〈〈the initial state of T2, (Result(s1))2, (Result(s1))3〉〉, and
(v) s3 = 〈〈the initial state of T1; T2, h, t〉〉.

Then s3 is accepting and (Result(s3))2 = (Result(s2))2 and
(Result(s3))3 = (Result(s2))3.

(51) Let t3, t4 be Turing machine structures and t be a tape of t3. If the
symbols of t3 = the symbols of t4, then t is a tape of t3; t4.

(52) Let t3, t4 be Turing machine structures and t be a tape of t3; t4. Suppose
the symbols of t3 = the symbols of t4. Then t is a tape of t3 and a tape of
t4.

(53) Let f be a finite sequence of elements of N, t3, t4 be Turing machine
structures, t1 be a tape of t3, and t2 be a tape of t4. If t1 = t2 and t1 stores
data f , then t2 stores data f .

(54) Let s be a State of ZeroTuring ; SuccTuring, t be a tape of ZeroTuring,
and h1, n be natural numbers. Suppose s = 〈〈〈〈0, 0〉〉, h1, t〉〉 and t stores
data 〈h1, n〉. Then s is accepting and (Result(s))2 = h1 and (Result(s))3
stores data 〈h1, 1〉.
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Summary. In the paper we show equivalence of the convergence of filters
on a topological space and the convergence of nets in the space. We also give, five
characterizations of compactness. Namely, for any topological space T we proved
that following condition are equivalent:

• T is compact,
• every ultrafilter on T is convergent,
• every proper filter on T has cluster point,
• every net in T has cluster point,
• every net in T has convergent subnet,
• every Cauchy net in T is convergent.

MML Identifier: YELLOW19.

The articles [18], [13], [4], [11], [6], [16], [12], [19], [10], [17], [14], [8], [5], [1], [2],
[9], [7], [15], and [3] provide the notation and terminology for this paper.

In this paper X is a set.
The following propositions are true:

(1) The carrier of 2X
⊆ = 2X .

(2) For every non empty set X and for every proper filter F of 2X
⊆ and for

every set A such that A ∈ F holds A is not empty.

Let T be a non empty topological space and let x be a point of T . The
neighborhood system of x is a subset of 2ΩT

⊆ and is defined by:

(Def. 1) The neighborhood system of x = {A : A ranges over neighbourhoods of
x}.

The following proposition is true
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(3) Let T be a non empty topological space, x be a point of T , and A

be a set. Then A ∈ the neighborhood system of x if and only if A is a
neighbourhood of x.

Let T be a non empty topological space and let x be a point of T . Observe
that the neighborhood system of x is non empty proper upper and filtered.

One can prove the following propositions:

(4) Let T be a non empty topological space, x be a point of T , and F be an
upper subset of 2ΩT

⊆ . Then x is a convergence point of F , T if and only if
the neighborhood system of x ⊆ F.

(5) For every non empty topological space T holds every point x of T is a
convergence point of the neighborhood system of x, T .

(6) Let T be a non empty topological space and A be a subset of T . Then A

is open if and only if for every point x of T such that x ∈ A and for every
filter F of 2ΩT

⊆ such that x is a convergence point of F , T holds A ∈ F.

Let S be a non empty 1-sorted structure and let N be a non empty net
structure over S. A subset of S is called a subset of S reachable by N if:

(Def. 2) There exists an element i of N such that it = rng (the mapping of N¹i).
The following proposition is true

(7) Let S be a non empty 1-sorted structure, N be a non empty net structure
over S, and i be an element of N . Then rng (the mapping of N¹i) is a subset
of S reachable by N .

Let S be a non empty 1-sorted structure and let N be a reflexive non empty
net structure over S. Note that every subset of S reachable by N is non empty.

We now state three propositions:

(8) Let S be a non empty 1-sorted structure, N be a net in S, i be an element
of N , and x be a set. Then x ∈ rng (the mapping of N¹i) if and only if
there exists an element j of N such that i ¬ j and x = N(j).

(9) Let S be a non empty 1-sorted structure, N be a net in S, and A be a
subset of S reachable by N . Then N is eventually in A.

(10) Let S be a non empty 1-sorted structure, N be a net in S, and F be a
finite non empty set. Suppose every element of F is a subset of S reachable
by N . Then there exists a subset B of S reachable by N such that B ⊆ ⋂

F.

Let T be a non empty 1-sorted structure and let N be a non empty net
structure over T . The filter of N is a subset of 2ΩT

⊆ and is defined by:

(Def. 3) The filter of N = {A; A ranges over subsets of T : N is eventually in A}.
The following proposition is true

(11) Let T be a non empty 1-sorted structure, N be a non empty net structure
over T , and A be a set. Then A ∈ the filter of N if and only if N is
eventually in A and A is a subset of T .
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Let T be a non empty 1-sorted structure and let N be a non empty net
structure over T . Note that the filter of N is non empty and upper.

Let T be a non empty 1-sorted structure and let N be a net in T . One can
verify that the filter of N is proper and filtered.

We now state two propositions:

(12) Let T be a non empty topological space, N be a net in T , and x be a
point of T . Then x is a cluster point of N if and only if x is a cluster point
of the filter of N , T .

(13) Let T be a non empty topological space, N be a net in T , and x be a
point of T . Then x ∈ Lim N if and only if x is a convergence point of the
filter of N , T .

Let L be a non empty 1-sorted structure, let O be a non empty subset of
L, and let F be a filter of 2O

⊆. The net of F is a strict non empty net structure
over L and is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of the net of F = {〈〈a, f〉〉; a ranges over elements of L, f

ranges over elements of F : a ∈ f},
(ii) for all elements i, j of the net of F holds i ¬ j iff j2 ⊆ i2, and
(iii) for every element i of the net of F holds (the net of F )(i) = i1.

Let L be a non empty 1-sorted structure, let O be a non empty subset of L,
and let F be a filter of 2O

⊆. Note that the net of F is reflexive and transitive.
Let L be a non empty 1-sorted structure, let O be a non empty subset of L,

and let F be a proper filter of 2O
⊆. One can verify that the net of F is directed.

The following propositions are true:

(14) For every non empty 1-sorted structure T and for every filter F of 2ΩT
⊆

holds F \ {∅} = the filter of the net of F .

(15) Let T be a non empty 1-sorted structure and F be a proper filter of 2ΩT
⊆ .

Then F = the filter of the net of F .

(16) Let T be a non empty 1-sorted structure, F be a filter of 2ΩT
⊆ , and A

be a non empty subset of T . Then A ∈ F if and only if the net of F is
eventually in A.

(17) Let T be a non empty topological space, F be a proper filter of 2ΩT
⊆ , and

x be a point of T . Then x is a cluster point of the net of F if and only if
x is a cluster point of F , T .

(18) Let T be a non empty topological space, F be a proper filter of 2ΩT
⊆ ,

and x be a point of T . Then x ∈ Lim (the net of F ) if and only if x is a
convergence point of F , T .

(19) Let T be a non empty topological space, A be a subset of T , and x be
a point of T . Then x ∈ A if and only if for every neighbourhood O of x

holds O meets A.
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(20) Let T be a non empty topological space, x be a point of T , and A be a
subset of T . Suppose x ∈ A. Let F be a proper filter of 2ΩT

⊆ . If F = the
neighborhood system of x, then the net of F is often in A.

(21) Let T be a non empty 1-sorted structure, A be a set, and N be a net in
T . If N is eventually in A, then every subnet of N is eventually in A.

(22) Let T be a non empty topological space and F , G, x be sets. Suppose
F ⊆ G and x is a convergence point of F , T . Then x is a convergence
point of G, T .

(23) Let T be a non empty topological space, A be a subset of T , and x be a
point of T . Then x ∈ A if and only if there exists a net N in T such that
N is eventually in A and x is a cluster point of N .

(24) Let T be a non empty topological space, A be a subset of T , and x be a
point of T . Then x ∈ A if and only if there exists a convergent net N in
T such that N is eventually in A and x ∈ Lim N.

(25) Let T be a non empty topological space and A be a subset of T . Then
A is closed if and only if for every net N in T such that N is eventually
in A and for every point x of T such that x is a cluster point of N holds
x ∈ A.

(26) Let T be a non empty topological space and A be a subset of T . Then
A is closed if and only if for every convergent net N in T such that N

is eventually in A and for every point x of T such that x ∈ Lim N holds
x ∈ A.

(27) Let T be a non empty topological space, A be a subset of T , and x be a
point of T . Then x ∈ A if and only if there exists a proper filter F of 2ΩT

⊆
such that A ∈ F and x is a cluster point of F , T .

(28) Let T be a non empty topological space, A be a subset of T , and x be a
point of T . Then x ∈ A if and only if there exists an ultra filter F of 2ΩT

⊆
such that A ∈ F and x is a convergence point of F , T .

(29) Let T be a non empty topological space and A be a subset of T . Then
A is closed if and only if for every proper filter F of 2ΩT

⊆ such that A ∈ F

and for every point x of T such that x is a cluster point of F , T holds
x ∈ A.

(30) Let T be a non empty topological space and A be a subset of T . Then A

is closed if and only if for every ultra filter F of 2ΩT
⊆ such that A ∈ F and

for every point x of T such that x is a convergence point of F , T holds
x ∈ A.

(31) Let T be a non empty topological space, N be a net in T , and s be a
point of T . Then s is a cluster point of N if and only if for every subset
A of T reachable by N holds s ∈ A.

(32) Let T be a non empty topological space and F be a family of subsets of
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the carrier of T . If F is closed, then FinMeetCl(F ) is closed.

(33) Let T be a non empty topological space. Then T is compact if and only
if for every ultra filter F of 2ΩT

⊆ holds there exists a point of T which is a
convergence point of F , T .

(34) Let T be a non empty topological space. Then T is compact if and only
if for every proper filter F of 2ΩT

⊆ holds there exists a point of T which is
a cluster point of F , T .

(35) Let T be a non empty topological space. Then T is compact if and only
if for every net N in T holds there exists a point of T which is a cluster
point of N .

(36) Let T be a non empty topological space. Then T is compact if and only
if for every net N in T such that N ∈ NetUniv(T ) holds there exists a
point of T which is a cluster point of N .

Let L be a non empty 1-sorted structure and let N be a transitive net
structure over L. Note that every full structure of a subnet of N is transitive.

Let L be a non empty 1-sorted structure and let N be a non empty directed
net structure over L. Note that there exists a structure of a subnet of N which
is strict, non empty, directed, and full.

The following proposition is true

(37) For every non empty topological space T holds T is compact iff for every
net N in T holds there exists a subnet of N which is convergent.

Let S be a non empty 1-sorted structure and let N be a non empty net
structure over S. We say that N is Cauchy if and only if:

(Def. 5) For every subset A of S holds N is eventually in A or eventually in −A.

Let S be a non empty 1-sorted structure and let F be an ultra filter of 2ΩS
⊆ .

Observe that the net of F is Cauchy.
Next we state the proposition

(38) Let T be a non empty topological space. Then T is compact if and only
if for every net N in T such that N is Cauchy holds N is convergent.
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The papers [15], [9], [1], [18], [21], [14], [22], [17], [12], [8], [20], [6], [16], [3], [4],
[13], [7], [2], [11], [23], [19], and [5] provide the notation and terminology for this
paper.

Let L be a non empty poset, let X be a non empty subset of L, and let F

be a filter of 2X
⊆ . The functor lim inf F yielding an element of L is defined by:

(Def. 1) lim inf F =
⊔

L{inf B; B ranges over subsets of L: B ∈ F}.
One can prove the following proposition

(1) Let L1, L2 be complete lattices. Suppose the relational structure of L1 =
the relational structure of L2. Let X1 be a non empty subset of L1, X2 be
a non empty subset of L2, F1 be a filter of 2X1

⊆ , and F2 be a filter of 2X2
⊆ .

If F1 = F2, then lim inf F1 = lim inf F2.

Let L be a non empty FR-structure. We say that L is lim-inf if and only if:

(Def. 2) The topology of L = ξ(L).
Let us note that every non empty FR-structure which is lim-inf is also to-

pological space-like.
One can check that every top-lattice which is trivial is also lim-inf.
One can check that there exists a top-lattice which is lim-inf, continuous,

and complete.
We now state several propositions:

(2) Let L1, L2 be non empty 1-sorted structures. Suppose the carrier of
L1 = the carrier of L2. Let N1 be a net structure over L1. Then there
exists a strict net structure N2 over L2 such that
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(i) the relational structure of N1 = the relational structure of N2, and
(ii) the mapping of N1 = the mapping of N2.

(3) Let L1, L2 be non empty 1-sorted structures. Suppose the carrier of
L1 = the carrier of L2. Let N1 be a net structure over L1. Suppose N1 ∈
NetUniv(L1). Then there exists a strict net N2 in L2 such that

(i) N2 ∈ NetUniv(L2),
(ii) the relational structure of N1 = the relational structure of N2, and
(iii) the mapping of N1 = the mapping of N2.

(4) Let L1, L2 be inf-complete up-complete semilattices. Suppose the rela-
tional structure of L1 = the relational structure of L2. Let N1 be a net in
L1 and N2 be a net in L2. Suppose that

(i) the relational structure of N1 = the relational structure of N2, and
(ii) the mapping of N1 = the mapping of N2.

Then lim inf N1 = lim inf N2.

(5) Let L1, L2 be non empty 1-sorted structures. Suppose the carrier of
L1 = the carrier of L2. Let N1 be a net in L1 and N2 be a net in L2.
Suppose that

(i) the relational structure of N1 = the relational structure of N2, and
(ii) the mapping of N1 = the mapping of N2.

Let S1 be a subnet of N1. Then there exists a strict subnet S2 of N2 such
that

(iii) the relational structure of S1 = the relational structure of S2, and
(iv) the mapping of S1 = the mapping of S2.

(6) Let L1, L2 be inf-complete up-complete semilattices. Suppose the rela-
tional structure of L1 = the relational structure of L2. Let N1 be a net
structure over L1 and a be a set. Suppose 〈〈N1, a〉〉 ∈ the lim inf convergence
of L1. Then there exists a strict net N2 in L2 such that

(i) 〈〈N2, a〉〉 ∈ the lim inf convergence of L2,
(ii) the relational structure of N1 = the relational structure of N2, and
(iii) the mapping of N1 = the mapping of N2.

(7) Let L1, L2 be non empty 1-sorted structures, N1 be a non empty net
structure over L1, and N2 be a non empty net structure over L2. Suppose
that

(i) the relational structure of N1 = the relational structure of N2, and
(ii) the mapping of N1 = the mapping of N2.

Let X be a set. If N1 is eventually in X, then N2 is eventually in X.

(8) Let L1, L2 be inf-complete up-complete semilattices. Suppose the
relational structure of L1 = the relational structure of L2. Then
ConvergenceSpace(the lim inf convergence of L1) = ConvergenceSpace(the
lim inf convergence of L2).
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(9) Let L1, L2 be inf-complete up-complete semilattices. Suppose the relatio-
nal structure of L1 = the relational structure of L2. Then ξ(L1) = ξ(L2).

Let R be an inf-complete non empty reflexive relational structure. Note that
every topological augmentation of R is inf-complete.

Let R be a semilattice. One can verify that every topological augmentation
of R has g.l.b.’s.

Let L be an inf-complete up-complete semilattice. One can check that there
exists a topological augmentation of L which is strict and lim-inf.

The following proposition is true

(10) Let L be an inf-complete up-complete semilattice and X be a lim-inf
topological augmentation of L. Then ξ(L) = the topology of X.

Let L be an inf-complete up-complete semilattice. The functor Ξ(L) yielding
a strict topological augmentation of L is defined by:

(Def. 3) Ξ(L) is lim-inf.

Let L be an inf-complete up-complete semilattice. One can check that Ξ(L)
is lim-inf.

Next we state a number of propositions:

(11) For every complete lattice L and for every net N in L holds lim inf N =⊔
L{inf(N¹i) : i ranges over elements of N}.

(12) Let L be a complete lattice, F be a proper filter of 2ΩL
⊆ , and f be a

subset of L. Suppose f ∈ F. Let i be an element of the net of F . If i2 = f,

then inf f = inf((the net of F )¹i).
(13) For every complete lattice L and for every proper filter F of 2ΩL

⊆ holds
lim inf F = lim inf (the net of F ).

(14) For every complete lattice L and for every proper filter F of 2ΩL
⊆ holds

the net of F ∈ NetUniv(L).

(15) Let L be a complete lattice, F be an ultra filter of 2ΩL
⊆ , and p be a

greater or equal to id map from the net of F into the net of F . Then
lim inf F ­ inf((the net of F ) · p).

(16) Let L be a complete lattice, F be an ultra filter of 2ΩL
⊆ , and M be a

subnet of the net of F . Then lim inf F = lim inf M.

(17) Let L be a non empty 1-sorted structure, N be a net in L, and A be a
set. Suppose N is often in A. Then there exists a strict subnet N ′ of N

such that rng (the mapping of N ′) ⊆ A and N ′ is a structure of a subnet
of N .

(18) Let L be a complete lim-inf top-lattice and A be a non empty subset of
L. Then A is closed if and only if for every ultra filter F of 2ΩL

⊆ such that
A ∈ F holds lim inf F ∈ A.

(19) For every non empty reflexive relational structure L holds σ(L) ⊆ ξ(L).
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(20) Let T1, T2 be non empty topological spaces and B be a prebasis of T1.
Suppose B ⊆ the topology of T2 and the carrier of T1 ∈ the topology of
T2. Then the topology of T1 ⊆ the topology of T2.

(21) For every complete lattice L holds ω(L) ⊆ ξ(L).
(22) Let T1, T2 be topological spaces and T be a non empty topological space.

Suppose T is a topological extension of T1 and a topological extension of
T2. Let R be a refinement of T1 and T2. Then T is a topological extension
of R.

(23) Let T1 be a topological space, T2 be a topological extension of T1, and
A be a subset of T1. Then

(i) if A is open, then A is an open subset of T2, and
(ii) if A is closed, then A is a closed subset of T2.

(24) For every complete lattice L holds λ(L) ⊆ ξ(L).
(25) Let L be a complete lattice, T be a lim-inf topological augmentation of

L, and S be a Lawson correct topological augmentation of L. Then T is a
topological extension of S.

(26) For every complete lim-inf top-lattice L and for every ultra filter F of
2ΩL
⊆ holds lim inf F is a convergence point of F , L.

(27) Every complete lim-inf top-lattice is compact and T1.
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1. Reverse Functors

The following propositions are true:

(1) Let A, B be transitive non empty category structures with units and
F be a feasible reflexive functor structure from A to B. Suppose F is
coreflexive and bijective. Let a be an object of A and b be an object of B.
Then F (a) = b if and only if F−1(b) = a.

(2) Let A, B be transitive non empty category structures with units, F

be a precovariant feasible functor structure from A to B, and G be a
precovariant feasible functor structure from B to A. Suppose F is bijective
and G = F−1. Let a1, a2 be objects of A. Suppose 〈a1, a2〉 6= ∅. Let f be a
morphism from a1 to a2 and g be a morphism from F (a1) to F (a2). Then
F (f) = g if and only if G(g) = f.

(3) Let A, B be transitive non empty category structures with units, F

be a precontravariant feasible functor structure from A to B, and G be
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a precontravariant feasible functor structure from B to A. Suppose F is
bijective and G = F−1. Let a1, a2 be objects of A. Suppose 〈a1, a2〉 6= ∅.
Let f be a morphism from a1 to a2 and g be a morphism from F (a2) to
F (a1). Then F (f) = g if and only if G(g) = f.

(4) Let A, B be categories and F be a functor from A to B. Suppose F is
bijective. Let G be a functor from B to A. If F ·G = idB, then the functor
structure of G = F−1.

(5) Let A, B be categories and F be a functor from A to B. Suppose F is
bijective. Let G be a functor from B to A. If G ·F = idA, then the functor
structure of G = F−1.

(6) Let A, B be categories and F be a covariant functor from A to B.
Suppose F is bijective. Let G be a covariant functor from B to A. Suppose
that

(i) for every object b of B holds F (G(b)) = b, and
(ii) for all objects a, b of B such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds F (G(f)) = f.

Then the functor structure of G = F−1.

(7) Let A, B be categories and F be a contravariant functor from A to B.
Suppose F is bijective. Let G be a contravariant functor from B to A.
Suppose that

(i) for every object b of B holds F (G(b)) = b, and
(ii) for all objects a, b of B such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds F (G(f)) = f.

Then the functor structure of G = F−1.

(8) Let A, B be categories and F be a covariant functor from A to B.
Suppose F is bijective. Let G be a covariant functor from B to A. Suppose
that

(i) for every object a of A holds G(F (a)) = a, and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds G(F (f)) = f.

Then the functor structure of G = F−1.

(9) Let A, B be categories and F be a contravariant functor from A to B.
Suppose F is bijective. Let G be a contravariant functor from B to A.
Suppose that

(i) for every object a of A holds G(F (a)) = a, and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds G(F (f)) = f.

Then the functor structure of G = F−1.
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2. Intersection of Categories

Let A, B be category structures. We say that A and B have the same
composition if and only if:

(Def. 1) For all sets a1, a2, a3 holds (the composition of A)(〈〈a1, a2, a3〉〉) ≈ (the
composition of B)(〈〈a1, a2, a3〉〉).

Let us note that the predicate A and B have the same composition is symmetric.
Next we state three propositions:

(10) Let A, B be category structures. Then A and B have the same com-
position if and only if for all sets a1, a2, a3, x such that x ∈ dom (the
composition of A)(〈〈a1, a2, a3〉〉) and x ∈ dom (the composition of B)(〈〈a1,

a2, a3〉〉) holds (the composition of A)(〈〈a1, a2, a3〉〉)(x) = (the composition
of B)(〈〈a1, a2, a3〉〉)(x).

(11) Let A, B be transitive non empty category structures. Then A and B

have the same composition if and only if for all objects a1, a2, a3 of A such
that 〈a1, a2〉 6= ∅ and 〈a2, a3〉 6= ∅ and for all objects b1, b2, b3 of B such
that 〈b1, b2〉 6= ∅ and 〈b2, b3〉 6= ∅ and b1 = a1 and b2 = a2 and b3 = a3 and
for every morphism f1 from a1 to a2 and for every morphism g1 from b1

to b2 such that g1 = f1 and for every morphism f2 from a2 to a3 and for
every morphism g2 from b2 to b3 such that g2 = f2 holds f2 · f1 = g2 · g1.

(12) For all para-functional semi-functional categories A, B holds A and B

have the same composition.

Let f , g be functions. The functor Intersect(f, g) yielding a function is defi-
ned as follows:

(Def. 2) dom Intersect(f, g) = dom f ∩ dom g and for every set x such that x ∈
dom f ∩ dom g holds (Intersect(f, g))(x) = f(x) ∩ g(x).

Let us notice that the functor Intersect(f, g) is commutative.
One can prove the following propositions:

(13) For every set I and for all many sorted sets A, B indexed by I holds
Intersect(A,B) = A ∩B.

(14) Let I, J be sets, A be a many sorted set indexed by I, and B be a many
sorted set indexed by J . Then Intersect(A,B) is a many sorted set indexed
by I ∩ J.

(15) Let I, J be sets, A be a many sorted set indexed by I, B be a function,
and C be a many sorted set indexed by J . If C = Intersect(A,B), then
C ⊆̇ A.

(16) Let A1, A2, B1, B2 be sets, f be a function from A1 into A2, and g be a
function from B1 into B2. If f ≈ g, then f ∩ g is a function from A1 ∩B1

into A2 ∩B2.
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(17) Let I1, I2 be sets, A1, B1 be many sorted sets indexed by I1, A2, B2 be
many sorted sets indexed by I2, and A, B be many sorted sets indexed
by I1 ∩ I2. Suppose A = Intersect(A1, A2) and B = Intersect(B1, B2).
Let F be a many sorted function from A1 into B1 and G be a many
sorted function from A2 into B2. Suppose that for every set x such that
x ∈ dom F and x ∈ dom G holds F (x) ≈ G(x). Then Intersect(F, G) is a
many sorted function from A into B.

(18) Let I, J be sets, F be a many sorted set indexed by [: I, I :], and G

be a many sorted set indexed by [:J, J :]. Then there exists a many sor-
ted set H indexed by [: I ∩ J, I ∩ J :] such that H = Intersect(F, G) and
Intersect({|F |}, {|G|}) = {|H|}.

(19) Let I, J be sets, F1, F2 be many sorted sets indexed by [: I, I :], and G1,
G2 be many sorted sets indexed by [:J, J :]. Then there exist many sorted
sets H1, H2 indexed by [: I∩J, I∩J :] such that H1 = Intersect(F1, G1) and
H2 = Intersect(F2, G2) and Intersect({|F1, F2|}, {|G1, G2|}) = {|H1,H2|}.

Let A, B be category structures. Let us assume that A and B have the same
composition. The functor Intersect(A,B) yields a strict category structure and
is defined by the conditions (Def. 3).

(Def. 3)(i) The carrier of Intersect(A, B) = (the carrier of A) ∩ (the carrier of
B),

(ii) the arrows of Intersect(A,B) = Intersect(the arrows of A, the arrows
of B), and

(iii) the composition of Intersect(A,B) = Intersect(the composition of A,
the composition of B).

The following propositions are true:

(20) For all category structures A, B such that A and B have the same
composition holds Intersect(A,B) = Intersect(B, A).

(21) Let A, B be category structures. Suppose A and B have the same com-
position. Then Intersect(A,B) is a substructure of A.

(22) Let A, B be category structures. Suppose A and B have the same com-
position. Let a1, a2 be objects of A, b1, b2 be objects of B, and o1, o2 be
objects of Intersect(A,B). If o1 = a1 and o1 = b1 and o2 = a2 and o2 = b2,

then 〈o1, o2〉 = (〈a1, a2〉) ∩ (〈b1, b2〉).
(23) Let A, B be transitive category structures. If A and B have the same

composition, then Intersect(A,B) is transitive.

(24) Let A, B be category structures. Suppose A and B have the same com-
position. Let a1, a2 be objects of A, b1, b2 be objects of B, and o1, o2 be
objects of Intersect(A,B). Suppose o1 = a1 and o1 = b1 and o2 = a2 and
o2 = b2 and 〈a1, a2〉 6= ∅ and 〈b1, b2〉 6= ∅. Let f be a morphism from a1 to
a2 and g be a morphism from b1 to b2. If f = g, then f ∈ 〈o1, o2〉.
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(25) Let A, B be non empty category structures with units. Suppose A and
B have the same composition. Let a be an object of A, b be an object of
B, and o be an object of Intersect(A,B). If o = a and o = b and ida = idb,

then ida ∈ 〈o, o〉.
(26) Let A, B be categories. Suppose that

(i) A and B have the same composition,
(ii) Intersect(A,B) is non empty, and
(iii) for every object a of A and for every object b of B such that a = b

holds ida = idb .

Then Intersect(A,B) is a subcategory of A.

3. Subcategories

The scheme SubcategoryUniq deals with a category A, non empty subcate-
gories B, C of A, a unary predicate P, and a ternary predicate Q, and states
that:

The category structure of B = the category structure of C
provided the following requirements are met:
• For every object a of A holds a is an object of B iff P[a],
• Let a, b be objects of A and a′, b′ be objects of B. Suppose a′ = a

and b′ = b and 〈a, b〉 6= ∅. Let f be a morphism from a to b. Then
f ∈ 〈a′, b′〉 if and only if Q[a, b, f ],

• For every object a of A holds a is an object of C iff P[a], and
• Let a, b be objects of A and a′, b′ be objects of C. Suppose a′ = a

and b′ = b and 〈a, b〉 6= ∅. Let f be a morphism from a to b. Then
f ∈ 〈a′, b′〉 if and only if Q[a, b, f ].

The following proposition is true

(27) Let A be a non empty category structure and B be a non empty substruc-
ture of A. Then B is full if and only if for all objects a1, a2 of A and for all
objects b1, b2 of B such that b1 = a1 and b2 = a2 holds 〈b1, b2〉 = 〈a1, a2〉.

Now we present two schemes. The scheme FullSubcategoryEx deals with a
category A and a unary predicate P, and states that:

There exists a strict full non empty subcategory B of A such that
for every object a of A holds a is an object of B if and only if
P[a]

provided the parameters satisfy the following condition:
• There exists an object a of A such that P[a].

The scheme FullSubcategoryUniq deals with a category A, full non empty
subcategories B, C of A, and a unary predicate P, and states that:

The category structure of B = the category structure of C



750 grzegorz bancerek

provided the parameters meet the following conditions:
• For every object a of A holds a is an object of B iff P[a], and
• For every object a of A holds a is an object of C iff P[a].

4. Inclusion Functors and Functor Restrictions

Let f be a function yielding function and let x, y be sets. Observe that f(x,

y) is relation-like and function-like.
One can prove the following proposition

(28) Let A be a category, C be a non empty subcategory of A, and a, b be
objects of C. If 〈a, b〉 6= ∅, then for every morphism f from a to b holds
( C

↪→)(f) = f.

Let A be a category and let C be a non empty subcategory of A. Note that
C
↪→ is id-preserving and comp-preserving.

Let A be a category and let C be a non empty subcategory of A. One can
verify that C

↪→ is precovariant.
Let A be a category and let C be a non empty subcategory of A. Then C

↪→
is a strict covariant functor from C to A.

Let A, B be categories, let C be a non empty subcategory of A, and let F

be a covariant functor from A to B. Then F ¹C is a strict covariant functor from
C to B.

Let A, B be categories, let C be a non empty subcategory of A, and let F be
a contravariant functor from A to B. Then F ¹C is a strict contravariant functor
from C to B.

Next we state several propositions:

(29) Let A, B be categories, C be a non empty subcategory of A, F be a
functor structure from A to B, a be an object of A, and c be an object of
C. If c = a, then (F ¹C)(c) = F (a).

(30) Let A, B be categories, C be a non empty subcategory of A, F be a
covariant functor from A to B, a, b be objects of A, and c, d be objects of
C. Suppose c = a and d = b and 〈c, d〉 6= ∅. Let f be a morphism from a

to b and g be a morphism from c to d. If g = f, then (F ¹C)(g) = F (f).
(31) Let A, B be categories, C be a non empty subcategory of A, F be a

contravariant functor from A to B, a, b be objects of A, and c, d be objects
of C. Suppose c = a and d = b and 〈c, d〉 6= ∅. Let f be a morphism from
a to b and g be a morphism from c to d. If g = f, then (F ¹C)(g) = F (f).

(32) Let A, B be non empty graphs and F be a bimap structure from A into
B. Suppose F is precovariant and one-to-one. Let a, b be objects of A. If
F (a) = F (b), then a = b.
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(33) Let A, B be non empty reflexive graphs and F be a feasible precovariant
functor structure from A to B. Suppose F is faithful. Let a, b be objects of
A. Suppose 〈a, b〉 6= ∅. Let f , g be morphisms from a to b. If F (f) = F (g),
then f = g.

(34) Let A, B be non empty graphs and F be a precovariant functor structure
from A to B. Suppose F is surjective. Let a, b be objects of B. Suppose
〈a, b〉 6= ∅. Let f be a morphism from a to b. Then there exist objects c, d

of A and there exists a morphism g from c to d such that a = F (c) and
b = F (d) and 〈c, d〉 6= ∅ and f = F (g).

(35) Let A, B be non empty graphs and F be a bimap structure from A into
B. Suppose F is precontravariant and one-to-one. Let a, b be objects of
A. If F (a) = F (b), then a = b.

(36) Let A, B be non empty reflexive graphs and F be a feasible precontra-
variant functor structure from A to B. Suppose F is faithful. Let a, b be
objects of A. Suppose 〈a, b〉 6= ∅. Let f , g be morphisms from a to b. If
F (f) = F (g), then f = g.

(37) Let A, B be non empty graphs and F be a precontravariant functor
structure from A to B. Suppose F is surjective. Let a, b be objects of B.
Suppose 〈a, b〉 6= ∅. Let f be a morphism from a to b. Then there exist
objects c, d of A and there exists a morphism g from c to d such that
b = F (c) and a = F (d) and 〈c, d〉 6= ∅ and f = F (g).

5. Isomorphisms under Arbitrary Functor

Let A, B be categories, let F be a functor structure from A to B, and let
A′, B′ be categories. We say that A′ and B′ are isomorphic under F if and only
if the conditions (Def. 4) are satisfied.

(Def. 4)(i) A′ is a subcategory of A,
(ii) B′ is a subcategory of B, and
(iii) there exists a covariant functor G from A′ to B′ such that G is bijective

and for every object a′ of A′ and for every object a of A such that a′ = a

holds G(a′) = F (a) and for all objects b′, c′ of A′ and for all objects b, c

of A such that 〈b′, c′〉 6= ∅ and b′ = b and c′ = c and for every morphism f ′

from b′ to c′ and for every morphism f from b to c such that f ′ = f holds
G(f ′) = (Morph-MapF (b, c))(f).

We say that A′ and B′ are anti-isomorphic under F if and only if the conditions
(Def. 5) are satisfied.

(Def. 5)(i) A′ is a subcategory of A,
(ii) B′ is a subcategory of B, and
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(iii) there exists a contravariant functor G from A′ to B′ such that G is
bijective and for every object a′ of A′ and for every object a of A such
that a′ = a holds G(a′) = F (a) and for all objects b′, c′ of A′ and for all
objects b, c of A such that 〈b′, c′〉 6= ∅ and b′ = b and c′ = c and for every
morphism f ′ from b′ to c′ and for every morphism f from b to c such that
f ′ = f holds G(f ′) = (Morph-MapF (b, c))(f).

We now state several propositions:

(38) Let A, B, A1, B1 be categories and F be a functor structure from A to
B. If A1 and B1 are isomorphic under F , then A1 and B1 are isomorphic.

(39) Let A, B, A1, B1 be categories and F be a functor structure from A

to B. Suppose A1 and B1 are anti-isomorphic under F . Then A1, B1 are
anti-isomorphic.

(40) Let A, B be categories and F be a covariant functor from A to B. If A

and B are isomorphic under F , then F is bijective.

(41) Let A, B be categories and F be a contravariant functor from A to B.
If A and B are anti-isomorphic under F , then F is bijective.

(42) Let A, B be categories and F be a covariant functor from A to B. If F

is bijective, then A and B are isomorphic under F .

(43) Let A, B be categories and F be a contravariant functor from A to B.
If F is bijective, then A and B are anti-isomorphic under F .

Now we present two schemes. The scheme CoBijectRestriction deals with
non empty categories A, B, a covariant functor C from A to B, a non empty
subcategory D of A, and a non empty subcategory E of B, and states that:

D and E are isomorphic under C
provided the parameters satisfy the following conditions:
• C is bijective,
• For every object a of A holds a is an object of D iff C(a) is an

object of E , and
• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let a1, b1 be objects

of D. Suppose a1 = a and b1 = b. Let a2, b2 be objects of E .
Suppose a2 = C(a) and b2 = C(b). Let f be a morphism from a to
b. Then f ∈ 〈a1, b1〉 if and only if C(f) ∈ 〈a2, b2〉.

The scheme ContraBijectRestriction deals with non empty categories A, B,

a contravariant functor C from A to B, a non empty subcategory D of A, and a
non empty subcategory E of B, and states that:

D and E are anti-isomorphic under C
provided the parameters meet the following conditions:
• C is bijective,
• For every object a of A holds a is an object of D iff C(a) is an

object of E , and
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• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let a1, b1 be objects
of D. Suppose a1 = a and b1 = b. Let a2, b2 be objects of E .
Suppose a2 = C(a) and b2 = C(b). Let f be a morphism from a to
b. Then f ∈ 〈a1, b1〉 if and only if C(f) ∈ 〈b2, a2〉.

The following propositions are true:

(44) For every category A and for every non empty subcategory B of A holds
B and B are isomorphic under idA.

(45) For all functions f , g such that f ⊆ g holds xf ⊆xg.

(46) For all functions f , g such that dom f is a binary relation and xf ⊆xg

holds f ⊆ g.

(47) Let I, J be sets, A be a many sorted set indexed by [: I, I :], and B be a
many sorted set indexed by [:J, J :]. If A ⊆̇ B, then xA ⊆̇xB.

(48) Let A be a transitive non empty category structure and B be a transitive
non empty substructure of A. Then Bop is a substructure of Aop.

(49) For every category A and for every non empty subcategory B of A holds
Bop is a subcategory of Aop.

(50) Let A be a category and B be a non empty subcategory of A. Then B

and Bop are anti-isomorphic under the dualizing functor from A into Aop.

(51) Let A1, A2 be categories and F be a covariant functor from A1 to A2.
Suppose F is bijective. Let B1 be a non empty subcategory of A1 and B2

be a non empty subcategory of A2. Suppose B1 and B2 are isomorphic
under F . Then B2 and B1 are isomorphic under F−1.

(52) Let A1, A2 be categories and F be a contravariant functor from A1 to A2.
Suppose F is bijective. Let B1 be a non empty subcategory of A1 and B2

be a non empty subcategory of A2. Suppose B1 and B2 are anti-isomorphic
under F . Then B2 and B1 are anti-isomorphic under F−1.

(53) Let A1, A2, A3 be categories, F be a covariant functor from A1 to A2,
G be a covariant functor from A2 to A3, B1 be a non empty subcategory
of A1, B2 be a non empty subcategory of A2, and B3 be a non empty
subcategory of A3. Suppose B1 and B2 are isomorphic under F and B2

and B3 are isomorphic under G. Then B1 and B3 are isomorphic under
G · F.

(54) Let A1, A2, A3 be categories, F be a contravariant functor from A1 to A2,
G be a covariant functor from A2 to A3, B1 be a non empty subcategory
of A1, B2 be a non empty subcategory of A2, and B3 be a non empty
subcategory of A3. Suppose B1 and B2 are anti-isomorphic under F and
B2 and B3 are isomorphic under G. Then B1 and B3 are anti-isomorphic
under G · F.

(55) Let A1, A2, A3 be categories, F be a covariant functor from A1 to A2, G

be a contravariant functor from A2 to A3, B1 be a non empty subcategory
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of A1, B2 be a non empty subcategory of A2, and B3 be a non empty
subcategory of A3. Suppose B1 and B2 are isomorphic under F and B2

and B3 are anti-isomorphic under G. Then B1 and B3 are anti-isomorphic
under G · F.

(56) Let A1, A2, A3 be categories, F be a contravariant functor from A1

to A2, G be a contravariant functor from A2 to A3, B1 be a non empty
subcategory of A1, B2 be a non empty subcategory of A2, and B3 be a
non empty subcategory of A3. Suppose B1 and B2 are anti-isomorphic
under F and B2 and B3 are anti-isomorphic under G. Then B1 and B3

are isomorphic under G · F.
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Summary. In the paper, we develop the notation of lattice-wise categories
as concrete categories (see [8]) of lattices. Namely, the categories based on [17]
with lattices as objects and at least monotone maps between them as morphisms.
As examples, we introduce the categories UPS, CONT, and ALG with complete,
continuous, and algebraic lattices, respectively, as objects and directed suprema
preserving maps as morphisms. Some useful schemes to construct categories of
lattices and functors between them are also presented.

MML Identifier: YELLOW21.

The terminology and notation used in this paper are introduced in the following
papers: [17], [18], [12], [20], [9], [14], [4], [19], [1], [15], [21], [22], [16], [10], [11],
[6], [7], [13], [2], [3], [8], and [5].

1. Lattice-wise Categories

In this paper x, y are sets.
Let a be a set. a as 1-sorted is a 1-sorted structure and is defined as follows:

(Def. 1) a as 1-sorted =
{

a, if a is a 1-sorted structure,
〈a〉, otherwise.

Let W be a set. The functor POSETS(W ) is defined as follows:

(Def. 2) x ∈ POSETS(W ) iff x is a strict poset and the carrier of x as 1-sorted
∈W.

Let W be a non empty set. One can check that POSETS(W ) is non empty.
Let W be a set with non empty elements. Note that POSETS(W ) is poset-

membered.
Let C be a category. We say that C is carrier-underlaid if and only if:
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(Def. 3) For every object a of C there exists a 1-sorted structure S such that
a = S and the carrier of a = the carrier of S.

Let C be a category. We say that C is lattice-wise if and only if the conditions
(Def. 4) are satisfied.

(Def. 4)(i) C is semi-functional and set-id-inheriting,
(ii) every object of C is a lattice, and
(iii) for all objects a, b of C and for all lattices A, B such that A = a and

B = b holds 〈a, b〉 ⊆ BA
¬.

Let C be a category. We say that C has complete lattices if and only if:

(Def. 5) C is lattice-wise and every object of C is a complete lattice.

One can check that every category which has complete lattices is lattice-wise
and every category which is lattice-wise is also concrete and carrier-underlaid.

One can verify that there exists a category which is strict and has complete
lattices.

We now state two propositions:

(1) Let C be a carrier-underlaid category and a be an object of C. Then the
carrier of a = the carrier of a as 1-sorted.

(2) Let C be a set-id-inheriting carrier-underlaid category and a be an object
of C. Then ida = ida as 1-sorted.

Let C be a lattice-wise category and let a be an object of C. Then a as
1-sorted is a lattice and it can be characterized by the condition:

(Def. 6) a as 1-sorted = a.

We introduce La as a synonym of a as 1-sorted.
Let C be a category with complete lattices and let a be an object of C.

Then a as 1-sorted is a complete lattice. We introduce La as a synonym of a as
1-sorted.

Let C be a lattice-wise category and let a, b be objects of C. Let us assume
that 〈a, b〉 6= ∅. Let f be a morphism from a to b. The functor @f yielding a
monotone map from La into Lb is defined as follows:

(Def. 7) @f = f.

The following proposition is true

(3) Let C be a lattice-wise category and a, b, c be objects of C. Suppose
〈a, b〉 6= ∅ and 〈b, c〉 6= ∅. Let f be a morphism from a to b and g be a
morphism from b to c. Then g · f = (@g) · (@f).

In this article we present several logical schemes. The scheme CLCatEx1
deals with a non empty set A and a ternary predicate P, and states that:

There exists a lattice-wise strict category C such that
(i) the carrier of C = A, and
(ii) for all objects a, b of C and for every monotone map f from
La into Lb holds f ∈ 〈a, b〉 iff P[La,Lb, f ]
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provided the following conditions are met:
• Every element of A is a lattice,
• Let a, b, c be lattices. Suppose a ∈ A and b ∈ A and c ∈ A. Let f

be a map from a into b and g be a map from b into c. If P[a, b, f ]
and P[b, c, g], then P[a, c, g · f ], and

• For every lattice a such that a ∈ A holds P[a, a, ida].
The scheme CLCatEx2 deals with a non empty set A, a unary predicate P,

and a ternary predicate Q, and states that:
There exists a lattice-wise strict category C such that
(i) for every lattice x holds x is an object of C iff x is strict

and P[x] and the carrier of x ∈ A, and
(ii) for all objects a, b of C and for every monotone map f from
La into Lb holds f ∈ 〈a, b〉 iff Q[La,Lb, f ]

provided the parameters satisfy the following conditions:
• There exists a strict lattice x such that P[x] and the carrier of

x ∈ A,

• Let a, b, c be lattices. Suppose P[a] and P[b] and P[c]. Let f be a
map from a into b and g be a map from b into c. If Q[a, b, f ] and
Q[b, c, g], then Q[a, c, g · f ], and

• For every lattice a such that P[a] holds Q[a, a, ida].
The scheme CLCatUniq1 deals with a non empty set A and a ternary pre-

dicate P, and states that:
Let C1, C2 be lattice-wise categories. Suppose that
(i) the carrier of C1 = A,

(ii) for all objects a, b of C1 and for every monotone map f

from La into Lb holds f ∈ 〈a, b〉 iff P[a, b, f ],
(iii) the carrier of C2 = A, and
(iv) for all objects a, b of C2 and for every monotone map f

from La into Lb holds f ∈ 〈a, b〉 iff P[a, b, f ].
Then the category structure of C1 = the category structure of

C2

for all values of the parameters.
The scheme CLCatUniq2 deals with a non empty set A, a unary predicate

P, and a ternary predicate Q, and states that:
Let C1, C2 be lattice-wise categories. Suppose that
(i) for every lattice x holds x is an object of C1 iff x is strict

and P[x] and the carrier of x ∈ A,

(ii) for all objects a, b of C1 and for every monotone map f

from La into Lb holds f ∈ 〈a, b〉 iff Q[a, b, f ],
(iii) for every lattice x holds x is an object of C2 iff x is strict
and P[x] and the carrier of x ∈ A, and
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(iv) for all objects a, b of C2 and for every monotone map f

from La into Lb holds f ∈ 〈a, b〉 iff Q[a, b, f ].
Then the category structure of C1 = the category structure of

C2

for all values of the parameters.
The scheme CLCovariantFunctorEx deals with lattice-wise categories A, B,

a unary functor F yielding a lattice, a ternary functor G yielding a function,
and two ternary predicates P, Q, and states that:

There exists a covariant strict functor F from A to B such that
(i) for every object a of A holds F (a) = F(La), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = G(La,Lb,

@f)
provided the parameters meet the following conditions:
• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of A)(a, b) if and only if a ∈ the carrier of A and b ∈ the
carrier of A and P[a, b, f ],

• Let a, b be lattices and f be a map from a into b. Then f ∈ (the
arrows of B)(a, b) if and only if a ∈ the carrier of B and b ∈ the
carrier of B and Q[a, b, f ],

• For every lattice a such that a ∈ the carrier of A holds F(a) ∈ the
carrier of B,

• Let a, b be lattices and f be a map from a into b. If
P[a, b, f ], then G(a, b, f) is a map from F(a) into F(b) and
Q[F(a),F(b),G(a, b, f)],

• For every lattice a such that a ∈ the carrier of A holds
G(a, a, ida) = idF(a), and

• Let a, b, c be lattices, f be a map from a into b, and g be a
map from b into c. If P[a, b, f ] and P[b, c, g], then G(a, c, g · f) =
G(b, c, g) · G(a, b, f).

The scheme CLContravariantFunctorEx deals with lattice-wise categories A,

B, a unary functor F yielding a lattice, a ternary functor G yielding a function,
and two ternary predicates P, Q, and states that:

There exists a contravariant strict functor F from A to B such
that
(i) for every object a of A holds F (a) = F(La), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = G(La,Lb,

@f)
provided the parameters satisfy the following conditions:
• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of A)(a, b) if and only if a ∈ the carrier of A and b ∈ the
carrier of A and P[a, b, f ],
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• Let a, b be lattices and f be a map from a into b. Then f ∈ (the
arrows of B)(a, b) if and only if a ∈ the carrier of B and b ∈ the
carrier of B and Q[a, b, f ],

• For every lattice a such that a ∈ the carrier of A holds F(a) ∈ the
carrier of B,

• Let a, b be lattices and f be a map from a into b. If
P[a, b, f ], then G(a, b, f) is a map from F(b) into F(a) and
Q[F(b),F(a),G(a, b, f)],

• For every lattice a such that a ∈ the carrier of A holds
G(a, a, ida) = idF(a), and

• Let a, b, c be lattices, f be a map from a into b, and g be a
map from b into c. If P[a, b, f ] and P[b, c, g], then G(a, c, g · f) =
G(a, b, f) · G(b, c, g).

The scheme CLCatIsomorphism deals with lattice-wise categories A, B, a
unary functor F yielding a lattice, a ternary functor G yielding a function, and
two ternary predicates P, Q, and states that:

A and B are isomorphic
provided the parameters meet the following conditions:
• Let a, b be lattices and f be a map from a into b. Then f ∈ (the

arrows of A)(a, b) if and only if a ∈ the carrier of A and b ∈ the
carrier of A and P[a, b, f ],

• Let a, b be lattices and f be a map from a into b. Then f ∈ (the
arrows of B)(a, b) if and only if a ∈ the carrier of B and b ∈ the
carrier of B and Q[a, b, f ],

• There exists a covariant functor F from A to B such that
(i) for every object a of A holds F (a) = F(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = G(a, b, f),

• For all lattices a, b such that a ∈ the carrier of A and b ∈ the
carrier of A holds if F(a) = F(b), then a = b,

• For all lattices a, b and for all maps f , g from a into b such that
P[a, b, f ] and P[a, b, g] holds if G(a, b, f) = G(a, b, g), then f = g,

and
• Let a, b be lattices and f be a map from a into b. Suppose
Q[a, b, f ]. Then there exist lattices c, d and there exists a map
g from c into d such that c ∈ the carrier of A and d ∈ the carrier
of A and P[c, d, g] and a = F(c) and b = F(d) and f = G(c, d, g).

The scheme CLCatAntiIsomorphism deals with lattice-wise categories A, B,

a unary functor F yielding a lattice, a ternary functor G yielding a function,
and two ternary predicates P, Q, and states that:

A, B are anti-isomorphic
provided the following conditions are met:
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• Let a, b be lattices and f be a map from a into b. Then f ∈ (the
arrows of A)(a, b) if and only if a ∈ the carrier of A and b ∈ the
carrier of A and P[a, b, f ],

• Let a, b be lattices and f be a map from a into b. Then f ∈ (the
arrows of B)(a, b) if and only if a ∈ the carrier of B and b ∈ the
carrier of B and Q[a, b, f ],

• There exists a contravariant functor F from A to B such that
(i) for every object a of A holds F (a) = F(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = G(a, b, f),

• For all lattices a, b such that a ∈ the carrier of A and b ∈ the
carrier of A holds if F(a) = F(b), then a = b,

• For all lattices a, b and for all maps f , g from a into b such that
G(a, b, f) = G(a, b, g) holds f = g, and

• Let a, b be lattices and f be a map from a into b. Suppose
Q[a, b, f ]. Then there exist lattices c, d and there exists a map
g from c into d such that c ∈ the carrier of A and d ∈ the carrier
of A and P[c, d, g] and b = F(c) and a = F(d) and f = G(c, d, g).

2. Equivalence of Lattice-wise Categories

Let C be a lattice-wise category. We say that C has all isomorphisms if and
only if:

(Def. 8) For all objects a, b of C and for every map f from La into Lb such that
f is isomorphic holds f ∈ 〈a, b〉.

One can verify that there exists a strict lattice-wise category which has all
isomorphisms.

The following propositions are true:

(4) Let C be a lattice-wise category with all isomorphisms, a, b be objects
of C, and f be a morphism from a to b. If @f is isomorphic, then f is iso.

(5) Let C be a lattice-wise category and a, b be objects of C. Suppose
〈a, b〉 6= ∅ and 〈b, a〉 6= ∅. Let f be a morphism from a to b. If f is iso, then
@f is isomorphic.

The scheme CLCatEquivalence deals with lattice-wise categories A, B, two
unary functors F and G yielding lattices, two ternary functors H and I yiel-
ding functions, two unary functors A and B yielding functions, and two ternary
predicates P, Q, and states that:

A and B are equivalent
provided the parameters satisfy the following conditions:



categorial background for duality theory 761

• For all objects a, b of A and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff P[La,Lb, f ],
• For all objects a, b of B and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff Q[La,Lb, f ],
• There exists a covariant functor F from A to B such that

(i) for every object a of A holds F (a) = F(a), and
(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds F (f) = H(a, b, f),

• There exists a covariant functor G from B to A such that
(i) for every object a of B holds G(a) = G(a), and
(ii) for all objects a, b of B such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds G(f) = I(a, b, f),

• Let a be a lattice. Suppose a ∈ the carrier of A. Then there exists
a monotone map f from G(F(a)) into a such that f = A(a) and
f is isomorphic and P[G(F(a)), a, f ] and P[a,G(F(a)), f−1],

• Let a be a lattice. Suppose a ∈ the carrier of B. Then there exists
a monotone map f from a into F(G(a)) such that f = B(a) and
f is isomorphic and Q[a,F(G(a)), f ] and Q[F(G(a)), a, f−1],

• For all objects a, b of A such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds A(b) · I(F(a),F(b),H(a, b, f)) =
(@f) · A(a), and

• For all objects a, b of B such that 〈a, b〉 6= ∅ and for every
morphism f from a to b holds H(G(a),G(b), I(a, b, f)) · B(a) =
B(b) · (@f).

3. UPS Category

Let R be a binary relation. We say that R is upper-bounded if and only if:

(Def. 9) There exists x such that for every y such that y ∈ field R holds 〈〈y,

x〉〉 ∈ R.

Let us note that every binary relation which is well-ordering is also reflexive,
transitive, antisymmetric, connected, and well founded.

Let us mention that there exists a binary relation which is well-ordering.
Next we state the proposition

(6) Let f be an one-to-one function and R be a binary relation. Then 〈〈x,

y〉〉 ∈ f · R · f−1 if and only if x ∈ dom f and y ∈ dom f and 〈〈f(x),
f(y)〉〉 ∈ R.

Let f be an one-to-one function and let R be a reflexive binary relation.
Note that f ·R · f−1 is reflexive.
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Let f be an one-to-one function and let R be an antisymmetric binary rela-
tion. Note that f ·R · f−1 is antisymmetric.

Let f be an one-to-one function and let R be a transitive binary relation.
Note that f ·R · f−1 is transitive.

Next we state the proposition

(7) Let X be a set and A be an ordinal number. If X ≈ A, then there exists
an order R in X such that R well orders X and R = A.

Let X be a non empty set. Observe that there exists an order in X which is
upper-bounded and well-ordering.

Next we state four propositions:

(8) Let P be a reflexive non empty relational structure. Then P is upper-
bounded if and only if the internal relation of P is upper-bounded.

(9) Let P be an upper-bounded non empty poset. Suppose the internal rela-
tion of P is well-ordering. Then P is connected, complete, and continuous.

(10) Let P be an upper-bounded non empty poset. Suppose the internal re-
lation of P is well-ordering. Let x, y be elements of P . If y < x, then there
exists an element z of P such that z is compact and y ¬ z and z ¬ x.

(11) Let P be an upper-bounded non empty poset. If the internal relation of
P is well-ordering, then P is algebraic.

Let X be a non empty set and let R be an upper-bounded well-ordering order
in X. Observe that 〈X,R〉 is complete connected continuous and algebraic.

Let us observe that every set which is non trivial has a non-empty element.
Let W be a non empty set. Let us assume that there exists an element w of

W such that w is non empty. The functor UPSW yielding a lattice-wise strict
category is defined by the conditions (Def. 10).

(Def. 10)(i) For every lattice x holds x is an object of UPSW iff x is strict and
complete and the carrier of x ∈W, and

(ii) for all objects a, b of UPSW and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff f is directed-sups-preserving.

Let W be a set with a non-empty element. Observe that UPSW has complete
lattices and all isomorphisms.

One can prove the following four propositions:

(12) For every set W with a non-empty element holds the carrier of UPSW ⊆
POSETS(W ).

(13) Let W be a set with a non-empty element and given x. Then x is an
object of UPSW if and only if x is a complete lattice and x ∈ POSETS(W ).

(14) Let W be a set with a non-empty element and L be a lattice. Suppose
the carrier of L ∈ W. Then L is an object of UPSW if and only if L is
strict and complete.
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(15) Let W be a set with a non-empty element, a, b be objects of UPSW , and
f be a set. Then f ∈ 〈a, b〉 if and only if f is a directed-sups-preserving
map from La into Lb.

Let W be a set with a non-empty element and let a, b be objects of UPSW .
Observe that 〈a, b〉 is non empty.

4. Lattice-wise Subcategories

Next we state the proposition

(16) Let A be a category, B be a non empty subcategory of A, a be an object
of A, and b be an object of B. If b = a, then the carrier of b = the carrier
of a.

Let A be a set-id-inheriting category. Observe that every non empty subca-
tegory of A is set-id-inheriting.

Let A be a para-functional category. One can verify that every non empty
subcategory of A is para-functional.

Let A be a semi-functional category. Note that every non empty transitive
substructure of A is semi-functional.

Let A be a carrier-underlaid category. Note that every non empty subcate-
gory of A is carrier-underlaid.

Let A be a lattice-wise category. Observe that every non empty subcategory
of A is lattice-wise.

Let A be a lattice-wise category with all isomorphisms. Observe that every
non empty subcategory of A which is full has all isomorphisms.

Let A be a category with complete lattices. One can check that every non
empty subcategory of A has complete lattices.

Let W be a set with a non-empty element. The functor CONT W yielding a
strict full non empty subcategory of UPSW is defined by:

(Def. 11) For every object a of UPSW holds a is an object of CONT W iff La is
continuous.

Let W be a set with a non-empty element. The functor ALGW yielding a
strict full non empty subcategory of CONT W is defined by:

(Def. 12) For every object a of CONT W holds a is an object of ALGW iff La is
algebraic.

The following four propositions are true:

(17) Let W be a set with a non-empty element and L be a lattice. Suppose
the carrier of L ∈ W. Then L is an object of CONT W if and only if L is
strict, complete, and continuous.
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(18) Let W be a set with a non-empty element and L be a lattice. Suppose
the carrier of L ∈ W. Then L is an object of ALGW if and only if L is
strict, complete, and algebraic.

(19) Let W be a set with a non-empty element, a, b be objects of CONT W ,
and f be a set. Then f ∈ 〈a, b〉 if and only if f is a directed-sups-preserving
map from La into Lb.

(20) Let W be a set with a non-empty element, a, b be objects of ALGW , and
f be a set. Then f ∈ 〈a, b〉 if and only if f is a directed-sups-preserving
map from La into Lb.

Let W be a set with a non-empty element and let a, b be objects of CONT W .
One can check that 〈a, b〉 is non empty.

Let W be a set with a non-empty element and let a, b be objects of ALGW .
One can check that 〈a, b〉 is non empty.
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Summary. In the paper, we investigate the duality of categories of com-
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1. Infs-preserving and Sups-preserving Maps

Let S, T be complete lattices. One can check that there exists a connection
between S and T which is Galois.

Next we state the proposition

(1) Let S, T , S′, T ′ be non empty relational structures. Suppose that
(i) the relational structure of S = the relational structure of S′, and
(ii) the relational structure of T = the relational structure of T ′.

Let c be a connection between S and T and c′ be a connection between S′

and T ′. If c = c′, then if c is Galois, then c′ is Galois.

Let S, T be lattices and let g be a map from S into T . Let us assume that
S is complete and T is complete and g is infs-preserving. The lower adjoint of g

is a map from T into S and is defined as follows:

(Def. 1) 〈〈g, the lower adjoint of g〉〉 is Galois.
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Let S, T be lattices and let d be a map from T into S. Let us assume that
S is complete and T is complete and d is sups-preserving. The upper adjoint of
d is a map from S into T and is defined as follows:

(Def. 2) 〈〈the upper adjoint of d, d〉〉 is Galois.

Let S, T be complete lattices and let g be an infs-preserving map from S

into T . One can verify that the lower adjoint of g is lower adjoint.
Let S, T be complete lattices and let d be a sups-preserving map from T

into S. One can check that the upper adjoint of d is upper adjoint.
The following two propositions are true:

(2) Let S, T be complete lattices, g be an infs-preserving map from S into T ,
and t be an element of T . Then (the lower adjoint of g)(t) = inf(g−1(↑t)).

(3) Let S, T be complete lattices, d be a sups-preserving map from T into S,
and s be an element of S. Then (the upper adjoint of d)(s) = sup(d−1(↓s)).

Let S, T be relational structures and let f be a function from the carrier
of S into the carrier of T . The functor fop yielding a map from Sop into T op is
defined as follows:

(Def. 3) fop = f.

Let S, T be complete lattices and let g be an infs-preserving map from S

into T . One can verify that gop is lower adjoint.
Let S, T be complete lattices and let d be a sups-preserving map from S

into T . Observe that dop is upper adjoint.
We now state several propositions:

(4) Let S, T be complete lattices and g be an infs-preserving map from S

into T . Then the lower adjoint of g = the upper adjoint of gop.

(5) Let S, T be complete lattices and d be a sups-preserving map from S

into T . Then the lower adjoint of dop = the upper adjoint of d.

(6) For every non empty relational structure L holds 〈〈idL, idL〉〉 is Galois.

(7) For every complete lattice L holds the lower adjoint of idL = idL and
the upper adjoint of idL = idL.

(8) Let L1, L2, L3 be complete lattices, g1 be an infs-preserving map from
L1 into L2, and g2 be an infs-preserving map from L2 into L3. Then the
lower adjoint of g2 · g1 = (the lower adjoint of g1) · (the lower adjoint of
g2).

(9) Let L1, L2, L3 be complete lattices, d1 be a sups-preserving map from
L1 into L2, and d2 be a sups-preserving map from L2 into L3. Then the
upper adjoint of d2 · d1 = (the upper adjoint of d1) · (the upper adjoint of
d2).

(10) Let S, T be complete lattices and g be an infs-preserving map from S

into T . Then the upper adjoint of the lower adjoint of g = g.
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(11) Let S, T be complete lattices and d be a sups-preserving map from S

into T . Then the lower adjoint of the upper adjoint of d = d.

(12) Let C be a non empty category structure and a, b, f be sets. Suppose
f ∈ (the arrows of C)(a, b). Then there exist objects o1, o2 of C such that
o1 = a and o2 = b and f ∈ 〈o1, o2〉 and f is a morphism from o1 to o2.

Let W be a non empty set. Let us assume that there exists an element w

of W such that w is non empty. The functor INF W yields a lattice-wise strict
category and is defined by the conditions (Def. 4).

(Def. 4)(i) For every lattice x holds x is an object of INF W iff x is strict and
complete and the carrier of x ∈W, and

(ii) for all objects a, b of INF W and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff f is infs-preserving.

Let W be a non empty set. Let us assume that there exists an element w

of W such that w is non empty. The functor SUPW yields a lattice-wise strict
category and is defined by the conditions (Def. 5).

(Def. 5)(i) For every lattice x holds x is an object of SUPW iff x is strict and
complete and the carrier of x ∈W, and

(ii) for all objects a, b of SUPW and for every monotone map f from La

into Lb holds f ∈ 〈a, b〉 iff f is sups-preserving.

Let W be a set with a non-empty element. Observe that INF W has complete
lattices and SUPW has complete lattices.

One can prove the following propositions:

(13) Let W be a set with a non-empty element and L be a lattice. Then L is
an object of INF W if and only if L is strict and complete and the carrier
of L ∈W.

(14) Let W be a set with a non-empty element, a, b be objects of INF W , and
f be a set. Then f ∈ 〈a, b〉 if and only if f is an infs-preserving map from
La into Lb.

(15) Let W be a set with a non-empty element and L be a lattice. Then L is
an object of SUPW if and only if L is strict and complete and the carrier
of L ∈W.

(16) Let W be a set with a non-empty element, a, b be objects of SUPW , and
f be a set. Then f ∈ 〈a, b〉 if and only if f is a sups-preserving map from
La into Lb.

(17) For every set W with a non-empty element holds the carrier of INF W =
the carrier of SUPW .

Let W be a set with a non-empty element. The functor LowerAdjW yields
a contravariant strict functor from INF W to SUPW and is defined by the con-
ditions (Def. 6).

(Def. 6)(i) For every object a of INF W holds LowerAdjW (a) = La, and
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(ii) for all objects a, b of INF W such that 〈a, b〉 6= ∅ and for every morphism
f from a to b holds LowerAdjW (f) = the lower adjoint of @f.

The functor UpperAdjW yields a contravariant strict functor from SUPW to
INF W and is defined by the conditions (Def. 7).

(Def. 7)(i) For every object a of SUPW holds UpperAdjW (a) = La, and
(ii) for all objects a, b of SUPW such that 〈a, b〉 6= ∅ and for every morphism

f from a to b holds UpperAdjW (f) = the upper adjoint of @f.

Let W be a set with a non-empty element. Observe that LowerAdjW is
bijective and UpperAdjW is bijective.

We now state several propositions:

(18) For every set W with a non-empty element holds (LowerAdjW )−1 =
UpperAdjW and (UpperAdjW )−1 = LowerAdjW .

(19) For every set W with a non-empty element holds LowerAdjW ·UpperAdjW
= idSUPW

and UpperAdjW ·LowerAdjW = idINFW
.

(20) For every set W with a non-empty element holds INF W , SUPW are
anti-isomorphic.

(21) For every set W with a non-empty element holds INF W and SUPW are
anti-isomorphic under LowerAdjW .

(22) For every set W with a non-empty element holds SUPW and INF W are
anti-isomorphic under UpperAdjW .

2. Scott Continuous Maps and Continuous Lattices

Next we state the proposition

(23) Let S, T be complete lattices and g be an infs-preserving map from S

into T . Then g is directed-sups-preserving if and only if for every Scott
topological augmentation X of T and for every Scott topological augmen-
tation Y of S and for every open subset V of X holds ↑((the lower adjoint
of g)◦V ) is an open subset of Y .

Let S, T be non empty reflexive relational structures and let f be a map
from S into T . We say that f is waybelow-preserving if and only if:

(Def. 8) For all elements x, y of S such that x� y holds f(x)� f(y).
We now state two propositions:

(24) Let S, T be complete lattices and g be an infs-preserving map from S

into T . Suppose g is directed-sups-preserving. Then the lower adjoint of g

is waybelow-preserving.

(25) Let S be a complete lattice, T be a complete continuous lattice, and g

be an infs-preserving map from S into T . Suppose the lower adjoint of g

is waybelow-preserving. Then g is directed-sups-preserving.
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Let S, T be topological spaces and let f be a map from S into T . We say
that f is relatively open if and only if:

(Def. 9) For every open subset V of S holds f◦V is an open subset of T ¹ rng f.

One can prove the following propositions:

(26) Let X, Y be non empty topological spaces and d be a map from X into
Y . Then d is relatively open if and only if d◦ is open.

(27) Let S, T be complete lattices, g be an infs-preserving map from S into
T , X be a Scott topological augmentation of T , Y be a Scott topological
augmentation of S, and V be an open subset of X. Then (the lower adjoint
of g)◦V = rng (the lower adjoint of g) ∩ ↑((the lower adjoint of g)◦V ).

(28) Let S, T be complete lattices, g be an infs-preserving map from S into T ,
X be a Scott topological augmentation of T , and Y be a Scott topological
augmentation of S. Suppose that for every open subset V of X holds ↑((the
lower adjoint of g)◦V ) is an open subset of Y . Let d be a map from X into
Y . If d = the lower adjoint of g, then d is relatively open.

Let X, Y be complete lattices and let f be a sups-preserving map from X

into Y . One can check that Im f is complete.
Next we state four propositions:

(29) Let S, T be complete lattices, g be an infs-preserving map from S into
T , X be a Scott topological augmentation of T , Y be a Scott topological
augmentation of S, Z be a Scott topological augmentation of Im (the lower
adjoint of g), d be a map from X into Y , and d′ be a map from X into
Z. Suppose d = the lower adjoint of g and d′ = d. If d is relatively open,
then d′ is open.

(30) Let T1, T2, S1, S2 be topological structures. Suppose that
(i) the topological structure of T1 = the topological structure of T2, and
(ii) the topological structure of S1 = the topological structure of S2.

If S1 is a subspace of T1, then S2 is a subspace of T2.

(31) For every topological structure T holds T ¹ΩT = the topological structure
of T .

(32) Let S, T be complete lattices and g be an infs-preserving map from S into
T . Suppose g is one-to-one. Let X be a Scott topological augmentation of
T , Y be a Scott topological augmentation of S, and d be a map from X into
Y . Suppose d = the lower adjoint of g. Then g is directed-sups-preserving
if and only if d is open.

Let X be a complete lattice and let f be a projection map from X into X.
One can verify that Im f is complete.

We now state a number of propositions:

(33) Let L be a complete lattice and k be a kernel map from L into L. Then
(i) k◦ is infs-preserving,
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(ii) k◦ is sups-preserving,

(iii) the lower adjoint of k◦ = k◦, and

(iv) the upper adjoint of k◦ = k◦.

(34) Let L be a complete lattice and k be a kernel map from L into L. Then
k is directed-sups-preserving if and only if k◦ is directed-sups-preserving.

(35) Let L be a complete lattice and k be a kernel map from L into L.
Then k is directed-sups-preserving if and only if for every Scott topological
augmentation X of Im k and for every Scott topological augmentation Y

of L and for every subset V of L such that V is an open subset of X holds
↑V is an open subset of Y .

(36) Let L be a complete lattice, S be a sups-inheriting non empty full rela-
tional substructure of L, x, y be elements of L, and a, b be elements of S.
If a = x and b = y, then if x� y, then a� b.

(37) Let L be a complete lattice and k be a kernel map from L into L.
Suppose k is directed-sups-preserving. Let x, y be elements of L and a, b

be elements of Im k. If a = x and b = y, then x� y iff a� b.

(38) Let L be a complete lattice and k be a kernel map from L into L. Suppose
that

(i) Im k is continuous, and

(ii) for all elements x, y of L and for all elements a, b of Im k such that
a = x and b = y holds x� y iff a� b.

Then k is directed-sups-preserving.

(39) Let L be a complete lattice and c be a closure map from L into L. Then

(i) c◦ is sups-preserving,

(ii) c◦ is infs-preserving,

(iii) the upper adjoint of c◦ = c◦, and

(iv) the lower adjoint of c◦ = c◦.

(40) Let L be a complete lattice and c be a closure map from L into L. Then
Im c is directed-sups-inheriting if and only if c◦ is directed-sups-preserving.

(41) Let L be a complete lattice and c be a closure map from L into L. Then
Im c is directed-sups-inheriting if and only if for every Scott topological
augmentation X of Im c and for every Scott topological augmentation Y

of L and for every map f from Y into X such that f = c holds f is open.

(42) Let L be a complete lattice and c be a closure map from L into L. If
Im c is directed-sups-inheriting, then c◦ is waybelow-preserving.

(43) Let L be a continuous complete lattice and c be a closure map from L

into L. If c◦ is waybelow-preserving, then Im c is directed-sups-inheriting.
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3. Duality of Subcategories of INF and SUP

Let W be a non empty set. The functor INF ↑W yielding a strict non empty
subcategory of INF W is defined by the conditions (Def. 10).

(Def. 10)(i) Every object of INF W is an object of INF ↑W , and

(ii) for all objects a, b of INF W and for all objects a′, b′ of INF ↑W such
that a′ = a and b′ = b and 〈a, b〉 6= ∅ and for every morphism f from a to
b holds f ∈ 〈a′, b′〉 iff @f is directed-sups-preserving.

Let W be a set with a non-empty element. The functor SUP0
W yields a strict

non empty subcategory of SUPW and is defined by the conditions (Def. 11).

(Def. 11)(i) Every object of SUPW is an object of SUP0
W , and

(ii) for all objects a, b of SUPW and for all objects a′, b′ of SUP0
W such

that a′ = a and b′ = b and 〈a, b〉 6= ∅ and for every morphism f from a to
b holds f ∈ 〈a′, b′〉 iff the upper adjoint of @f is directed-sups-preserving.

The following propositions are true:

(44) Let S be a non empty relational structure, T be a non empty reflexive
antisymmetric relational structure, t be an element of T , and X be a non
empty subset of S. Then S 7−→ t preserves sup of X and S 7−→ t preserves
inf of X.

(45) Let S be a non empty relational structure and T be a lower-bounded
non empty reflexive antisymmetric relational structure. Then S 7−→ ⊥T is
sups-preserving.

(46) Let S be a non empty relational structure and T be an upper-bounded
non empty reflexive antisymmetric relational structure. Then S 7−→ >T is
infs-preserving.

Let S be a non empty relational structure and let T be an upper-bounded
non empty reflexive antisymmetric relational structure. Observe that S 7−→ >T

is directed-sups-preserving and infs-preserving.
Let S be a non empty relational structure and let T be a lower-bounded non

empty reflexive antisymmetric relational structure. Observe that S 7−→ ⊥T is
filtered-infs-preserving and sups-preserving.

Let S be a non empty relational structure and let T be an upper-bounded
non empty reflexive antisymmetric relational structure. Note that there exists
a map from S into T which is directed-sups-preserving and infs-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non
empty reflexive antisymmetric relational structure. One can check that there
exists a map from S into T which is filtered-infs-preserving and sups-preserving.

Next we state several propositions:
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(47) Let W be a set with a non-empty element and L be a lattice. Then L is
an object of INF ↑W if and only if L is strict and complete and the carrier
of L ∈W.

(48) Let W be a set with a non-empty element, a, b be objects of INF ↑W , and
f be a set. Then f ∈ 〈a, b〉 if and only if f is a directed-sups-preserving
infs-preserving map from La into Lb.

(49) Let W be a set with a non-empty element and L be a lattice. Then L is
an object of SUP0

W if and only if L is strict and complete and the carrier
of L ∈W.

(50) Let W be a set with a non-empty element, a, b be objects of SUP0
W , and

f be a set. Then f ∈ 〈a, b〉 if and only if there exists a sups-preserving
map g from La into Lb such that g = f and the upper adjoint of g is
directed-sups-preserving.

(51) For every set W with a non-empty element holds INF ↑W =
Intersect(INF W , UPSW ).

Let W be a set with a non-empty element. The functor CLW yielding a strict
full non empty subcategory of INF ↑W is defined as follows:

(Def. 12) For every object a of INF ↑W holds a is an object of CLW iff La is conti-
nuous.

Let W be a set with a non-empty element. Observe that CLW has complete
lattices.

One can prove the following two propositions:

(52) Let W be a set with a non-empty element and L be a lattice. Suppose
the carrier of L ∈W. Then L is an object of CLW if and only if L is strict,
complete, and continuous.

(53) Let W be a set with a non-empty element, a, b be objects of CLW , and
f be a set. Then f ∈ 〈a, b〉 if and only if f is an infs-preserving directed-
sups-preserving map from La into Lb.

Let W be a set with a non-empty element. The functor CLop
W yields a strict

full non empty subcategory of SUP0
W and is defined by:

(Def. 13) For every object a of SUP0
W holds a is an object of CLop

W iff La is conti-
nuous.

Next we state several propositions:

(54) Let W be a set with a non-empty element and L be a lattice. Suppose
the carrier of L ∈W. Then L is an object of CLop

W if and only if L is strict,
complete, and continuous.

(55) Let W be a set with a non-empty element, a, b be objects of CLop
W , and

f be a set. Then f ∈ 〈a, b〉 if and only if there exists a sups-preserving
map g from La into Lb such that g = f and the upper adjoint of g is
directed-sups-preserving.
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(56) For every set W with a non-empty element holds INF ↑W and SUP0
W are

anti-isomorphic under LowerAdjW .

(57) For every set W with a non-empty element holds SUP0
W and INF ↑W are

anti-isomorphic under UpperAdjW .

(58) For every set W with a non-empty element holds CLW and CLop
W are

anti-isomorphic under LowerAdjW .

(59) For every set W with a non-empty element holds CLop
W and CLW are

anti-isomorphic under UpperAdjW .

4. Compact Preserving Maps and Sup-semilattices Morphisms

Let S, T be non empty reflexive relational structures and let f be a map
from S into T . We say that f is compact-preserving if and only if:

(Def. 14) For every element s of S such that s is compact holds f(s) is compact.

One can prove the following propositions:

(60) Let S, T be complete lattices and d be a sups-preserving map from T

into S. If d is waybelow-preserving, then d is compact-preserving.

(61) Let S, T be complete lattices and d be a sups-preserving map from T

into S. Suppose T is algebraic and d is compact-preserving. Then d is
waybelow-preserving.

(62) Let R, S, T be non empty relational structures, X be a subset of R, f be
a map from R into S, and g be a map from S into T . Suppose f preserves
sup of X and g preserves sup of f◦X. Then g · f preserves sup of X.

Let S, T be non empty relational structures and let f be a map from S into
T . We say that f is finite-sups-preserving if and only if:

(Def. 15) For every finite subset X of S holds f preserves sup of X.

We say that f is bottom-preserving if and only if:

(Def. 16) f preserves sup of ∅S .

Next we state the proposition

(63) Let R, S, T be non empty relational structures, f be a map from R into
S, and g be a map from S into T . Suppose f is finite-sups-preserving and
g is finite-sups-preserving. Then g · f is finite-sups-preserving.

Let S, T be non empty antisymmetric lower-bounded relational structures
and let f be a map from S into T . Let us observe that f is bottom-preserving
if and only if:

(Def. 17) f(⊥S) = ⊥T .

Let L be a non empty relational structure and let S be a relational substruc-
ture of L. We say that S is finite-sups-inheriting if and only if:
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(Def. 18) For every finite subset X of S such that sup X exists in L holds
⊔

L X ∈
the carrier of S.

We say that S is bottom-inheriting if and only if:

(Def. 19) ⊥L ∈ the carrier of S.

Let S, T be non empty relational structures. Observe that every map from
S into T which is sups-preserving is also bottom-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure.
Note that every relational substructure of L which is finite-sups-inheriting is
also bottom-inheriting and join-inheriting.

Let L be a non empty relational structure. One can check that every rela-
tional substructure of L which is sups-inheriting is also finite-sups-inheriting.

Let S, T be lower-bounded non empty posets. One can verify that there
exists a map from S into T which is sups-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure.
Observe that every full relational substructure of L which is bottom-inheriting
is also non empty and lower-bounded.

Let L be a lower-bounded antisymmetric non empty relational structure.
Note that there exists a relational substructure of L which is non empty, sups-
inheriting, finite-sups-inheriting, bottom-inheriting, and full.

Next we state the proposition

(64) Let L be a lower-bounded antisymmetric non empty relational structure
and S be a non empty bottom-inheriting full relational substructure of L.
Then ⊥S = ⊥L.

Let L be a lower-bounded non empty poset with l.u.b.’s. Note that every
full relational substructure of L which is bottom-inheriting and join-inheriting
is also finite-sups-inheriting.

Next we state two propositions:

(65) Let S, T be non empty relational structures and f be a map from S

into T . Suppose f is finite-sups-preserving. Then f is join-preserving and
bottom-preserving.

(66) Let S, T be lower-bounded posets with l.u.b.’s and f be a map from
S into T . Suppose f is join-preserving and bottom-preserving. Then f is
finite-sups-preserving.

Let S, T be non empty relational structures. One can check that every map
from S into T which is sups-preserving is also finite-sups-preserving and every
map from S into T which is finite-sups-preserving is also join-preserving and
bottom-preserving.

Let S be a non empty relational structure and let T be a lower-bounded non
empty reflexive antisymmetric relational structure. Observe that there exists a
map from S into T which is sups-preserving and finite-sups-preserving.
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Let L be a lower-bounded non empty poset. One can check that
CompactSublatt(L) is lower-bounded.

One can prove the following propositions:

(67) Let S be a relational structure, T be a non empty relational structure,
f be a map from S into T , S′ be a relational substructure of S, and T ′ be
a relational substructure of T . Suppose f◦(the carrier of S′) ⊆ the carrier
of T ′. Then f¹the carrier of S′ is a map from S′ into T ′.

(68) Let S, T be lattices, f be a join-preserving map from S into T , S′ be
a non empty join-inheriting full relational substructure of S, T ′ be a non
empty join-inheriting full relational substructure of T , and g be a map
from S′ into T ′. If g = f¹the carrier of S′, then g is join-preserving.

(69) Let S, T be lower-bounded lattices, f be a finite-sups-preserving map
from S into T , S′ be a non empty finite-sups-inheriting full relational
substructure of S, T ′ be a non empty finite-sups-inheriting full relational
substructure of T , and g be a map from S′ into T ′. If g = f¹the carrier of
S′, then g is finite-sups-preserving.

Let L be a complete lattice. One can verify that CompactSublatt(L) is finite-
sups-inheriting.

Next we state two propositions:

(70) Let S, T be complete lattices and d be a sups-preserving map
from T into S. Then d is compact-preserving if and only if d¹the
carrier of CompactSublatt(T ) is a finite-sups-preserving map from
CompactSublatt(T ) into CompactSublatt(S).

(71) Let S, T be complete lattices. Suppose T is algebraic. Let g be an infs-
preserving map from S into T . Then g is directed-sups-preserving if and
only if (the lower adjoint of g)¹the carrier of CompactSublatt(T ) is a finite-
sups-preserving map from CompactSublatt(T ) into CompactSublatt(S).

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-

matics, 6(1):81–91, 1997.
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,

6(1):93–107, 1997.
[4] Grzegorz Bancerek. The “way-below” relation. Formalized Mathematics, 6(1):169–176,

1997.
[5] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics,

7(1):35–43, 1998.
[6] Grzegorz Bancerek. Categorial background for duality theory. Formalized Mathematics,

9(4):755–765, 2001.
[7] Grzegorz Bancerek. Miscellaneous facts about functors. Formalized Mathematics,

9(4):745–754, 2001.
[8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.



778 grzegorz bancerek

[10] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[12] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Com-

pendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[13] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57–62, 1998.
[14] Beata Madras. On the concept of the triangulation. Formalized Mathematics, 5(3):457–

462, 1996.
[15] Robert Milewski. Algebraic lattices. Formalized Mathematics, 6(2):249–254, 1997.
[16] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
[17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[19] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535–545, 1991.
[20] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathe-

matics, 5(2):259–267, 1996.
[21] Andrzej Trybulec. Functors for alternative categories. Formalized Mathematics, 5(4):595–

608, 1996.
[22] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
[23] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[26] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices

and maps. Formalized Mathematics, 6(1):123–130, 1997.
[27] Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics,

5(1):75–77, 1996.

Received August 8, 2001



FORMALIZED MATHEMATICS

Volume 9, Number 4, 2001
University of Białystok

Yet Another Construction of Free Algebra

Grzegorz Bancerek
University of Białystok

Shinshu University, Nagano

Artur Korniłowicz1

University of Białystok

MML Identifier: MSAFREE3.

The notation and terminology used here are introduced in the following papers:
[27], [21], [10], [15], [14], [9], [12], [8], [13], [23], [20], [6], [25], [11], [16], [7], [24],
[17], [18], [19], [28], [29], [26], [22], [1], [3], [4], [5], and [2].

In this paper X, x, z are sets.
Let S be a non empty non void many sorted signature and let A be a non

empty algebra over S. Observe that
⋃

(the sorts of A) is non empty.
Let S be a non empty non void many sorted signature and let A be a non

empty algebra over S.

(Def. 1) An element of
⋃

(the sorts of A) is said to be an element of A.

We now state two propositions:

(1) For every function f such that X ⊆ dom f and f is one-to-one holds
f−1(f◦X) = X.

(2) Let I be a set, A be a many sorted set indexed by I, and F be a many
sorted function indexed by I. If F is “1-1” and A ⊆ domκ F (κ), then
F−1(F ◦ A) = A.

Let S be a non void signature and let X be a many sorted set indexed by the
carrier of S. The functor FreeS(X) yields a strict algebra over S and is defined
by:

(Def. 2) There exists a subset A of Free(X ∪ ((the carrier of S) 7−→ {0})) such
that FreeS(X) = Gen(A) and A = (Reverse(X ∪ ((the carrier of S) 7−→
{0})))−1(X).

We now state four propositions:

1This work has been partially supported by TYPES grant IST-1999-29001.
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(3) Let S be a non void signature, X be a non-empty many sorted set indexed
by the carrier of S, and s be a sort symbol of S. Then 〈〈x, s〉〉 ∈ the carrier
of DTConMSA(X) if and only if x ∈ X(s).

(4) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, X be a many sorted set indexed by the carrier of S,
and s be a sort symbol of S. Then x ∈ X(s) and x ∈ Y (s) if and only if
the root tree of 〈〈x, s〉〉 ∈ ((Reverse(Y ))−1(X))(s).

(5) Let S be a non void signature, X be a many sorted set indexed by the
carrier of S, and s be a sort symbol of S. If x ∈ X(s), then the root tree
of 〈〈x, s〉〉 ∈ (the sorts of FreeS(X))(s).

(6) Let S be a non void signature, X be a many sorted set indexed by the
carrier of S, and o be an operation symbol of S. Suppose Arity(o) = ∅.
Then the root tree of 〈〈o, the carrier of S〉〉 ∈ (the sorts of FreeS(X))(the
result sort of o).

Let S be a non void signature and let X be a non empty yielding many
sorted set indexed by the carrier of S. Observe that FreeS(X) is non empty.

One can prove the following three propositions:

(7) Let S be a non void signature and X be a non-empty many sorted set
indexed by the carrier of S. Then x is an element of Free(X) if and only
if x is a term of S over X.

(8) Let S be a non void signature, X be a non-empty many sorted set indexed
by the carrier of S, s be a sort symbol of S, and x be a term of S over X.
Then x ∈ (the sorts of Free(X))(s) if and only if the sort of x = s.

(9) Let S be a non void signature and X be a non empty yielding many
sorted set indexed by the carrier of S. Then every element of FreeS(X) is
a term of S over X ∪ ((the carrier of S) 7−→ {0}).

Let S be a non empty non void many sorted signature and let X be a non
empty yielding many sorted set indexed by the carrier of S. Note that every
element of FreeS(X) is relation-like and function-like.

Let S be a non empty non void many sorted signature and let X be a non
empty yielding many sorted set indexed by the carrier of S. Note that every
element of FreeS(X) is finite and decorated tree-like.

Let S be a non empty non void many sorted signature and let X be a non
empty yielding many sorted set indexed by the carrier of S. Observe that every
element of FreeS(X) is finite-branching.

One can check that every decorated tree is non empty.
Let S be a many sorted signature and let t be a non empty binary relation.

The functor VarS t yields a many sorted set indexed by the carrier of S and is
defined as follows:

(Def. 3) For every set s such that s ∈ the carrier of S holds (VarS t)(s) = {a1; a
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ranges over elements of rng t : a2 = s}.
Let S be a many sorted signature, let X be a many sorted set indexed by

the carrier of S, and let t be a non empty binary relation. The functor VarX t

yielding a many sorted subset indexed by X is defined by:

(Def. 4) VarX t = X ∩VarS t.

We now state several propositions:

(10) Let S be a many sorted signature, X be a many sorted set indexed by
the carrier of S, t be a non empty binary relation, and V be a many sorted
subset indexed by X. Then V = VarX t if and only if for every set s such
that s ∈ the carrier of S holds V (s) = X(s) ∩ {a1; a ranges over elements
of rng t : a2 = s}.

(11) Let S be a many sorted signature and s, x be sets. Then
(i) if s ∈ the carrier of S, then (VarS (the root tree of 〈〈x, s〉〉))(s) = {x},

and
(ii) for every set s′ such that s′ 6= s or s /∈ the carrier of S holds (VarS (the

root tree of 〈〈x, s〉〉))(s′) = ∅.
(12) Let S be a many sorted signature and s be a set. Suppose s ∈ the carrier

of S. Let p be a decorated tree yielding finite sequence. Then x ∈ (VarS(〈〈z,

the carrier of S〉〉-tree(p)))(s) if and only if there exists a decorated tree t

such that t ∈ rng p and x ∈ (VarS t)(s).

(13) Let S be a many sorted signature, X be a many sorted set indexed by
the carrier of S, and s, x be sets. Then

(i) if x ∈ X(s), then (VarX (the root tree of 〈〈x, s〉〉))(s) = {x}, and
(ii) for every set s′ such that s′ 6= s or x /∈ X(s) holds (VarX (the root tree

of 〈〈x, s〉〉))(s′) = ∅.
(14) Let S be a many sorted signature, X be a many sorted set indexed by

the carrier of S, and s be a set. Suppose s ∈ the carrier of S. Let p be
a decorated tree yielding finite sequence. Then x ∈ (VarX(〈〈z, the carrier
of S〉〉-tree(p)))(s) if and only if there exists a decorated tree t such that
t ∈ rng p and x ∈ (VarX t)(s).

(15) Let S be a non void signature, X be a non-empty many sorted set indexed
by the carrier of S, and t be a term of S over X. Then VarS t ⊆ X.

Let S be a non void signature, let X be a non-empty many sorted set indexed
by the carrier of S, and let t be a term of S over X. The functor Vart yielding
a many sorted subset indexed by X is defined by:

(Def. 5) Vart = VarS t.

The following proposition is true

(16) Let S be a non void signature, X be a non-empty many sorted set indexed
by the carrier of S, and t be a term of S over X. Then Vart = VarX t.
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Let S be a non void signature, let Y be a non-empty many sorted set indexed
by the carrier of S, and let X be a many sorted set indexed by the carrier of S.
The functor S -TermsY (X) yielding a subset of Free(Y ) is defined as follows:

(Def. 6) For every sort symbol s of S holds (S -TermsY (X))(s) = {t; t ranges over
terms of S over Y : the sort of t = s ∧ Vart ⊆ X}.

One can prove the following propositions:

(17) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, X be a many sorted set indexed by the carrier of S,
and s be a sort symbol of S. If x ∈ (S -TermsY (X))(s), then x is a term
of S over Y .

(18) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, X be a many sorted set indexed by the carrier of S, t be
a term of S over Y , and s be a sort symbol of S. If t ∈ (S -TermsY (X))(s),
then the sort of t = s and Vart ⊆ X.

(19) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, X be a many sorted set indexed by the carrier of S, and
s be a sort symbol of S. Then the root tree of 〈〈x, s〉〉 ∈ (S -TermsY (X))(s)
if and only if x ∈ X(s) and x ∈ Y (s).

(20) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, X be a many sorted set indexed by the carrier of S, o

be an operation symbol of S, and p be an argument sequence of Sym(o, Y ).
Then Sym(o, Y )-tree(p) ∈ (S -TermsY (X))(the result sort of o) if and only
if rng p ⊆ ⋃

(S -TermsY (X)).

(21) Let S be a non void signature, X be a non-empty many sorted set
indexed by the carrier of S, and A be a subset of Free(X). Then A is
operations closed if and only if for every operation symbol o of S and
for every argument sequence p of Sym(o,X) such that rng p ⊆ ⋃

A holds
Sym(o,X)-tree(p) ∈ A(the result sort of o).

(22) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, and X be a many sorted set indexed by the carrier of
S. Then S -TermsY (X) is operations closed.

(23) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, and X be a many sorted set indexed by the carrier of
S. Then (Reverse(Y ))−1(X) ⊆ S -TermsY (X).

(24) Let S be a non void signature, X be a many sorted set indexed by the
carrier of S, t be a term of S over X ∪ ((the carrier of S) 7−→ {0}), and
s be a sort symbol of S. If t ∈ (S -TermsX∪((the carrier of S)7−→{0})(X))(s),
then t ∈ (the sorts of FreeS(X))(s).

(25) Let S be a non void signature and X be a many sorted set
indexed by the carrier of S. Then the sorts of FreeS(X) =
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S -TermsX∪((the carrier of S)7−→{0})(X).
(26) Let S be a non void signature and X be a many sorted set in-

dexed by the carrier of S. Then Free(X ∪ ((the carrier of S) 7−→
{0}))¹(S -TermsX∪((the carrier of S)7−→{0})(X)) = FreeS(X).

(27) Let S be a non void signature, X, Y be non-empty many sorted sets
indexed by the carrier of S, A be a subalgebra of Free(X), and B be a
subalgebra of Free(Y ). Suppose the sorts of A = the sorts of B. Then the
algebra of A = the algebra of B.

(28) Let S be a non void signature, X be a non empty yielding many sorted
set indexed by the carrier of S, Y be a many sorted set indexed by the
carrier of S, and t be an element of FreeS(X). Then VarS t ⊆ X.

(29) Let S be a non void signature, X be a non-empty many sorted set indexed
by the carrier of S, and t be a term of S over X. Then Vart ⊆ X.

(30) Let S be a non void signature, X, Y be non-empty many sorted sets
indexed by the carrier of S, t1 be a term of S over X, and t2 be a term of
S over Y . If t1 = t2, then the sort of t1 = the sort of t2.

(31) Let S be a non void signature, X, Y be non-empty many sorted sets
indexed by the carrier of S, and t be a term of S over Y . If Vart ⊆ X,

then t is a term of S over X.

(32) Let S be a non void signature and X be a non-empty many sorted set
indexed by the carrier of S. Then FreeS(X) = Free(X).

(33) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, t be a term of S over Y , and p be an element of dom t.

Then Vart¹p ⊆ Vart.

(34) Let S be a non void signature, X be a non empty yielding many sorted
set indexed by the carrier of S, t be an element of FreeS(X), and p be an
element of dom t. Then t¹p is an element of FreeS(X).

(35) Let S be a non void signature, X be a non-empty many sorted set indexed
by the carrier of S, t be a term of S over X, and a be an element of rng t.

Then a = 〈〈a1, a2〉〉.
(36) Let S be a non void signature, X be a non empty yielding many sorted

set indexed by the carrier of S, t be an element of FreeS(X), and s be a
sort symbol of S. Then

(i) if x ∈ (VarS t)(s), then 〈〈x, s〉〉 ∈ rng t, and
(ii) if 〈〈x, s〉〉 ∈ rng t, then x ∈ (VarS t)(s) and x ∈ X(s).

(37) Let S be a non void signature and X be a many sorted set indexed by the
carrier of S. Suppose that for every sort symbol s of S such that X(s) = ∅
there exists an operation symbol o of S such that the result sort of o = s

and Arity(o) = ∅. Then FreeS(X) is non-empty.

(38) Let S be a non void signature, A be an algebra over S, B be a subalgebra
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of A, and o be an operation symbol of S. Then Args(o,B) ⊆ Args(o,A).
(39) For every non void signature S and for every feasible algebra A over S

holds every subalgebra of A is feasible.

The following proposition is true

(40) Let S be a non void signature and X be a many sorted set indexed by
the carrier of S. Then FreeS(X) is feasible and free.
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1. Preliminaries

In this paper n is a natural number.
One can prove the following propositions:

(1) For every non empty subset X of E2
T and for every compact subset Y of

E2
T such that X ⊆ Y holds N-bound X ¬ N-bound Y.

(2) For every non empty subset X of E2
T and for every compact subset Y of

E2
T such that X ⊆ Y holds E-bound X ¬ E-bound Y.

(3) For every non empty subset X of E2
T and for every compact subset Y of

E2
T such that X ⊆ Y holds S-bound X ­ S-bound Y.

(4) For every non empty subset X of E2
T and for every compact subset Y of

E2
T such that X ⊆ Y holds W-bound X ­W-bound Y.

(5) Let f , g be finite sequences of elements of E2
T. Suppose f is in the area

of g. Let p be an element of the carrier of E2
T. If p ∈ rng f, then f −: p is

in the area of g.

(6) Let f , g be finite sequences of elements of E2
T. Suppose f is in the area

of g. Let p be an element of the carrier of E2
T. If p ∈ rng f, then f :− p is

in the area of g.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(7) For every non empty finite sequence f of elements of E2
T and for every

point p of E2
T such that p ∈ L̃(f) holds ¼ p, f 6= ∅.

(8) Let f be a non empty finite sequence of elements of E2
T and p be a point

of E2
T. If p ∈ L̃(f) and len º f, p ­ 2, then f(1) ∈ L̃(º f, p).

(9) Let f be a non empty finite sequence of elements of E2
T. Suppose f is

a special sequence. Let p be a point of E2
T. If p ∈ L̃(f), then f(1) /∈

L̃(mid(f, Index(p, f) + 1, len f)).
(10) For all natural numbers i, j, m, n such that i + j = m + n and i ¬ m

and j ¬ n holds i = m.

(11) Let f be a non empty finite sequence of elements of E2
T. Suppose f is a

special sequence. Let p be a point of E2
T. If p ∈ L̃(f) and f(1) ∈ L̃(¼ p, f),

then f(1) = p.

2. About Upper and Lower Sequence of a Cage

Let C be a compact non vertical non horizontal subset of E2
T and let n

be a natural number. The functor UpperSeq(C, n) yielding a finite sequence of
elements of E2

T is defined as follows:

(Def. 1) UpperSeq(C, n) = ((Cage(C, n))W-min eL(Cage(C,n))
ª )−:E-max L̃(Cage(C, n)).

The following proposition is true

(12) For every compact non vertical non horizontal subset C of
E2

T and for every natural number n holds len UpperSeq(C, n) =

(E-max L̃(Cage(C, n))) " ((Cage(C, n))W-min eL(Cage(C,n))
ª ).

Let C be a compact non vertical non horizontal subset of E2
T and let n be a

natural number. The functor LowerSeq(C, n) yields a finite sequence of elements
of E2

T and is defined as follows:

(Def. 2) LowerSeq(C, n) = ((Cage(C, n))W-min eL(Cage(C,n))
ª ):−E-max L̃(Cage(C, n)).

Next we state the proposition

(13) Let C be a compact non vertical non horizontal subset of
E2

T and n be a natural number. Then len LowerSeq(C, n) =

(len((Cage(C, n))W-min eL(Cage(C,n))
ª )− (E-max L̃(Cage(C, n))) "

((Cage(C, n))W-min eL(Cage(C,n))
ª )) + 1.

Let C be a compact non vertical non horizontal subset of E2
T and let n be a

natural number. Note that UpperSeq(C, n) is non empty and LowerSeq(C, n) is
non empty.

Let C be a compact non vertical non horizontal subset of E2
T and let n be

a natural number. Observe that UpperSeq(C, n) is one-to-one special unfolded
and s.n.c. and LowerSeq(C, n) is one-to-one special unfolded and s.n.c..
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The following propositions are true:

(14) For every compact non vertical non horizontal subset C of E2
T and for

every natural number n holds len UpperSeq(C, n) + len LowerSeq(C, n) =
len Cage(C, n) + 1.

(15) For every compact non vertical non horizontal subset C of E2
T

and for every natural number n holds (Cage(C, n))W-min eL(Cage(C,n))
ª =

UpperSeq(C, n) aa LowerSeq(C, n).

(16) For every compact non vertical non horizontal subset C of E2
T and for

every natural number n holds L̃(Cage(C, n)) = L̃(UpperSeq(C, n) aa
LowerSeq(C, n)).

(17) For every compact non vertical non horizontal non empty subset
C of E2

T and for every natural number n holds L̃(Cage(C, n)) =
L̃(UpperSeq(C, n)) ∪ L̃(LowerSeq(C, n)).

(18) For every simple closed curve P holds W-min P 6= E-min P.

(19) For every compact non vertical non horizontal subset C of E2
T

and for every natural number n holds len UpperSeq(C, n) ­ 3 and
len LowerSeq(C, n) ­ 3.

Let C be a compact non vertical non horizontal subset of E2
T and let n

be a natural number. Observe that UpperSeq(C, n) is special sequence and
LowerSeq(C, n) is special sequence.

Next we state several propositions:

(20) For every compact non vertical non horizontal subset C of E2
T and for

every natural number n holds L̃(UpperSeq(C, n)) ∩ L̃(LowerSeq(C, n)) =
{W-min L̃(Cage(C, n)), E-max L̃(Cage(C, n))}.

(21) For every compact non vertical non horizontal subset C of E2
T holds

UpperSeq(C, n) is in the area of Cage(C, n).

(22) For every compact non vertical non horizontal subset C of E2
T holds

LowerSeq(C, n) is in the area of Cage(C, n).

(23) For every compact connected non vertical non horizontal subset C of E2
T

holds ((Cage(C, n))2)2 = N-bound L̃(Cage(C, n)).

(24) Let C be a compact connected non vertical non horizontal subset of
E2

T and k be a natural number. If 1 ¬ k and k + 1 ¬ len Cage(C, n)
and (Cage(C, n))k = E-max L̃(Cage(C, n)), then ((Cage(C, n))k+1)1 =
E-bound L̃(Cage(C, n)).

(25) Let C be a compact connected non vertical non horizontal subset of
E2

T and k be a natural number. If 1 ¬ k and k + 1 ¬ len Cage(C, n)
and (Cage(C, n))k = S-max L̃(Cage(C, n)), then ((Cage(C, n))k+1)2 =
S-bound L̃(Cage(C, n)).

(26) Let C be a compact connected non vertical non horizontal subset of
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E2
T and k be a natural number. If 1 ¬ k and k + 1 ¬ len Cage(C, n)

and (Cage(C, n))k = W-min L̃(Cage(C, n)), then ((Cage(C, n))k+1)1 =
W-bound L̃(Cage(C, n)).
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The papers [18], [4], [3], [6], [15], [14], [9], [1], [2], [13], [12], [10], [5], [16], [7],
[17], [8], and [11] provide the notation and terminology for this paper.

1. Preliminaries

In this paper o1, o2 are ordinal numbers.
Let L1, L2 be non empty double loop structures. Let us note that the pre-

dicate L1 is ring isomorphic to L2 is reflexive. We introduce L1 and L2 are
isomorphic as a synonym of L1 is ring isomorphic to L2.

We now state the proposition

(1) Let B be a set. Suppose that for every set x holds x ∈ B iff there exists
an ordinal number o such that x = o1+o and o ∈ o2. Then o1+o2 = o1∪B.

Let o1 be an ordinal number and let o2 be a non empty ordinal number.
Note that o1 + o2 is non empty and o2 + o1 is non empty.

One can prove the following proposition

(2) Let n be an ordinal number and a, b be bags of n. Suppose a < b. Then
there exists an ordinal number o such that o ∈ n and a(o) < b(o) and for
every ordinal number l such that l ∈ o holds a(l) = b(l).
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2. About Bags

Let o1, o2 be ordinal numbers, let a be an element of Bags o1, and let b be
an element of Bags o2. The functor a + b yielding an element of Bags(o1 + o2) is
defined as follows:

(Def. 1) For every ordinal number o holds if o ∈ o1, then (a + b)(o) = a(o) and if
o ∈ (o1 + o2) \ o1, then (a + b)(o) = b(o− o1).

One can prove the following propositions:

(3) For every element a of Bags o1 and for every element b of Bags o2 such
that o2 = ∅ holds a + b = a.

(4) For every element a of Bags o1 and for every element b of Bags o2 such
that o1 = ∅ holds a + b = b.

(5) For every element b1 of Bags o1 and for every element b2 of Bags o2 holds
b1+b2 = EmptyBag(o1+o2) iff b1 = EmptyBag o1 and b2 = EmptyBag o2.

(6) For every element c of Bags(o1 +o2) there exists an element c1 of Bags o1

and there exists an element c2 of Bags o2 such that c = c1 + c2.

(7) For all elements b1, c1 of Bags o1 and for all elements b2, c2 of Bags o2

such that b1 + b2 = c1 + c2 holds b1 = c1 and b2 = c2.

(8) Let n be an ordinal number, L be an Abelian add-associative right ze-
roed right complementable distributive associative non empty double loop
structure, and p, q, r be serieses of n, L. Then (p + q) ∗ r = p ∗ r + q ∗ r.

3. Main Results

Let n be an ordinal number and let L be a right zeroed Abelian add-
associative right complementable unital distributive associative non trivial non
empty double loop structure. Observe that Polynom-Ring(n,L) is non trivial
and distributive.

Let o1, o2 be non empty ordinal numbers, let L be a right zeroed add-
associative right complementable unital distributive non trivial non empty do-
uble loop structure, and let P be a polynomial of o1, Polynom-Ring(o2, L). The
functor Compress P yields a polynomial of o1 + o2, L and is defined by the
condition (Def. 2).

(Def. 2) Let b be an element of Bags(o1 + o2). Then there exists an element
b1 of Bags o1 and there exists an element b2 of Bags o2 and there exists
a polynomial Q1 of o2, L such that Q1 = P (b1) and b = b1 + b2 and
(Compress P )(b) = Q1(b2).

Next we state several propositions:
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(9) For all elements b1, c1 of Bags o1 and for all elements b2, c2 of Bags o2

such that b1 | c1 and b2 | c2 holds b1 + b2 | c1 + c2.

(10) Let b be a bag of o1 + o2, b1 be an element of Bags o1, and b2 be an
element of Bags o2. Suppose b | b1 + b2. Then there exists an element c1

of Bags o1 and there exists an element c2 of Bags o2 such that c1 | b1 and
c2 | b2 and b = c1 + c2.

(11) For all elements a1, b1 of Bags o1 and for all elements a2, b2 of Bags o2

holds a1 + a2 < b1 + b2 iff a1 < b1 or a1 = b1 and a2 < b2.

(12) Let b1 be an element of Bags o1, b2 be an element of Bags o2, and G be
a finite sequence of elements of (Bags(o1 + o2))∗. Suppose that

(i) dom G = Seg len divisors b1, and
(ii) for every natural number i such that i ∈ Seg len divisors b1 there exists

an element a′1 of Bags o1 and there exists a finite sequence F1 of elements
of Bags(o1 + o2) such that F1 = Gi and πi divisors b1 = a′1 and len F1 =
len divisors b2 and for every natural number m such that m ∈ dom F1

there exists an element a′′1 of Bags o2 such that πm divisors b2 = a′′1 and
πmF1 = a′1 + a′′1.
Then divisors(b1 + b2) = Flat(G).

(13) For all elements a1, b1, c1 of Bags o1 and for all elements a2, b2, c2 of
Bags o2 such that c1 = b1−′a1 and c2 = b2−′a2 holds (b1+b2)−′(a1+a2) =
c1 + c2.

(14) Let b1 be an element of Bags o1, b2 be an element of Bags o2, and G be
a finite sequence of elements of ((Bags(o1 + o2))2)∗. Suppose that

(i) dom G = Seg len decomp b1, and
(ii) for every natural number i such that i ∈ Seg len decomp b1 there exist

elements a′1, b′1 of Bags o1 and there exists a finite sequence F1 of elements
of (Bags(o1 + o2))2 such that F1 = Gi and πi decomp b1 = 〈a′1, b′1〉 and
len F1 = len decomp b2 and for every natural number m such that m ∈
dom F1 there exist elements a′′1, b′′1 of Bags o2 such that πm decomp b2 =
〈a′′1, b′′1〉 and πmF1 = 〈a′1 + a′′1, b

′
1 + b′′1〉.

Then decomp(b1 + b2) = Flat(G).
(15) Let o1, o2 be non empty ordinal numbers and L be an Abelian ri-

ght zeroed add-associative right complementable unital distributive as-
sociative well unital non trivial non empty double loop structure. Then
Polynom-Ring(o1, Polynom-Ring(o2, L)) and Polynom-Ring(o1+o2, L) are
isomorphic.
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1. Preliminaries on Finite Sequences

Let D be a set, let p be a finite sequence of elements of D, and let i, j be
natural numbers. The functor Del(p, i, j) yields a finite sequence of elements of
D and is defined by:

(Def. 1) Del(p, i, j) = (p¹(i−′ 1)) a (pºj).
We now state several propositions:

(1) For every set D and for every finite sequence p of elements of D and for
all natural numbers i, j holds rng Del(p, i, j) ⊆ rng p.

(2) Let D be a set, p be a finite sequence of elements of D, and i, j be natural
numbers. If i ∈ dom p and j ∈ dom p, then len Del(p, i, j) = ((len p− j) +
i)− 1.

(3) Let D be a set, p be a finite sequence of elements of D, and i, j be
natural numbers. If i ∈ dom p and j ∈ dom p, then if len Del(p, i, j) = 0,

then i = 1 and j = len p.
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(4) Let D be a set, p be a finite sequence of elements of D, and i, j,
k be natural numbers. If i ∈ dom p and 1 ¬ k and k ¬ i − 1, then
(Del(p, i, j))(k) = p(k).

(5) For all finite sequences p, q and for every natural number k such that
len p + 1 ¬ k holds (p a q)(k) = q(k − len p).

(6) Let D be a set, p be a finite sequence of elements of D, and i, j, k be
natural numbers. Suppose i ∈ dom p and j ∈ dom p and i ¬ j and i ¬ k

and k ¬ ((len p− j) + i)− 1. Then (Del(p, i, j))(k) = p((j −′ i) + k + 1).
The scheme FinSeqOneToOne deals with sets A, B, C, a finite sequence D

of elements of C, and a binary predicate P, and states that:
There exists an one-to-one finite sequence g of elements of C such
that A = g(1) and B = g(len g) and rng g ⊆ rngD and for every
natural number j such that 1 ¬ j and j < len g holds P[g(j), g(j+
1)]

provided the following requirements are met:
• A = D(1) and B = D(lenD), and
• For every natural number i and for all sets d1, d2 such that 1 ¬ i

and i < lenD and d1 = D(i) and d2 = D(i + 1) holds P[d1, d2].

2. Segre Cosets

Next we state the proposition

(7) Let I be a non empty set, A be a 1-sorted yielding many sorted set
indexed by I, L be a many sorted subset indexed by the support of A, i

be an element of I, and S be a subset of the carrier of A(i). Then L+·(i, S)
is a many sorted subset indexed by the support of A.

Let I be a non empty set and let A be a non-Trivial-yielding TopStruct-
yielding many sorted set indexed by I. A subset of Segre Product A is called a
Segre-Coset of A if it satisfies the condition (Def. 2).

(Def. 2) There exists a Segre-like non trivial-yielding many sorted subset L in-
dexed by the support of A such that it =

∏
L and L(index(L)) =

ΩA(index(L)).

The following proposition is true

(8) Let I be a non empty set, A be a non-Trivial-yielding TopStruct-yielding
many sorted set indexed by I, and B1, B2 be Segre-Cosets of A. If 2 ⊆
B1 ∩B2 , then B1 = B2.

Let S be a topological structure and let X, Y be subsets of the carrier of
S. We say that X and Y are joinable if and only if the condition (Def. 3) is
satisfied.
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(Def. 3) There exists a finite sequence f of elements of 2the carrier of S such that
(i) X = f(1),
(ii) Y = f(len f),
(iii) for every subset W of the carrier of S such that W ∈ rng f holds W is

closed under lines and strong, and
(iv) for every natural number i such that 1 ¬ i and i < len f holds 2 ⊆

f(i) ∩ f(i + 1) .
One can prove the following three propositions:

(9) Let S be a topological structure and X, Y be subsets of the carrier of
S. Suppose X and Y are joinable. Then there exists an one-to-one finite
sequence f of elements of 2the carrier of S such that

(i) X = f(1),
(ii) Y = f(len f),
(iii) for every subset W of the carrier of S such that W ∈ rng f holds W is

closed under lines and strong, and
(iv) for every natural number i such that 1 ¬ i and i < len f holds 2 ⊆

f(i) ∩ f(i + 1) .
(10) Let S be a topological structure and X be a subset of the carrier of S.

If X is closed under lines and strong, then X and X are joinable.

(11) Let I be a non empty set, A be a PLS-yielding many sorted set indexed
by I, and X, Y be subsets of the carrier of Segre Product A. Suppose that

(i) X is non trivial, closed under lines, and strong,
(ii) Y is non trivial, closed under lines, and strong, and
(iii) X and Y are joinable.

Let X1, Y1 be Segre-like non trivial-yielding many sorted subsets indexed
by the support of A. Suppose X =

∏
X1 and Y =

∏
Y1. Then index(X1) =

index(Y1) and for every set i such that i 6= index(X1) holds X1(i) = Y1(i).

3. Collineations of Segre Product

One can prove the following proposition

(12) Let S be a 1-sorted structure, T be a non empty 1-sorted structure, and
f be a map from S into T . If f is bijective, then f−1 is bijective.

Let S, T be topological structures and let f be a map from S into T . We
say that f is isomorphic if and only if:

(Def. 4) f is bijective and open and f−1 is bijective and open.

Let S be a non empty topological structure. Observe that there exists a map
from S into S which is isomorphic.
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Let S be a non empty topological structure. A collineation of S is an iso-
morphic map from S into S.

Let S be a non empty non void topological structure, let f be a collineation
of S, and let l be a block of S. Then f◦l is a block of S.

Let S be a non empty non void topological structure, let f be a collineation
of S, and let l be a block of S. Then f−1(l) is a block of S.

Next we state a number of propositions:

(13) For every non empty topological structure S and for every collineation
f of S holds f−1 is a collineation of S.

(14) Let S be a non empty topological structure, f be a collineation of S,
and X be a subset of the carrier of S. If X is non trivial, then f◦X is non
trivial.

(15) Let S be a non empty topological structure, f be a collineation of S,
and X be a subset of the carrier of S. If X is non trivial, then f−1(X) is
non trivial.

(16) Let S be a non empty non void topological structure, f be a collineation
of S, and X be a subset of the carrier of S. If X is strong, then f◦X is
strong.

(17) Let S be a non empty non void topological structure, f be a collineation
of S, and X be a subset of the carrier of S. If X is strong, then f−1(X) is
strong.

(18) Let S be a non empty non void topological structure, f be a collineation
of S, and X be a subset of the carrier of S. If X is closed under lines, then
f◦X is closed under lines.

(19) Let S be a non empty non void topological structure, f be a collineation
of S, and X be a subset of the carrier of S. If X is closed under lines, then
f−1(X) is closed under lines.

(20) Let S be a non empty non void topological structure, f be a collineation
of S, and X, Y be subsets of the carrier of S. Suppose X is non trivial
and Y is non trivial and X and Y are joinable. Then f◦X and f◦Y are
joinable.

(21) Let S be a non empty non void topological structure, f be a collineation
of S, and X, Y be subsets of the carrier of S. Suppose X is non trivial
and Y is non trivial and X and Y are joinable. Then f−1(X) and f−1(Y )
are joinable.

(22) Let I be a non empty set and A be a PLS-yielding many sorted set
indexed by I. Suppose that for every element i of I holds A(i) is strongly
connected. Let W be a subset of the carrier of Segre Product A. Suppose
W is non trivial, strong, and closed under lines. Then

⋃{Y ; Y ranges over
subsets of the carrier of Segre Product A : Y is non trivial, strong, and
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closed under lines ∧ W and Y are joinable} is a Segre-Coset of A.

(23) Let I be a non empty set and A be a PLS-yielding many sorted set
indexed by I. Suppose that for every element i of I holds A(i) is strongly
connected. Let B be a set. Then B is a Segre-Coset of A if and only if
there exists a subset W of the carrier of Segre Product A such that W is
non trivial, strong, and closed under lines and B =

⋃{Y ; Y ranges over
subsets of the carrier of Segre Product A : Y is non trivial, strong, and
closed under lines ∧ W and Y are joinable}.

(24) Let I be a non empty set and A be a PLS-yielding many sorted set
indexed by I. Suppose that for every element i of I holds A(i) is stron-
gly connected. Let B be a Segre-Coset of A and f be a collineation of
Segre Product A. Then f◦B is a Segre-Coset of A.

(25) Let I be a non empty set and A be a PLS-yielding many sorted set
indexed by I. Suppose that for every element i of I holds A(i) is stron-
gly connected. Let B be a Segre-Coset of A and f be a collineation of
Segre Product A. Then f−1(B) is a Segre-Coset of A.
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1. Preliminaries

In this paper x, y, z, u, a are real numbers.
We now state a number of propositions:

(1) If x2 = y2, then x = y or x = −y.

(2) If x2 = 1, then x = 1 or x = −1.

(3) If 0 ¬ x and x ¬ 1, then x2 ¬ x.

(4) If a ­ 0 and (x− a) · (x + a) ¬ 0, then −a ¬ x and x ¬ a.

(5) If x2 − 1 ¬ 0, then −1 ¬ x and x ¬ 1.

(6) x < y and x < z iff x < min(y, z).
(7) If 0 < x, then x

3 < x and x
4 < x.

(8) If x ­ 1, then
√

x ­ 1 and if x > 1, then
√

x > 1.
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(9) If x ¬ y and z ¬ u, then [y, z] ⊆ [x, u].
(10) For every point p of E2

T holds |p| =
√

(p1)2 + (p2)2 and |p|2 = (p1)2 +
(p2)2.

(11) For every function f and for all sets B, C holds (f¹B)◦C = f◦(C ∩B).
(12) Let X be a topological structure, Y be a non empty topological structure,

f be a map from X into Y , and P be a subset of X. Then f¹P is a map
from X¹P into Y .

(13) Let X, Y be non empty topological spaces, p0 be a point of X, D be a
non empty subset of X, E be a non empty subset of Y , and f be a map
from X into Y . Suppose that Dc = {p0} and Ec = {f(p0)} and X is a T2

space and Y is a T2 space and for every point p of X¹D holds f(p) 6= f(p0)
and there exists a map h from X¹D into Y ¹E such that h = f¹D and h

is continuous and for every subset V of Y such that f(p0) ∈ V and V is
open there exists a subset W of X such that p0 ∈ W and W is open and
f◦W ⊆ V. Then f is continuous.

2. The Circle is a Simple Closed Curve

In the sequel p, q denote points of E2
T.

The function SqCirc from the carrier of E2
T into the carrier of E2

T is defined
by the condition (Def. 1).

(Def. 1) Let p be a point of E2
T. Then

(i) if p = 0E2T , then SqCirc(p) = p,

(ii) if p2 ¬ p1 and −p1 ¬ p2 or p2 ­ p1 and p2 ¬ −p1 and if p 6= 0E2T , then
SqCirc(p) = [ p1q

1+(
p2
p1

)2
, p2q

1+(
p2
p1

)2
], and

(iii) if p2 6¬ p1 or −p1 6¬ p2 but p2 6­ p1 or p2 6¬ −p1 and p 6= 0E2T , then
SqCirc(p) = [ p1q

1+(
p1
p2

)2
, p2q

1+(
p1
p2

)2
].

We now state a number of propositions:

(14) Let p be a point of E2
T such that p 6= 0E2T . Then

(i) if p1 ¬ p2 and −p2 ¬ p1 or p1 ­ p2 and p1 ¬ −p2, then SqCirc(p) =
[ p1q

1+(
p1
p2

)2
, p2q

1+(
p1
p2

)2
], and

(ii) if p1 6¬ p2 or −p2 6¬ p1 and if p1 6­ p2 or p1 6¬ −p2, then SqCirc(p) =
[ p1q

1+(
p2
p1

)2
, p2q

1+(
p2
p1

)2
].

(15) Let X be a non empty topological space and f1 be a map from X into
R1. Suppose f1 is continuous and for every point q of X there exists a real
number r such that f1(q) = r and r ­ 0. Then there exists a map g from
X into R1 such that for every point p of X and for every real number r1

such that f1(p) = r1 holds g(p) =
√

r1 and g is continuous.
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(16) Let X be a non empty topological space and f1, f2 be maps from X into
R1. Suppose f1 is continuous and f2 is continuous and for every point q of
X holds f2(q) 6= 0. Then there exists a map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = ( r1
r2

)2, and
(ii) g is continuous.

(17) Let X be a non empty topological space and f1, f2 be maps from X into
R1. Suppose f1 is continuous and f2 is continuous and for every point q of
X holds f2(q) 6= 0. Then there exists a map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = 1 + ( r1
r2

)2, and
(ii) g is continuous.

(18) Let X be a non empty topological space and f1, f2 be maps from X into
R1. Suppose f1 is continuous and f2 is continuous and for every point q of
X holds f2(q) 6= 0. Then there exists a map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) =
√

1 + ( r1
r2

)2, and

(ii) g is continuous.

(19) Let X be a non empty topological space and f1, f2 be maps from X into
R1. Suppose f1 is continuous and f2 is continuous and for every point q of
X holds f2(q) 6= 0. Then there exists a map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r1q
1+(

r1
r2

)2
, and

(ii) g is continuous.

(20) Let X be a non empty topological space and f1, f2 be maps from X into
R1. Suppose f1 is continuous and f2 is continuous and for every point q of
X holds f2(q) 6= 0. Then there exists a map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2q
1+(

r1
r2

)2
, and

(ii) g is continuous.

(21) Let K1 be a non empty subset of E2
T and f be a map from (E2

T)¹K1 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds
f(p) = p1q

1+(
p2
p1

)2
, and

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds
q1 6= 0.

Then f is continuous.

(22) Let K1 be a non empty subset of E2
T and f be a map from (E2

T)¹K1 into
R1. Suppose that
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(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds
f(p) = p2q

1+(
p2
p1

)2
, and

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds
q1 6= 0.

Then f is continuous.

(23) Let K1 be a non empty subset of E2
T and f be a map from (E2

T)¹K1 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds
f(p) = p2q

1+(
p1
p2

)2
, and

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds
q2 6= 0.

Then f is continuous.

(24) Let K1 be a non empty subset of E2
T and f be a map from (E2

T)¹K1 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds
f(p) = p1q

1+(
p1
p2

)2
, and

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds
q2 6= 0.

Then f is continuous.

(25) Let K0, B0 be subsets of E2
T and f be a map from (E2

T)¹K0 into (E2
T)¹B0.

Suppose f = SqCirc ¹K0 and B0 = (the carrier of E2
T) \ {0E2T} and K0 =

{p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­ p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2T}. Then f

is continuous.

(26) Let K0, B0 be subsets of E2
T and f be a map from (E2

T)¹K0 into (E2
T)¹B0.

Suppose f = SqCirc ¹K0 and B0 = (the carrier of E2
T) \ {0E2T} and K0 =

{p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­ p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2T}. Then f

is continuous.

In this article we present several logical schemes. The scheme TopIncl con-
cerns a unary predicate P, and states that:

{p : P[p] ∧ p 6= 0E2T} ⊆ (the carrier of E2
T) \ {0E2T}

for all values of the parameters.
The scheme TopInter concerns a unary predicate P, and states that:
{p : P[p] ∧ p 6= 0E2T} = {p7; p7 ranges over points of E2

T: P[p7]} ∩
((the carrier of E2

T) \ {0E2T})
for all values of the parameters.

Next we state several propositions:

(27) Let B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0, and f be a map
from (E2

T)¹B0¹K0 into (E2
T)¹B0. Suppose f = SqCirc ¹K0 and B0 = (the
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carrier of E2
T) \ {0E2T} and K0 = {p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­

p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2T}. Then f is continuous and K0 is closed.

(28) Let B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0, and f be a map
from (E2

T)¹B0¹K0 into (E2
T)¹B0. Suppose f = SqCirc ¹K0 and B0 = (the

carrier of E2
T) \ {0E2T} and K0 = {p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­

p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2T}. Then f is continuous and K0 is closed.

(29) Let D be a non empty subset of E2
T. Suppose Dc = {0E2T}. Then there

exists a map h from (E2
T)¹D into (E2

T)¹D such that h = SqCirc ¹D and h

is continuous.

(30) For every non empty subset D of E2
T such that D = (the carrier of

E2
T) \ {0E2T} holds Dc = {0E2T}.

(31) There exists a map h from E2
T into E2

T such that h = SqCirc and h is
continuous.

(32) SqCirc is one-to-one.

Let us observe that SqCirc is one-to-one.
One can prove the following propositions:

(33) Let K2, C1 be subsets of E2
T. Suppose that

(i) K2 = {q : −1 = q1 ∧ −1 ¬ q2 ∧ q2 ¬ 1 ∨ q1 = 1 ∧ −1 ¬ q2 ∧ q2 ¬
1 ∨ −1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1 ∨ 1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1}, and

(ii) C1 = {p2; p2 ranges over points of E2
T: |p2| = 1}.

Then SqCirc◦K2 = C1.

(34) Let P , K2 be subsets of E2
T and f be a map from (E2

T)¹K2 into (E2
T)¹P.

Suppose that
(i) K2 = {q : −1 = q1 ∧ −1 ¬ q2 ∧ q2 ¬ 1 ∨ q1 = 1 ∧ −1 ¬ q2 ∧ q2 ¬

1 ∨ −1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1 ∨ 1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1}, and
(ii) f is a homeomorphism.

Then P is a simple closed curve.

(35) Let K2 be a subset of E2
T. Suppose K2 = {q : −1 = q1 ∧ −1 ¬ q2 ∧ q2 ¬

1 ∨ q1 = 1 ∧ −1 ¬ q2 ∧ q2 ¬ 1 ∨ −1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1 ∨ 1 =
q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1}. Then K2 is a simple closed curve and compact.

(36) For every subset C1 of E2
T such that C1 = {p; p ranges over points of E2

T:
|p| = 1} holds C1 is a simple closed curve.

3. The Fashoda Meet Theorem for the Circle

Next we state a number of propositions:

(37) Let K0, C0 be subsets of E2
T. Suppose K0 = {p : −1 ¬ p1 ∧ p1 ¬

1 ∧ −1 ¬ p2 ∧ p2 ¬ 1} and C0 = {p1; p1 ranges over points of E2
T:

|p1| ¬ 1}. Then SqCirc−1(C0) ⊆ K0.
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(38) Let given p. Then
(i) if p = 0E2T , then SqCirc−1(p) = 0E2T ,

(ii) if p2 ¬ p1 and −p1 ¬ p2 or p2 ­ p1 and p2 ¬ −p1 and if p 6= 0E2T , then

SqCirc−1(p) = [p1 ·
√

1 + (p2
p1

)2, p2 ·
√

1 + (p2
p1

)2], and

(iii) if p2 6¬ p1 or −p1 6¬ p2 but p2 6­ p1 or p2 6¬ −p1 and p 6= 0E2T , then

SqCirc−1(p) = [p1 ·
√

1 + (p1
p2

)2, p2 ·
√

1 + (p1
p2

)2].

(39) SqCirc−1 is a map from E2
T into E2

T.

(40) Let p be a point of E2
T such that p 6= 0E2T . Then

(i) if p1 ¬ p2 and −p2 ¬ p1 or p1 ­ p2 and p1 ¬ −p2, then SqCirc−1(p) =
[p1 ·

√
1 + (p1

p2
)2, p2 ·

√
1 + (p1

p2
)2], and

(ii) if p1 6¬ p2 or −p2 6¬ p1 and if p1 6­ p2 or p1 6¬ −p2, then SqCirc−1(p) =
[p1 ·

√
1 + (p2

p1
)2, p2 ·

√
1 + (p2

p1
)2].

(41) Let X be a non empty topological space and f1, f2 be maps from X into
R1. Suppose f1 is continuous and f2 is continuous and for every point q of
X holds f2(q) 6= 0. Then there exists a map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r1 ·
√

1 + ( r1
r2

)2, and

(ii) g is continuous.

(42) Let X be a non empty topological space and f1, f2 be maps from X into
R1. Suppose f1 is continuous and f2 is continuous and for every point q of
X holds f2(q) 6= 0. Then there exists a map g from X into R1 such that

(i) for every point p of X and for all real numbers r1, r2 such that f1(p) = r1

and f2(p) = r2 holds g(p) = r2 ·
√

1 + ( r1
r2

)2, and

(ii) g is continuous.

(43) Let K1 be a non empty subset of E2
T and f be a map from (E2

T)¹K1 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = p1 ·
√

1 + (p2
p1

)2, and

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds
q1 6= 0.

Then f is continuous.

(44) Let K1 be a non empty subset of E2
T and f be a map from (E2

T)¹K1 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = p2 ·
√

1 + (p2
p1

)2, and

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds
q1 6= 0.
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Then f is continuous.

(45) Let K1 be a non empty subset of E2
T and f be a map from (E2

T)¹K1 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = p2 ·
√

1 + (p1
p2

)2, and

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds
q2 6= 0.

Then f is continuous.

(46) Let K1 be a non empty subset of E2
T and f be a map from (E2

T)¹K1 into
R1. Suppose that

(i) for every point p of E2
T such that p ∈ the carrier of (E2

T)¹K1 holds

f(p) = p1 ·
√

1 + (p1
p2

)2, and

(ii) for every point q of E2
T such that q ∈ the carrier of (E2

T)¹K1 holds
q2 6= 0.

Then f is continuous.

(47) Let K0, B0 be subsets of E2
T and f be a map from (E2

T)¹K0 into (E2
T)¹B0.

Suppose f = SqCirc−1¹K0 and B0 = (the carrier of E2
T) \ {0E2T} and

K0 = {p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­ p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2T}.
Then f is continuous.

(48) Let K0, B0 be subsets of E2
T and f be a map from (E2

T)¹K0 into (E2
T)¹B0.

Suppose f = SqCirc−1¹K0 and B0 = (the carrier of E2
T) \ {0E2T} and

K0 = {p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­ p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2T}.
Then f is continuous.

(49) Let B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0, and f be a map
from (E2

T)¹B0¹K0 into (E2
T)¹B0. Suppose f = SqCirc−1¹K0 and B0 = (the

carrier of E2
T) \ {0E2T} and K0 = {p : (p2 ¬ p1 ∧ −p1 ¬ p2 ∨ p2 ­

p1 ∧ p2 ¬ −p1) ∧ p 6= 0E2T}. Then f is continuous and K0 is closed.

(50) Let B0 be a subset of E2
T, K0 be a subset of (E2

T)¹B0, and f be a map
from (E2

T)¹B0¹K0 into (E2
T)¹B0. Suppose f = SqCirc−1¹K0 and B0 = (the

carrier of E2
T) \ {0E2T} and K0 = {p : (p1 ¬ p2 ∧ −p2 ¬ p1 ∨ p1 ­

p2 ∧ p1 ¬ −p2) ∧ p 6= 0E2T}. Then f is continuous and K0 is closed.

(51) Let D be a non empty subset of E2
T. Suppose Dc = {0E2T}. Then there

exists a map h from (E2
T)¹D into (E2

T)¹D such that h = SqCirc−1¹D and
h is continuous.

(52) There exists a map h from E2
T into E2

T such that h = SqCirc−1 and h is
continuous.

(54)1(i) SqCirc is a map from E2
T into E2

T,
(ii) rng SqCirc = the carrier of E2

T, and

1The proposition (53) has been removed.
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(iii) for every map f from E2
T into E2

T such that f = SqCirc holds f is a
homeomorphism.

(55) Let f , g be maps from I into E2
T, C0, K3, K4, K5, K6 be subsets of

E2
T, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =
{p : |p| ¬ 1} and K3 = {q1; q1 ranges over points of E2

T: |q1| = 1 ∧ (q1)2 ¬
(q1)1 ∧ (q1)2 ­ −(q1)1} and K4 = {q2; q2 ranges over points of E2

T:
|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K5 = {q3; q3 ranges over
points of E2

T: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K6 = {q4; q4

ranges over points of E2
T: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K4 and f(I) ∈ K3 and g(O) ∈ K6 and g(I) ∈ K5 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f ∩ rng g 6= ∅.
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Pythagorean Triples

Freek Wiedijk
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Summary. A Pythagorean triple is a set of positive integers {a, b, c} with
a2 + b2 = c2. We prove that every Pythagorean triple is of the form

a = n2 −m2 b = 2mn c = n2 + m2

or is a multiple of such a triple. Using this characterization we show that for
every n > 2 there exists a Pythagorean triple X with n ∈ X. Also we show that
even the set of simplified Pythagorean triples is infinite.

MML Identifier: PYTHTRIP.

The articles [6], [7], [2], [8], [5], [1], [3], [4], and [9] provide the terminology and
notation for this paper.

1. Relative Primeness

We follow the rules: a, b, c, k, m, n are natural numbers and i is an integer.
Let us consider m, n. Let us observe that m and n are relative prime if and

only if:

(Def. 1) For every k such that k | m and k | n holds k = 1.

Let us consider m, n. Let us observe that m and n are relative prime if and
only if:

(Def. 2) For every prime natural number p holds p - m or p - n.
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2. Squares

Let n be a number. We say that n is square if and only if:

(Def. 3) There exists m such that n = m2.

Let us observe that every number which is square is also natural.
Let n be a natural number. Observe that n2 is square.
Let us observe that there exists a natural number which is even and square.
One can check that there exists a natural number which is odd and square.
One can check that there exists a number which is even and square.
One can check that there exists a number which is odd and square.
Let m, n be square numbers. Observe that m · n is square.
We now state the proposition

(1) If m · n is square and m and n are relative prime, then m is square and
n is square.

Let i be an even integer. Observe that i2 is even.
Let i be an odd integer. Observe that i2 is odd.
Next we state three propositions:

(2) i is even iff i2 is even.

(3) If i is even, then i2 mod 4 = 0.

(4) If i is odd, then i2 mod 4 = 1.

Let m, n be odd square numbers. Note that m + n is non square.
One can prove the following two propositions:

(5) If m2 = n2, then m = n.

(6) m | n iff m2 | n2.

3. Distributive Law for HCF

We now state two propositions:

(7) m | n or k = 0 iff k ·m | k · n.

(8) gcd(k ·m, k · n) = k · gcd(m,n).

4. Unbounded Sets are Infinite

We now state the proposition

(9) For every set X such that for every m there exists n such that n ­ m

and n ∈ X holds X is infinite.
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5. Pythagorean Triples

We now state three propositions:

(10) If a and b are relative prime, then a is odd or b is odd.

(11) Suppose a2 + b2 = c2 and a and b are relative prime and a is odd. Then
there exist m, n such that m ¬ n and a = n2 −m2 and b = 2 ·m · n and
c = n2 + m2.

(12) If a = n2 −m2 and b = 2 ·m · n and c = n2 + m2, then a2 + b2 = c2.

A subset of N is called a Pythagorean triple if:

(Def. 4) There exist a, b, c such that a2 + b2 = c2 and it = {a, b, c}.
In the sequel X is a Pythagorean triple.
Let us note that every Pythagorean triple is finite.
Let us note that the Pythagorean triple can be characterized by the following

(equivalent) condition:

(Def. 5) There exist k, m, n such that m ¬ n and it = {k · (n2 −m2), k · (2 ·m ·
n), k · (n2 + m2)}.

Let us consider X. We say that X is degenerate if and only if:

(Def. 6) 0 ∈ X.

We now state the proposition

(13) If n > 2, then there exists X such that X is non degenerate and n ∈ X.

Let us consider X. We say that X is simplified if and only if:

(Def. 7) For every k such that for every n such that n ∈ X holds k | n holds
k = 1.

Let us consider X. Let us observe that X is simplified if and only if:

(Def. 8) There exist m, n such that m ∈ X and n ∈ X and m and n are relative
prime.

One can prove the following proposition

(14) If n > 0, then there exists X such that X is non degenerate and simplified
and 4 · n ∈ X.

Let us note that there exists a Pythagorean triple which is non degenerate
and simplified.

The following propositions are true:

(15) {3, 4, 5} is a non degenerate simplified Pythagorean triple.

(16) {X : X is non degenerate ∧ X is simplified} is infinite.
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Some Remarks on Finite Sequences on
Go-boards1

Adam Naumowicz
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Summary. This paper shows some properties of finite sequences on Go-
boards. It also provides the partial correspondence between two ways of decom-
position of curves induced by cages.

MML Identifier: JORDAN1F.

The articles [20], [24], [8], [19], [9], [2], [3], [22], [4], [15], [14], [16], [18], [5],
[7], [13], [1], [6], [12], [17], [23], [21], [10], and [11] provide the terminology and
notation for this paper.

We follow the rules: i, j, k, n denote natural numbers, f denotes a finite
sequence of elements of the carrier of E2

T, and G denotes a Go-board.
We now state several propositions:

(1) Suppose that
(i) f is a sequence which elements belong to G,
(ii) L(G ◦ (i, j), G ◦ (i, k)) meets L̃(f),
(iii) 〈〈i, j〉〉 ∈ the indices of G,
(iv) 〈〈i, k〉〉 ∈ the indices of G, and
(v) j ¬ k.

Then there exists n such that j ¬ n and n ¬ k and (G ◦ (i, n))2 =
inf(proj2◦(L(G ◦ (i, j), G ◦ (i, k)) ∩ L̃(f))).

(2) Suppose that
(i) f is a sequence which elements belong to G,
(ii) L(G ◦ (i, j), G ◦ (i, k)) meets L̃(f),
(iii) 〈〈i, j〉〉 ∈ the indices of G,
(iv) 〈〈i, k〉〉 ∈ the indices of G, and

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(v) j ¬ k.

Then there exists n such that j ¬ n and n ¬ k and (G ◦ (i, n))2 =
sup(proj2◦(L(G ◦ (i, j), G ◦ (i, k)) ∩ L̃(f))).

(3) Suppose that
(i) f is a sequence which elements belong to G,
(ii) L(G ◦ (j, i), G ◦ (k, i)) meets L̃(f),
(iii) 〈〈j, i〉〉 ∈ the indices of G,
(iv) 〈〈k, i〉〉 ∈ the indices of G, and
(v) j ¬ k.

Then there exists n such that j ¬ n and n ¬ k and (G ◦ (n, i))1 =
inf(proj1◦(L(G ◦ (j, i), G ◦ (k, i)) ∩ L̃(f))).

(4) Suppose that
(i) f is a sequence which elements belong to G,
(ii) L(G ◦ (j, i), G ◦ (k, i)) meets L̃(f),
(iii) 〈〈j, i〉〉 ∈ the indices of G,
(iv) 〈〈k, i〉〉 ∈ the indices of G, and
(v) j ¬ k.

Then there exists n such that j ¬ n and n ¬ k and (G ◦ (n, i))1 =
sup(proj1◦(L(G ◦ (j, i), G ◦ (k, i)) ∩ L̃(f))).

(5) For every compact non vertical non horizontal subset C of E2
T and for

every natural number n holds (UpperSeq(C, n))1 = W-min L̃(Cage(C, n)).
(6) For every compact non vertical non horizontal subset C of E2

T and for
every natural number n holds (LowerSeq(C, n))1 = E-max L̃(Cage(C, n)).

(7) For every compact non vertical non horizontal subset C of E2
T and

for every natural number n holds (UpperSeq(C, n))len UpperSeq(C,n) =
E-max L̃(Cage(C, n)).

(8) For every compact non vertical non horizontal subset C of E2
T and

for every natural number n holds (LowerSeq(C, n))len LowerSeq(C,n) =
W-min L̃(Cage(C, n)).

(9) Let C be a compact non vertical non horizontal subset of E2
T and n be a

natural number. Then L̃(UpperSeq(C, n)) = UpperArc L̃(Cage(C, n)) and
L̃(LowerSeq(C, n)) = LowerArc L̃(Cage(C, n)) or L̃(UpperSeq(C, n)) =
LowerArc L̃(Cage(C, n)) and L̃(LowerSeq(C, n)) = UpperArc L̃(Cage(C, n)).

We adopt the following convention: C is a compact non vertical non hori-
zontal non empty subset of E2

T satisfying conditions of simple closed curve, p is
a point of E2

T, and i1, j1, i2, j2 are natural numbers.
Next we state four propositions:

(10) Let C be a connected compact non vertical non horizontal subset of E2
T

and n be a natural number. Then UpperSeq(C, n) is a sequence which
elements belong to Gauge(C, n).
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(11) Let f be a finite sequence of elements of E2
T. Suppose that

(i) f is a sequence which elements belong to G,
(ii) there exist i, j such that 〈〈i, j〉〉 ∈ the indices of G and p = G ◦ (i, j),

and
(iii) for all i1, j1, i2, j2 such that 〈〈i1, j1〉〉 ∈ the indices of G and 〈〈i2, j2〉〉 ∈ the

indices of G and p = G◦(i1, j1) and f1 = G◦(i2, j2) holds |i2−i1|+|j2−j1| =
1.

Then 〈p〉 a f is a sequence which elements belong to G.

(12) Let C be a connected compact non vertical non horizontal subset of E2
T

and n be a natural number. Then LowerSeq(C, n) is a sequence which
elements belong to Gauge(C, n).

(13) Suppose p1 = W-bound C+E-bound C
2 and p2 = inf(proj2◦(L(Gauge(C, 1) ◦

(Center Gauge(C, 1), 1), Gauge(C, 1) ◦ (Center Gauge(C, 1), width Gauge
(C, 1))) ∩ UpperArc L̃(Cage(C, i + 1)))). Then there exists j such that
1 ¬ j and j ¬ width Gauge(C, i + 1) and p = Gauge(C, i + 1) ◦
(Center Gauge(C, i + 1), j).
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The terminology and notation used here are introduced in the following articles:
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In this paper n is a natural number.
Let us note that there exists a finite sequence which is trivial.
The following proposition is true

(1) For every trivial finite sequence f holds f is empty or there exists a set
x such that f = 〈x〉.

Let p be a non trivial finite sequence. Observe that Rev(p) is non trivial.
We now state four propositions:

(2) Let D be a non empty set, f be a finite sequence of elements of D, G be
a matrix over D, and p be a set. Suppose f is a sequence which elements
belong to G. Then f −: p is a sequence which elements belong to G.

(3) Let D be a non empty set, f be a finite sequence of elements of D, G be
a matrix over D, and p be an element of D. Suppose p ∈ rng f. Suppose f

is a sequence which elements belong to G. Then f :−p is a sequence which
elements belong to G.

(4) Let C be a compact connected non vertical non horizontal subset of E2
T.

Then UpperSeq(C, n) is a sequence which elements belong to Gauge(C, n).

(5) Let C be a compact connected non vertical non horizontal subset of E2
T.

Then LowerSeq(C, n) is a sequence which elements belong to Gauge(C, n).
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Let C be a compact connected non vertical non horizontal subset of E2
T

and let n be a natural number. Note that UpperSeq(C, n) is standard and
LowerSeq(C, n) is standard.

One can prove the following propositions:

(6) Let G be a column Y-constant line Y-increasing matrix over E2
T and i1,

i2, j1, j2 be natural numbers. Suppose 〈〈i1, j1〉〉 ∈ the indices of G and 〈〈i2,
j2〉〉 ∈ the indices of G. If (G ◦ (i1, j1))2 = (G ◦ (i2, j2))2, then j1 = j2.

(7) Let G be a line X-constant column X-increasing matrix over E2
T and i1,

i2, j1, j2 be natural numbers. Suppose 〈〈i1, j1〉〉 ∈ the indices of G and 〈〈i2,
j2〉〉 ∈ the indices of G. If (G ◦ (i1, j1))1 = (G ◦ (i2, j2))1, then i1 = i2.

(8) For every non trivial finite sequence f of elements of E2
T holds

N-min L̃(f) ∈ rng f.

(9) For every non trivial finite sequence f of elements of E2
T holds

N-max L̃(f) ∈ rng f.

(10) For every non trivial finite sequence f of elements of E2
T holds

E-min L̃(f) ∈ rng f.

(11) For every non trivial finite sequence f of elements of E2
T holds

E-max L̃(f) ∈ rng f.

(12) For every non trivial finite sequence f of elements of E2
T holds

S-min L̃(f) ∈ rng f.

(13) For every non trivial finite sequence f of elements of E2
T holds

S-max L̃(f) ∈ rng f.

(14) For every non trivial finite sequence f of elements of E2
T holds

W-min L̃(f) ∈ rng f.

(15) For every non trivial finite sequence f of elements of E2
T holds

W-max L̃(f) ∈ rng f.

(16) Let f be a standard special unfolded non trivial finite sequence of
elements of E2

T. If f1 6= N-min L̃(f) and flen f 6= N-min L̃(f) or
f1 6= N-max L̃(f) and flen f 6= N-max L̃(f), then (N-min L̃(f))1 <

(N-max L̃(f))1.

(17) Let f be a standard special unfolded non trivial finite sequence of
elements of E2

T. If f1 6= N-min L̃(f) and flen f 6= N-min L̃(f) or f1 6=
N-max L̃(f) and flen f 6= N-max L̃(f), then N-min L̃(f) 6= N-max L̃(f).

(18) Let f be a standard special unfolded non trivial finite sequence
of elements of E2

T. If f1 6= S-min L̃(f) and flen f 6= S-min L̃(f) or
f1 6= S-max L̃(f) and flen f 6= S-max L̃(f), then (S-min L̃(f))1 <

(S-max L̃(f))1.

(19) Let f be a standard special unfolded non trivial finite sequence of
elements of E2

T. If f1 6= S-min L̃(f) and flen f 6= S-min L̃(f) or f1 6=
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S-max L̃(f) and flen f 6= S-max L̃(f), then S-min L̃(f) 6= S-max L̃(f).

(20) Let f be a standard special unfolded non trivial finite sequence of
elements of E2

T. If f1 6= W-min L̃(f) and flen f 6= W-min L̃(f) or
f1 6= W-max L̃(f) and flen f 6= W-max L̃(f), then (W-min L̃(f))2 <

(W-max L̃(f))2.

(21) Let f be a standard special unfolded non trivial finite sequence of ele-
ments of E2

T. If f1 6= W-min L̃(f) and flen f 6= W-min L̃(f) or f1 6=
W-max L̃(f) and flen f 6= W-max L̃(f), then W-min L̃(f) 6= W-max L̃(f).

(22) Let f be a standard special unfolded non trivial finite sequence
of elements of E2

T. If f1 6= E-min L̃(f) and flen f 6= E-min L̃(f) or
f1 6= E-max L̃(f) and flen f 6= E-max L̃(f), then (E-min L̃(f))2 <

(E-max L̃(f))2.

(23) Let f be a standard special unfolded non trivial finite sequence of
elements of E2

T. If f1 6= E-min L̃(f) and flen f 6= E-min L̃(f) or f1 6=
E-max L̃(f) and flen f 6= E-max L̃(f), then E-min L̃(f) 6= E-max L̃(f).

(24) Let D be a non empty set, f be a finite sequence of elements of D, and
p, q be elements of D. If p ∈ rng f and q ∈ rng f and q " f ¬ p " f,

then (f −: p) :− q = (f :− q)−: p.

(25) Let C be a compact connected non vertical non horizontal sub-
set of E2

T and n be a natural number. Then L̃(Cage(C, n) −:
W-min L̃(Cage(C, n))) ∩ L̃(Cage(C, n) :− W-min L̃(Cage(C, n))) =
{N-min L̃(Cage(C, n)), W-min L̃(Cage(C, n))}.

(26) For every compact connected non vertical non horizontal subset

C of E2
T holds LowerSeq(C, n) = ((Cage(C, n))E-max eL(Cage(C,n))

ª ) −:
W-min L̃(Cage(C, n)).

(27) For every compact non vertical non horizontal subset C of E2
T holds

(W-min L̃(Cage(C, n))) " UpperSeq(C, n) = 1.

(28) For every compact non vertical non horizontal subset C of E2
T holds

(W-min L̃(Cage(C, n))) " UpperSeq(C, n) < (W-max L̃(Cage(C, n))) "
UpperSeq(C, n).

(29) For every compact non vertical non horizontal subset C of E2
T holds

(W-max L̃(Cage(C, n))) " UpperSeq(C, n) ¬ (N-min L̃(Cage(C, n))) "
UpperSeq(C, n).

(30) For every compact non vertical non horizontal subset C of E2
T holds

(N-min L̃(Cage(C, n))) " UpperSeq(C, n) < (N-max L̃(Cage(C, n))) "
UpperSeq(C, n).

(31) For every compact non vertical non horizontal subset C of E2
T holds

(N-max L̃(Cage(C, n))) " UpperSeq(C, n) ¬ (E-max L̃(Cage(C, n))) "
UpperSeq(C, n).
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(32) For every compact non vertical non horizontal subset C of E2
T holds

(E-max L̃(Cage(C, n))) " UpperSeq(C, n) = len UpperSeq(C, n).
(33) For every compact non vertical non horizontal subset C of E2

T holds
(E-max L̃(Cage(C, n))) " LowerSeq(C, n) = 1.

(34) For every compact connected non vertical non horizontal sub-
set C of E2

T holds (E-max L̃(Cage(C, n))) " LowerSeq(C, n) <

(E-min L̃(Cage(C, n))) " LowerSeq(C, n).
(35) For every compact connected non vertical non horizontal sub-

set C of E2
T holds (E-min L̃(Cage(C, n))) " LowerSeq(C, n) ¬

(S-max L̃(Cage(C, n))) " LowerSeq(C, n).
(36) For every compact connected non vertical non horizontal sub-

set C of E2
T holds (S-max L̃(Cage(C, n))) " LowerSeq(C, n) <

(S-min L̃(Cage(C, n))) " LowerSeq(C, n).
(37) For every compact connected non vertical non horizontal sub-

set C of E2
T holds (S-min L̃(Cage(C, n))) " LowerSeq(C, n) ¬

(W-min L̃(Cage(C, n))) " LowerSeq(C, n).
(38) For every compact connected non vertical non horizontal subset C of E2

T
holds (W-min L̃(Cage(C, n))) " LowerSeq(C, n) = len LowerSeq(C, n).

(39) For every compact connected non vertical non horizontal subset C of E2
T

holds ((UpperSeq(C, n))2)1 = W-bound L̃(Cage(C, n)).
(40) For every compact connected non vertical non horizontal subset C of E2

T
holds ((LowerSeq(C, n))2)1 = E-bound L̃(Cage(C, n)).

(41) For every compact connected non vertical non horizontal subset C of E2
T

holds W-bound L̃(Cage(C, n)) + E-bound L̃(Cage(C, n)) = W-bound C +
E-bound C.

(42) For every compact connected non vertical non horizontal subset C of
E2

T holds S-bound L̃(Cage(C, n))+N-bound L̃(Cage(C, n)) = S-bound C +
N-bound C.

(43) Let C be a compact connected non vertical non horizontal subset of E2
T

and n, i be natural numbers. If 1 ¬ i and i ¬ width Gauge(C, n) and n > 0,

then (Gauge(C, n) ◦ (Center Gauge(C, n), i))1 = W-bound C+E-bound C
2 .

(44) Let C be a compact connected non vertical non horizontal subset of E2
T

and n, i be natural numbers. If 1 ¬ i and i ¬ len Gauge(C, n) and n > 0,

then (Gauge(C, n) ◦ (i, Center Gauge(C, n)))2 = S-bound C+N-bound C
2 .

(45) Let f be a S-sequence in R2 and k1, k2 be natural numbers. If 1 ¬ k1

and k1 ¬ len f and 1 ¬ k2 and k2 ¬ len f and f1 ∈ L̃(mid(f, k1, k2)), then
k1 = 1 or k2 = 1.

(46) Let f be a S-sequence in R2 and k1, k2 be natural numbers. If 1 ¬ k1

and k1 ¬ len f and 1 ¬ k2 and k2 ¬ len f and flen f ∈ L̃(mid(f, k1, k2)),
then k1 = len f or k2 = len f.
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(47) Let C be a compact non vertical non horizontal subset of E2
T and n

be a natural number. Then rng UpperSeq(C, n) ⊆ rng Cage(C, n) and
rng LowerSeq(C, n) ⊆ rng Cage(C, n).

(48) For every compact non vertical non horizontal subset C of E2
T holds

UpperSeq(C, n) is a h.c. for Cage(C, n).

(49) For every compact non vertical non horizontal subset C of E2
T holds

Rev(LowerSeq(C, n)) is a h.c. for Cage(C, n).

(50) Let C be a compact connected non vertical non horizontal subset of
E2

T and i be a natural number. If 1 < i and i ¬ len Gauge(C, n), then
Gauge(C, n) ◦ (i, 1) /∈ rng UpperSeq(C, n).

(51) Let C be a compact connected non vertical non horizontal subset of
E2

T and i be a natural number. If 1 ¬ i and i < len Gauge(C, n), then
Gauge(C, n) ◦ (i, width Gauge(C, n)) /∈ rng LowerSeq(C, n).

(52) Let C be a compact connected non vertical non horizontal subset of
E2

T and i be a natural number. If 1 < i and i ¬ len Gauge(C, n), then
Gauge(C, n) ◦ (i, 1) /∈ L̃(UpperSeq(C, n)).

(53) Let C be a compact connected non vertical non horizontal subset of
E2

T and i be a natural number. If 1 ¬ i and i < len Gauge(C, n), then
Gauge(C, n) ◦ (i, width Gauge(C, n)) /∈ L̃(LowerSeq(C, n)).

(54) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j be natural numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n) and
1 ¬ j and j ¬ width Gauge(C, n) and Gauge(C, n)◦(i, j) ∈ L̃(Cage(C, n)).
Then L(Gauge(C, n)◦(i, 1), Gauge(C, n)◦(i, j)) meets L̃(LowerSeq(C, n)).

(55) Let C be a compact connected non vertical non horizontal sub-
set of E2

T and n be a natural number. If n > 0, then
FPoint(L̃(UpperSeq(C, n)), W-min L̃(Cage(C, n)), E-max L̃(Cage(C, n)),

VerticalLine W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 ) ∈ rng UpperSeq(C, n).

(56) Let C be a compact connected non vertical non horizontal sub-
set of E2

T and n be a natural number. If n > 0, then
LPoint(L̃(LowerSeq(C, n)), E-max L̃(Cage(C, n)), W-min L̃(Cage(C, n)),

VerticalLine W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 ) ∈ rng LowerSeq(C, n).

(57) For every S-sequence f in R2 and for every point p of E2
T such that

p ∈ rng f holds º f, p = mid(f, 1, p " f).

(58) Let f be a S-sequence in R2 and Q be a closed subset of E2
T.

Suppose L̃(f) meets Q and f1 /∈ Q and FPoint(L̃(f), f1, flen f , Q) ∈
rng f. Then L̃(mid(f, 1, (FPoint(L̃(f), f1, flen f , Q)) " f)) ∩ Q =
{FPoint(L̃(f), f1, flen f , Q)}.

(59) Let C be a compact connected non vertical non horizontal sub-
set of E2

T and n be a natural number. Suppose n > 0.
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Let k be a natural number. Suppose 1 ¬ k and k <

(FPoint(L̃(UpperSeq(C, n)), W-min L̃(Cage(C, n)), E-max L̃(Cage(C, n)),

VerticalLine W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 )) " UpperSeq(C, n).

Then ((UpperSeq(C, n))k)1 < W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 .

(60) Let C be a compact connected non vertical non horizontal sub-
set of E2

T and n be a natural number. Suppose n > 0.

Let k be a natural number. Suppose 1 ¬ k and k <

(FPoint(L̃(Rev(LowerSeq(C, n))), W-min L̃(Cage(C, n)), E-max L̃(Cage

(C, n)), VerticalLine W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 )) "

Rev(LowerSeq(C, n)).

Then ((Rev(LowerSeq(C, n)))k)1 < W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 .

(61) Let C be a compact connected non vertical non horizontal subset of E2
T

and n be a natural number. Suppose n > 0. Let q be a point of E2
T. Suppose

q ∈ rng mid(UpperSeq(C, n), 2, (FPoint(L̃(UpperSeq(C, n)), W-min L̃(Cage
(C, n)), E-max L̃(Cage(C, n)),

VerticalLine W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 )) " UpperSeq(C, n)).

Then q1 ¬ W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 .

(62) Let C be a compact connected non vertical non horizontal sub-
set of E2

T and n be a natural number. Suppose n > 0. Then
(FPoint(L̃(UpperSeq(C, n)), W-min L̃(Cage(C, n)), E-max L̃(Cage(C, n)),

VerticalLine W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 ))2 > (LPoint(L̃

(LowerSeq(C, n)), E-max L̃(Cage(C, n)), W-min L̃(Cage(C, n)),

VerticalLine W-bound eL(Cage(C,n))+E-bound eL(Cage(C,n))
2 ))2.

(63) Let C be a compact connected non vertical non horizontal subset of
E2

T and n be a natural number. If n > 0, then L̃(UpperSeq(C, n)) =
UpperArc L̃(Cage(C, n)).

(64) Let C be a compact connected non vertical non horizontal subset of
E2

T and n be a natural number. If n > 0, then L̃(LowerSeq(C, n)) =
LowerArc L̃(Cage(C, n)).

(65) Let C be a compact connected non vertical non horizontal subset of
E2

T and n be a natural number. Suppose n > 0. Let i, j be natu-
ral numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n) and 1 ¬ j and
j ¬ width Gauge(C, n) and Gauge(C, n) ◦ (i, j) ∈ L̃(Cage(C, n)). Then
L(Gauge(C, n)◦(i, 1), Gauge(C, n)◦(i, j)) meets LowerArc L̃(Cage(C, n)).
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The terminology and notation used in this paper are introduced in the following
papers: [11], [4], [7], [6], [5], [1], [3], [2], [8], [12], [13], [10], and [9].

We follow the rules: k, n are natural numbers, x, y, z, y1, y2, X are sets,
and f is a function.

One can prove the following propositions:

(1) n ∈ n + 1.

(2) If k ¬ n, then k = k ∩ n.

(3) If k = k ∩ n, then k ¬ n.

(4) n ∪ {n} = n + 1.

(5) Seg n ⊆ n + 1.

(6) n + 1 = {0} ∪ Seg n.

(7) For every function r holds r is finite and transfinite sequence-like iff there
exists n such that dom r = n.

Let us mention that there exists a function which is finite and transfinite
sequence-like.

A finite 0-sequence is a finite transfinite sequence.
In the sequel p, q, r denote finite 0-sequences.
Observe that every set which is natural is also finite. Let us consider p. One

can verify that dom p is natural.
Let us consider p. Then p is a natural number and it can be characterized

by the condition:

(Def. 1) p = dom p.

We introduce len p as a synonym of p .
Let us consider p. Then dom p is a subset of N.
Next we state the proposition
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c© 2001 University of Białystok

ISSN 1426–2630



826 tetsuya tsunetou et al.

(8) If there exists k such that dom f ⊆ k, then there exists p such that f ⊆ p.

In this article we present several logical schemes. The scheme XSeqEx deals
with a natural number A and a binary predicate P, and states that:

There exists p such that dom p = A and for every k such that
k ∈ A holds P[k, p(k)]

provided the following conditions are satisfied:
• For all k, y1, y2 such that k ∈ A and P[k, y1] and P[k, y2] holds

y1 = y2, and
• For every k such that k ∈ A there exists x such that P[k, x].

The scheme SeqLambda deals with a natural number A and a unary functor
F yielding a set, and states that:

There exists a finite 0-sequence p such that len p = A and for
every k such that k ∈ A holds p(k) = F(k)

for all values of the parameters.
Next we state several propositions:

(9) If z ∈ p, then there exists k such that k ∈ dom p and z = 〈〈k, p(k)〉〉.
(10) If dom p = dom q and for every k such that k ∈ dom p holds p(k) = q(k),

then p = q.

(11) If len p = len q and for every k such that k < len p holds p(k) = q(k),
then p = q.

(12) p¹n is a finite 0-sequence.

(13) If rng p ⊆ dom f, then f · p is a finite 0-sequence.

(14) If k < len p and q = p¹k, then len q = k and dom q = k.

Let D be a set. Observe that there exists a transfinite sequence of elements
of D which is finite.

Let D be a set. A finite 0-sequence of D is a finite transfinite sequence of
elements of D.

We now state the proposition

(15) For every set D holds every finite 0-sequence of D is a partial function
from N to D.

One can verify that ∅ is transfinite sequence-like.
Let D be a set. Observe that there exists a partial function from N to D

which is finite and transfinite sequence-like.
In the sequel D is a set.
Next we state two propositions:

(16) For every finite 0-sequence p of D holds p¹k is a finite 0-sequence of D.

(17) For every non empty set D there exists a finite 0-sequence p of D such
that len p = k.

One can verify that there exists a finite 0-sequence which is empty.
One can prove the following propositions:
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(18) len p = 0 iff p = ∅.
(19) For every set D holds ∅ is a finite 0-sequence of D.

Let D be a set. One can verify that there exists a finite 0-sequence of D

which is empty.
Let us consider x. The functor 〈0x〉 yielding a set is defined as follows:

(Def. 2) 〈0x〉 = {〈〈0, x〉〉}.
Let D be a set. The functor 〈〉D yields an empty finite 0-sequence of D and

is defined by:

(Def. 3) 〈〉D = ∅.
Let us consider p, q. Observe that p a q is finite. Then p a q can be charac-

terized by the condition:

(Def. 4) dom(p a q) = len p + len q and for every k such that k ∈ dom p holds
(p a q)(k) = p(k) and for every k such that k ∈ dom q holds (p a q)(len p+
k) = q(k).

The following propositions are true:

(20) len(p a q) = len p + len q.

(21) If len p ¬ k and k < len p + len q, then (p a q)(k) = q(k − len p).

(22) If len p ¬ k and k < len(p a q), then (p a q)(k) = q(k − len p).

(23) If k ∈ dom(p a q), then k ∈ dom p or there exists n such that n ∈ dom q

and k = len p + n.

(24) For all transfinite sequences p, q holds dom p ⊆ dom(p a q).

(25) If x ∈ dom q, then there exists k such that k = x and len p + k ∈
dom(p a q).

(26) If k ∈ dom q, then len p + k ∈ dom(p a q).

(27) rng p ⊆ rng(p a q).

(28) rng q ⊆ rng(p a q).

(29) rng(p a q) = rng p ∪ rng q.

(30) (p a q) a r = p a (q a r).

(31) If p a r = q a r or r a p = r a q, then p = q.

(32) p a ∅ = p and ∅ a p = p.

(33) If p a q = ∅, then p = ∅ and q = ∅.
Let D be a set and let p, q be finite 0-sequences of D. Then p a q is a

transfinite sequence of elements of D.
Let us consider x. Then 〈0x〉 is a function and it can be characterized by the

condition:

(Def. 5) dom〈0x〉 = 1 and 〈0x〉(0) = x.

Let us consider x. One can verify that 〈0x〉 is function-like and relation-like.
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Let us consider x. One can check that 〈0x〉 is finite and transfinite sequence-
like.

One can prove the following proposition

(34) Suppose p a q is a finite 0-sequence of D. Then p is a finite 0-sequence
of D and q is a finite 0-sequence of D.

Let us consider x, y. The functor 〈0x, y〉 yielding a set is defined by:

(Def. 6) 〈0x, y〉 = 〈0x〉 a 〈0y〉.
Let us consider z. The functor 〈0x, y, z〉 yields a set and is defined by:

(Def. 7) 〈0x, y, z〉 = 〈0x〉 a 〈0y〉 a 〈0z〉.
Let us consider x, y. One can check that 〈0x, y〉 is function-like and relation-

like. Let us consider z. One can verify that 〈0x, y, z〉 is function-like and relation-
like.

Let us consider x, y. One can check that 〈0x, y〉 is finite and transfinite
sequence-like. Let us consider z. Observe that 〈0x, y, z〉 is finite and transfinite
sequence-like.

One can prove the following propositions:

(35) 〈0x〉 = {〈〈0, x〉〉}.
(36) p = 〈0x〉 iff dom p = 1 and rng p = {x}.
(37) p = 〈0x〉 iff len p = 1 and rng p = {x}.
(38) p = 〈0x〉 iff len p = 1 and p(0) = x.

(39) (〈0x〉 a p)(0) = x.

(40) (p a 〈0x〉)(len p) = x.

(41) 〈0x, y, z〉 = 〈0x〉 a 〈0y, z〉 and 〈0x, y, z〉 = 〈0x, y〉 a 〈0z〉.
(42) p = 〈0x, y〉 iff len p = 2 and p(0) = x and p(1) = y.

(43) p = 〈0x, y, z〉 iff len p = 3 and p(0) = x and p(1) = y and p(2) = z.

(44) If p 6= ∅, then there exist q, x such that p = q a 〈0x〉.
Let D be a non empty set and let x be an element of D. Then 〈0x〉 is a finite

0-sequence of D.
The scheme IndXSeq concerns a unary predicate P, and states that:

For every p holds P[p]
provided the following conditions are met:
• P[∅], and
• For all p, x such that P[p] holds P[p a 〈0x〉].

We now state the proposition

(45) For all finite 0-sequences p, q, r, s such that pa q = ras and len p ¬ len r

there exists a finite 0-sequence t such that p a t = r.

Let D be a set. The functor Dω yields a set and is defined as follows:

(Def. 8) x ∈ Dω iff x is a finite 0-sequence of D.
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Let D be a set. One can check that Dω is non empty.
One can prove the following propositions:

(46) x ∈ Dω iff x is a finite 0-sequence of D.

(47) ∅ ∈ Dω.

The scheme SepSeq deals with a non empty set A and a unary predicate P,

and states that:
There exists X such that for every x holds x ∈ X iff there exists
p such that p ∈ Aω and P[p] and x = p

for all values of the parameters.
Let p be a finite 0-sequence and let i, x be sets. Note that p +· (i, x) is

finite and transfinite sequence-like. We introduce Replace(p, i, x) as a synonym
of p +· (i, x).

One can prove the following proposition

(48) Let p be a finite 0-sequence, i be a natural number, and x be
a set. Then len Replace(p, i, x) = len p and if i < len p, then
(Replace(p, i, x))(i) = x and for every natural number j such that j 6= i

holds (Replace(p, i, x))(j) = p(j).
Let D be a non empty set, let p be a finite 0-sequence of D, let i be a natural

number, and let a be an element of D. Then Replace(p, i, a) is a finite 0-sequence
of D.
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• the gauge is the Go-board of a corresponding cage,
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The terminology and notation used in this paper have been introduced in the
following articles: [28], [40], [1], [3], [12], [29], [14], [4], [5], [37], [33], [13], [6],
[20], [21], [26], [32], [9], [35], [24], [18], [27], [25], [8], [11], [17], [2], [36], [38], [30],
[10], [16], [41], [43], [42], [19], [23], [34], [39], [31], [15], [44], [22], and [7].

1. Preliminaries

For simplicity, we follow the rules: m, k, j, j1, i, i1, i2, n are natural numbers,
r, s, r1, t are real numbers, C, D are compact non vertical non horizontal non
empty subsets of E2

T, f is a finite sequence of elements of the carrier of E2
T, G is

a Go-board, and p is a point of E2
T.

We now state three propositions:

(1) For all sets A, x, y such that A meets {x, y} holds x ∈ A or y ∈ A.

(2) If r < 0 and r1 ¬ r and 0 ¬ t, then t
r ¬ t

r1
.

(3) For every set X and for every binary relation R such that R is reflexive
in X holds X ⊆ field R.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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Let us observe that there exists a set which has a non-empty element.
Let D be a non empty set with a non-empty element. Observe that there

exists a finite sequence of elements of D∗ which is non empty and non-empty.
Let D be a non empty set with non empty elements. One can check that there

exists a finite sequence of elements of D∗ which is non empty and non-empty.
Let F be a non-empty function yielding function. Note that rngκ F (κ) is

non-empty.
Let us note that every finite sequence of elements of R which is increasing

is also one-to-one.
One can prove the following propositions:

(4) For all points p, q of E2
T holds L(p, q) \ {p, q} is convex.

(5) For all points p, q of E2
T holds L(p, q) \ {p, q} is connected.

(6) For all points p, q of E2
T such that p 6= q holds p ∈ L(p, q) \ {p, q}.

(7) For all points p, q of E2
T such that p 6= q holds L(p, q) \ {p, q} = L(p, q).

(8) Let S be a subset of the carrier of E2
T and p, q be points of E2

T. If p 6= q

and L(p, q) \ {p, q} ⊆ S, then L(p, q) ⊆ S.

2. Transforming Finite Sets to Finite Sequences

The binary relation RealOrd on R is defined by:

(Def. 1) RealOrd = {〈〈r, s〉〉 : r ¬ s}.
Next we state two propositions:

(9) If 〈〈r, s〉〉 ∈ RealOrd, then r ¬ s.

(10) field RealOrd = R.

Let us note that RealOrd is ordering and linear-order.
The following propositions are true:

(11) RealOrd linearly orders R.

(12) For every finite subset A of R holds SgmX(RealOrd, A) is increasing.

(13) For every finite sequence f of elements of R and for every finite subset
A of R such that A = rng f holds SgmX(RealOrd, A) = Inc(f).

Let A be a finite subset of R. One can verify that SgmX(RealOrd, A) is
increasing.

Next we state two propositions:

(14) Let X be a non empty set, A be a finite subset of X, and R be an order
in X. If R linearly orders A, then len SgmX(R,A) = card A.

(15) For every non empty set X and for every finite subset A of X and for
every linear-order order R in X holds len SgmX(R, A) = card A.
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3. On the Construction of Go-boards

Next we state two propositions:

(16) For every finite sequence f of elements of E2
T holds X-coordinate(f) =

proj1 ·f.

(17) For every finite sequence f of elements of E2
T holds Y-coordinate(f) =

proj2 ·f.

Let D be a non empty set and let M be a finite sequence of elements of D∗.
Then Values M is a subset of D.

Let D be a non empty set with non empty elements and let M be a non empty
non-empty finite sequence of elements of D∗. One can verify that Values M is
non empty.

The following propositions are true:

(18) For every non empty set D and for every matrix M over D and for every
i such that i ∈ Seg width M holds rng(M¤,i) ⊆ Values M.

(19) For every non empty set D and for every matrix M over D and for every
i such that i ∈ dom M holds rng Line(M, i) ⊆ Values M.

(20) For every column X-increasing non empty yielding matrix G over E2
T

holds len G ¬ card(proj1◦Values G).
(21) For every line X-constant matrix G over E2

T holds card(proj1◦Values G) ¬
len G.

(22) For every line X-constant column X-increasing non empty yielding ma-
trix G over E2

T holds len G = card(proj1◦Values G).
(23) For every line Y-increasing non empty yielding matrix G over E2

T holds
width G ¬ card(proj2◦Values G).

(24) For every column Y-constant non empty yielding matrix G over E2
T holds

card(proj2◦Values G) ¬ width G.

(25) For every column Y-constant line Y-increasing non empty yielding ma-
trix G over E2

T holds width G = card(proj2◦Values G).

4. More about Go-boards

Next we state several propositions:

(26) For every standard special circular sequence f such that 1 ¬ k and
k + 1 ¬ len f holds L(f, k) ⊆ leftcell(f, k).

(27) For every standard special circular sequence f such that 1 ¬ k and
k + 1 ¬ len f holds left cell(f, k, the Go-board of f) = leftcell(f, k).

(28) For every standard special circular sequence f such that 1 ¬ k and
k + 1 ¬ len f holds L(f, k) ⊆ rightcell(f, k).
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(29) For every standard special circular sequence f such that 1 ¬ k and
k + 1 ¬ len f holds right cell(f, k, the Go-board of f) = rightcell(f, k).

(30) Let P be a subset of E2
T and f be a non constant standard special circular

sequence. If P is a component of (L̃(f))c, then P = RightComp(f) or
P = LeftComp(f).

(31) Let f be a non constant standard special circular sequence. Suppose
f is a sequence which elements belong to G. Let given k. If 1 ¬ k

and k + 1 ¬ len f, then Int right cell(f, k, G) ⊆ RightComp(f) and
Int left cell(f, k, G) ⊆ LeftComp(f).

(32) Let i1, j1, i2, j2 be natural numbers and G be a Go-board. Suppose 〈〈i1,
j1〉〉 ∈ the indices of G and 〈〈i2, j2〉〉 ∈ the indices of G and G ◦ (i1, j1) =
G ◦ (i2, j2). Then i1 = i2 and j1 = j2.

(33) Let f be a finite sequence of elements of E2
T and M be a Go-board.

Suppose f is a sequence which elements belong to M . Then mid(f, i1, i2)
is a sequence which elements belong to M .

Let us mention that every Go-board is non empty and non-empty.
The following propositions are true:

(34) For every Go-board G such that 1 ¬ i and i ¬ len G holds
(SgmX(RealOrd, proj1◦Values G))(i) = (G ◦ (i, 1))1.

(35) For every Go-board G such that 1 ¬ j and j ¬ width G holds
(SgmX(RealOrd, proj2◦Values G))(j) = (G ◦ (1, j))2.

(36) Let f be a non empty finite sequence of elements of E2
T and G be a

Go-board. Suppose that
(i) f is a sequence which elements belong to G,
(ii) there exists i such that 〈〈1, i〉〉 ∈ the indices of G and G ◦ (1, i) ∈ rng f,

and
(iii) there exists i such that 〈〈 len G, i〉〉 ∈ the indices of G and G◦(len G, i) ∈

rng f.

Then proj1◦ rng f = proj1◦Values G.

(37) Let f be a non empty finite sequence of elements of E2
T and G be a

Go-board. Suppose that
(i) f is a sequence which elements belong to G,
(ii) there exists i such that 〈〈i, 1〉〉 ∈ the indices of G and G ◦ (i, 1) ∈ rng f,

and
(iii) there exists i such that 〈〈i, width G〉〉 ∈ the indices of G and G ◦

(i, width G) ∈ rng f.

Then proj2◦ rng f = proj2◦Values G.

Let G be a Go-board. Observe that Values G is non empty.
One can prove the following three propositions:

(38) For every Go-board G holds G = the Go-board of SgmX(RealOrd,
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proj1◦Values G), SgmX(RealOrd, proj2◦Values G).
(39) Let f be a non empty finite sequence of elements of E2

T and G

be a Go-board. If proj1◦ rng f = proj1◦Values G and proj2◦ rng f =
proj2◦Values G, then G = the Go-board of f .

(40) Let f be a non empty finite sequence of elements of E2
T and G be a

Go-board. Suppose that
(i) f is a sequence which elements belong to G,
(ii) there exists i such that 〈〈1, i〉〉 ∈ the indices of G and G ◦ (1, i) ∈ rng f,

(iii) there exists i such that 〈〈i, 1〉〉 ∈ the indices of G and G ◦ (i, 1) ∈ rng f,

(iv) there exists i such that 〈〈 len G, i〉〉 ∈ the indices of G and G◦(len G, i) ∈
rng f, and

(v) there exists i such that 〈〈i, width G〉〉 ∈ the indices of G and G ◦
(i, width G) ∈ rng f.

Then G = the Go-board of f .

5. More about Gauges

The following propositions are true:

(41) If m ¬ n and 1 ¬ i and i + 1 ¬ len Gauge(C, n), then b i−2
2n−′m + 2c is a

natural number.

(42) If m ¬ n and 1 ¬ i and i + 1 ¬ len Gauge(C, n), then 1 ¬ b i−2
2n−′m + 2c

and b i−2
2n−′m + 2c+ 1 ¬ len Gauge(C, m).

(43) Suppose m ¬ n and 1 ¬ i and i+1 ¬ len Gauge(C, n) and 1 ¬ j and j +
1 ¬ width Gauge(C, n). Then there exist i1, j1 such that i1 = b i−2

2n−′m + 2c
and j1 = b j−2

2n−′m +2c and cell(Gauge(C, n), i, j) ⊆ cell(Gauge(C, m), i1, j1).
(44) Suppose m ¬ n and 1 ¬ i and i + 1 ¬ len Gauge(C, n) and 1 ¬ j and

j + 1 ¬ width Gauge(C, n). Then there exist i1, j1 such that 1 ¬ i1 and
i1 + 1 ¬ len Gauge(C,m) and 1 ¬ j1 and j1 + 1 ¬ width Gauge(C,m) and
cell(Gauge(C, n), i, j) ⊆ cell(Gauge(C,m), i1, j1).

(45) If i ¬ len Gauge(C, n), then cell(Gauge(C, n), i, 0) ⊆ UBD C.

(46) If i ¬ len Gauge(C, n), then cell(Gauge(C, n), i, width Gauge(C, n)) ⊆
UBD C.

(47) For every subset P of E2
T such that P is Bounded holds UBD P is not

Bounded.

(48) Let f be a non constant standard special circular sequence. If fp
ª is

clockwise oriented, then f is clockwise oriented.

(49) For every non constant standard special circular sequence f such that
LeftComp(f) = UBD L̃(f) holds f is clockwise oriented.



836 andrzej trybulec

6. More about Cages

The following propositions are true:

(50) LeftComp(Cage(C, i))c = RightComp(Cage(C, i)).

(51) If C is connected, then the Go-board of Cage(C, n) = Gauge(C, n).

(52) If C is connected, then N-min C ∈ rightcell(Cage(C, n), 1).

(53) If C is connected and i ¬ j, then L̃(Cage(C, j)) ⊆ RightComp(Cage(C, i)).

(54) If C is connected and i ¬ j, then LeftComp(Cage(C, i)) ⊆
LeftComp(Cage(C, j)).

(55) If C is connected and i ¬ j, then RightComp(Cage(C, j)) ⊆
RightComp(Cage(C, i)).

7. Preparing the Internal Approximation

Let us consider C, n. The functor X-SpanStart(C, n) yielding a natural number
is defined as follows:

(Def. 2) X-SpanStart(C, n) = 2n−′1 + 2.

Next we state three propositions:

(56) X-SpanStart(C, n) = Center Gauge(C, n).

(57) 2 < X-SpanStart(C, n) and X-SpanStart(C, n) < len Gauge(C, n).

(58) 1 ¬ X-SpanStart(C, n) −′ 1 and X-SpanStart(C, n) −′ 1 <

len Gauge(C, n).

Let us consider C, n. We say that n is sufficiently large for C if and only if:

(Def. 3) There exists j such that j < width Gauge(C, n) and cell(Gauge(C, n),
X-SpanStart(C, n)−′ 1, j) ⊆ BDD C.

One can prove the following propositions:

(59) If n is sufficiently large for C, then n ­ 1.

(60) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that
(i) left cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),
(iv) 〈〈i1, j1 + 1〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i1, j1 + 1).

Then 〈〈i1 −′ 1, j1 + 1〉〉 ∈ the indices of Gauge(C, n).
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(61) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that
(i) left cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),
(iv) 〈〈i1 + 1, j1〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i1 + 1, j1).

Then 〈〈i1 + 1, j1 + 1〉〉 ∈ the indices of Gauge(C, n).

(62) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let j1, i2
be natural numbers. Suppose that

(i) left cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i2 + 1, j1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i2 + 1, j1),
(iv) 〈〈i2, j1〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i2, j1).

Then 〈〈i2, j1 −′ 1〉〉 ∈ the indices of Gauge(C, n).

(63) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j2

be natural numbers. Suppose that
(i) left cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i1, j2 + 1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j2 + 1),
(iv) 〈〈i1, j2〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i1, j2).

Then 〈〈i1 + 1, j2〉〉 ∈ the indices of Gauge(C, n).

(64) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that
(i) front left cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),
(iv) 〈〈i1, j1 + 1〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i1, j1 + 1).

Then 〈〈i1, j1 + 2〉〉 ∈ the indices of Gauge(C, n).



838 andrzej trybulec

(65) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that
(i) front left cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),
(iv) 〈〈i1 + 1, j1〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i1 + 1, j1).

Then 〈〈i1 + 2, j1〉〉 ∈ the indices of Gauge(C, n).

(66) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let j1, i2
be natural numbers. Suppose that

(i) front left cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i2 + 1, j1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i2 + 1, j1),
(iv) 〈〈i2, j1〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i2, j1).

Then 〈〈i2 −′ 1, j1〉〉 ∈ the indices of Gauge(C, n).

(67) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j2

be natural numbers. Suppose that
(i) front left cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i1, j2 + 1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j2 + 1),
(iv) 〈〈i1, j2〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i1, j2).

Then 〈〈i1, j2 −′ 1〉〉 ∈ the indices of Gauge(C, n).

(68) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that
(i) front right cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),
(iv) 〈〈i1, j1 + 1〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i1, j1 + 1).

Then 〈〈i1 + 1, j1 + 1〉〉 ∈ the indices of Gauge(C, n).
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(69) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j1

be natural numbers. Suppose that
(i) front right cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i1, j1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j1),
(iv) 〈〈i1 + 1, j1〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i1 + 1, j1).

Then 〈〈i1 + 1, j1 −′ 1〉〉 ∈ the indices of Gauge(C, n).
(70) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let j1, i2
be natural numbers. Suppose that

(i) front right cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i2 + 1, j1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i2 + 1, j1),
(iv) 〈〈i2, j1〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i2, j1).

Then 〈〈i2, j1 + 1〉〉 ∈ the indices of Gauge(C, n).
(71) Let C be a compact non vertical non horizontal non empty subset of
E2

T, given n, and f be a finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to Gauge(C, n) and len f > 1. Let i1, j2

be natural numbers. Suppose that
(i) front right cell(f, len f −′ 1, Gauge(C, n)) meets C,
(ii) 〈〈i1, j2 + 1〉〉 ∈ the indices of Gauge(C, n),
(iii) flen f−′1 = Gauge(C, n) ◦ (i1, j2 + 1),
(iv) 〈〈i1, j2〉〉 ∈ the indices of Gauge(C, n), and
(v) flen f = Gauge(C, n) ◦ (i1, j2).

Then 〈〈i1 −′ 1, j2〉〉 ∈ the indices of Gauge(C, n).
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Summary. We continue proving lemmas needed for the proof of the Jordan
curve theorem. The main goal was to prove the last theorem being a mutation
of the first theorem in [13].

MML Identifier: TOPREAL8.

The articles [16], [7], [2], [4], [19], [6], [18], [5], [12], [15], [14], [9], [1], [3], [21],
[22], [11], [10], [20], [17], and [8] provide the terminology and notation for this
paper.

1. Preliminaries

The following proposition is true

(1) For all sets A, x, y such that A ⊆ {x, y} and x ∈ A and y /∈ A holds
A = {x}.

Let us note that there exists a function which is trivial.

2. Finite Sequences

We adopt the following convention: G denotes a Go-board and i, j, k, m, n

denote natural numbers.
Let us note that there exists a finite sequence which is non constant.
Next we state a number of propositions:

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(2) For every non trivial finite sequence f holds 1 < len f.

(3) For every non trivial set D and for every non constant circular finite
sequence f of elements of D holds len f > 2.

(4) For every finite sequence f and for every set x holds x ∈ rng f or x "
f = 0.

(5) Let p be a set, D be a non empty set, f be a non empty finite sequence of
elements of D, and g be a finite sequence of elements of D. If p " f = len f,

then f a g → p = g.

(6) For every non empty set D and for every non empty one-to-one finite
sequence f of elements of D holds flen f " f = len f.

(7) For all finite sequences f , g holds len f ¬ len(f aa g).

(8) For all finite sequences f , g and for every set x such that x ∈ rng f holds
x " f = x " (f aa g).

(9) For every non empty finite sequence f and for every finite sequence g

holds len g ¬ len(f aa g).

(10) For all finite sequences f , g holds rng f ⊆ rng(f aa g).

(11) Let D be a non empty set, f be a non empty finite sequence of elements
of D, and g be a non trivial finite sequence of elements of D. If glen g = f1,

then f aa g is circular.

(12) Let D be a non empty set, M be a matrix over D, f be a finite sequence
of elements of D, and g be a non empty finite sequence of elements of D.
Suppose flen f = g1 and f is a sequence which elements belong to M and
g is a sequence which elements belong to M . Then f aa g is a sequence
which elements belong to M .

(13) For every set D and for every finite sequence f of elements of D such
that 1 ¬ k holds 〈f(k + 1), . . . , f(len f)〉 = fºk.

(14) For every set D and for every finite sequence f of elements of D such
that k ¬ len f holds 〈f(1), . . . , f(k)〉 = f¹k.

(15) Let p be a set, D be a non empty set, f be a non empty finite sequence of
elements of D, and g be a finite sequence of elements of D. If p " f = len f,

then f a g ← p = 〈f(1), . . . , f(len f −′ 1)〉.
(16) Let D be a non empty set and f , g be non empty finite sequences of

elements of D. If g1 " f = len f, then (f aa g) :− g1 = g.

(17) Let D be a non empty set and f , g be non empty finite sequences of
elements of D. If g1 " f = len f, then (f aa g)−: g1 = f.

(18) Let D be a non trivial set, f be a non empty finite sequence of elements
of D, and g be a non trivial finite sequence of elements of D. Suppose
g1 = flen f and for every i such that 1 ¬ i and i < len f holds fi 6= g1.

Then (f aa g)g1
ª = g aa f.
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3. On the Plane

We now state several propositions:

(19) For every non trivial finite sequence f of elements of E2
T holds L(f, 1) =

L̃(f¹2).
(20) For every s.c.c. finite sequence f of elements of E2

T and for every n such
that n < len f holds f¹n is s.n.c..

(21) For every s.c.c. finite sequence f of elements of E2
T and for every n such

that 1 ¬ n holds fºn is s.n.c..

(22) Let f be a circular s.c.c. finite sequence of elements of E2
T and given n.

If n < len f and len f > 4, then f¹n is one-to-one.

(23) Let f be a circular s.c.c. finite sequence of elements of E2
T. Suppose

len f > 4. Let i, j be natural numbers. If 1 < i and i < j and j ¬ len f,

then fi 6= fj .

(24) Let f be a circular s.c.c. finite sequence of elements of E2
T and given n.

If 1 ¬ n and len f > 4, then fºn is one-to-one.

(25) For every special non empty finite sequence f of elements of E2
T holds

〈f(m), . . . , f(n)〉 is special.

(26) Let f be a special non empty finite sequence of elements of E2
T and g be

a special non trivial finite sequence of elements of E2
T. If flen f = g1, then

f aa g is special.

(27) For every circular unfolded s.c.c. finite sequence f of elements of E2
T such

that len f > 4 holds L(f, 1) ∩ L̃(fº1) = {f1, f2}.
Let us note that there exists a finite sequence of elements of E2

T which is
one-to-one, special, unfolded, s.n.c., and non empty.

We now state several propositions:

(28) For all finite sequences f , g of elements of E2
T such that j < len f holds

L(f aa g, j) = L(f, j).
(29) For all non empty finite sequences f , g of elements of E2

T such that 1 ¬ j

and j + 1 < len g holds L(f aa g, len f + j) = L(g, j + 1).
(30) Let f be a non empty finite sequence of elements of E2

T and g be a
non trivial finite sequence of elements of E2

T. If flen f = g1, then L(f aa
g, len f) = L(g, 1).

(31) Let f be a non empty finite sequence of elements of E2
T and g be a non

trivial finite sequence of elements of E2
T. If j + 1 < len g and flen f = g1,

then L(f aa g, len f + j) = L(g, j + 1).
(32) Let f be a non empty s.n.c. unfolded finite sequence of elements of E2

T
and given i. If 1 ¬ i and i < len f, then L(f, i) ∩ rng f = {fi, fi+1}.
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(33) Let f , g be non trivial s.n.c. one-to-one unfolded finite sequences of
elements of E2

T. If L̃(f) ∩ L̃(g) = {f1, g1} and f1 = glen g and g1 = flen f ,

then f aa g is s.c.c..

In the sequel f , g are finite sequences of elements of E2
T.

The following propositions are true:

(34) If f is unfolded and g is unfolded and flen f = g1 and L(f, len f −′ 1) ∩
L(g, 1) = {flen f}, then f aa g is unfolded.

(35) If f is non empty and g is non trivial and flen f = g1, then L̃(f aa g) =
L̃(f) ∪ L̃(g).

(36) Suppose that
(i) for every n such that n ∈ dom f there exist i, j such that 〈〈i, j〉〉 ∈ the

indices of G and fn = G ◦ (i, j),
(ii) f is non constant, circular, unfolded, s.c.c., and special, and
(iii) len f > 4.

Then there exists g such that
(iv) g is a sequence which elements belong to G, unfolded, s.c.c., and special,
(v) L̃(f) = L̃(g),
(vi) f1 = g1,

(vii) flen f = glen g, and
(viii) len f ¬ len g.
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Summary. In this article we give some technical concepts for multivariate
polynomials with arbitrary number of variables. Monomials and constant poly-
nomials are introduced and their properties with respect to the eval functor are
shown. In addition, the multiplication of polynomials with coefficients is defined
and investigated.
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1. Preliminaries

Let us note that there exists a non empty zero structure which is non trivial.
Let us observe that every zero structure which is non trivial is also non

empty.
Let us mention that there exists a non trivial double loop structure which is

Abelian, left zeroed, right zeroed, add-associative, right complementable, unital,
associative, commutative, distributive, and integral domain-like.

Let R be a non empty zero structure and let a be an element of R. We say
that a is non-zero if and only if:

(Def. 1) a 6= 0R.

Let R be a non trivial zero structure. Note that there exists an element of
R which is non-zero.

Let X be a set, let R be a non empty zero structure, and let p be a series of
X, R. We say that p is non-zero if and only if:
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(Def. 2) p 6= 0 (X, R).
Let X be a set and let R be a non trivial zero structure. One can check that

there exists a series of X, R which is non-zero.
Let n be an ordinal number and let R be a non trivial zero structure. Note

that there exists a polynomial of n, R which is non-zero.
The following two propositions are true:

(1) Let X be a set, R be a non empty zero structure, and s be a series of
X, R. Then s = 0 (X, R) if and only if Support s = ∅.

(2) Let X be a set and R be a non empty zero structure. Then R is non
trivial if and only if there exists a series s of X, R such that Support s 6= ∅.

Let X be a set and let b be a bag of X. We say that b is univariate if and
only if:

(Def. 3) There exists an element u of X such that support b = {u}.
Let X be a non empty set. Note that there exists a bag of X which is

univariate.
Let X be a non empty set. Note that every bag of X which is univariate is

also non empty.

2. Polynomials without Variables

We now state three propositions:

(3) For every bag b of ∅ holds b = EmptyBag ∅.
(4) Let L be a right zeroed add-associative right complementable well unital

distributive non trivial double loop structure, p be a polynomial of ∅, L,
and x be a function from ∅ into L. Then eval(p, x) = p(EmptyBag ∅).

(5) Let L be a right zeroed add-associative right complementable well unital
distributive non trivial double loop structure. Then Polynom-Ring(∅, L)
is ring isomorphic to L.

3. Monomials

Let X be a set, let L be a non empty zero structure, and let p be a series of
X, L. We say that p is monomial-like if and only if:

(Def. 4) There exists a bag b of X such that for every bag b′ of X such that b′ 6= b

holds p(b′) = 0L.

Let X be a set and let L be a non empty zero structure. Note that there
exists a series of X, L which is monomial-like.
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Let X be a set and let L be a non empty zero structure. A monomial of X,
L is a monomial-like series of X, L.

Let X be a set and let L be a non empty zero structure. One can check that
every series of X, L which is monomial-like is also finite-Support.

The following proposition is true

(6) Let X be a set, L be a non empty zero structure, and p be a series of
X, L. Then p is a monomial of X, L if and only if Support p = ∅ or there
exists a bag b of X such that Support p = {b}.

Let X be a set, let L be a non empty zero structure, let a be an element of
L, and let b be a bag of X. The functor Monom(a, b) yields a monomial of X,
L and is defined as follows:

(Def. 5) Monom(a, b) = 0 (X,L) +· (b, a).

Let X be a set, let L be a non empty zero structure, and let m be a monomial
of X, L. The functor term m yielding a bag of X is defined by:

(Def. 6) m(term m) 6= 0L or Support m = ∅ and term m = EmptyBag X.

Let X be a set, let L be a non empty zero structure, and let m be a monomial
of X, L. The functor coefficient m yields an element of L and is defined by:

(Def. 7) coefficient m = m(term m).

One can prove the following propositions:

(7) For every set X and for every non empty zero structure L and for every
monomial m of X, L holds Support m = ∅ or Support m = {term m}.

(8) For every set X and for every non empty zero structure L and for every
bag b of X holds coefficient Monom(0L, b) = 0L and term Monom(0L, b) =
EmptyBag X.

(9) Let X be a set, L be a non empty zero structure, a be an element of L,
and b be a bag of X. Then coefficient Monom(a, b) = a.

(10) Let X be a set, L be a non trivial zero structure, a be a non-zero element
of L, and b be a bag of X. Then term Monom(a, b) = b.

(11) For every set X and for every non empty zero structure L and for every
monomial m of X, L holds Monom(coefficient m, term m) = m.

(12) Let n be an ordinal number, L be a right zeroed add-associative right
complementable unital distributive non trivial double loop structure, m be
a monomial of n, L, and x be a function from n into L. Then eval(m,x) =
coefficient m · eval(term m,x).

(13) Let n be an ordinal number, L be a right zeroed add-associative right
complementable unital distributive non trivial double loop structure, a be
an element of L, b be a bag of n, and x be a function from n into L. Then
eval(Monom(a, b), x) = a · eval(b, x).
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4. Constant Polynomials

Let X be a set, let L be a non empty zero structure, and let p be a series of
X, L. We say that p is constant if and only if:

(Def. 8) For every bag b of X such that b 6= EmptyBag X holds p(b) = 0L.

Let X be a set and let L be a non empty zero structure. Observe that there
exists a series of X, L which is constant.

Let X be a set and let L be a non empty zero structure. A constant poly-
nomial of X, L is a constant series of X, L.

Let X be a set and let L be a non empty zero structure. One can check that
every series of X, L which is constant is also monomial-like.

The following proposition is true

(14) Let X be a set, L be a non empty zero structure, and p be a series of X,
L. Then p is a constant polynomial of X, L if and only if p = 0 (X, L) or
Support p = {EmptyBag X}.

Let X be a set and let L be a non empty zero structure. Observe that
0 (X,L) is constant.

Let X be a set and let L be a unital non empty double loop structure. One
can check that 1 (X,L) is constant.

The following propositions are true:

(15) Let X be a set, L be a non empty zero structure, and c be a constant
polynomial of X, L. Then Support c = ∅ or Support c = {EmptyBag X}.

(16) Let X be a set, L be a non empty zero structure, and c be a con-
stant polynomial of X, L. Then term c = EmptyBag X and coefficient c =
c(EmptyBag X).

Let X be a set, let L be a non empty zero structure, and let a be an element
of L. The functor a (X, L) yielding a series of X, L is defined by:

(Def. 9) a (X, L) = 0 (X,L) +· (EmptyBag X, a).
Let X be a set, let L be a non empty zero structure, and let a be an element

of L. Observe that a (X, L) is constant.
We now state several propositions:

(17) Let X be a set, L be a non empty zero structure, and p be a series of X,
L. Then p is a constant polynomial of X, L if and only if there exists an
element a of L such that p = a (X, L).

(18) Let X be a set, L be a non empty multiplicative loop with zero structure,
and a be an element of L. Then (a (X, L))(EmptyBag X) = a and for
every bag b of X such that b 6= EmptyBag X holds (a (X,L))(b) = 0L.

(19) For every set X and for every non empty zero structure L holds
0L (X,L) = 0 (X, L).
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(20) For every set X and for every unital non empty multiplicative loop with
zero structure L holds 1L (X, L) = 1 (X,L).

(21) Let X be a set, L be a non empty zero structure, and a, b be elements
of L. Then a (X,L) = b (X,L) if and only if a = b.

(22) For every set X and for every non empty zero structure L and for
every element a of L holds Support a (X, L) = ∅ or Support a (X, L) =
{EmptyBag X}.

(23) For every set X and for every non empty zero structure L and
for every element a of L holds term a (X, L) = EmptyBag X and
coefficient a (X,L) = a.

(24) Let n be an ordinal number, L be a right zeroed add-associative right
complementable unital distributive non trivial double loop structure, c be
a constant polynomial of n, L, and x be a function from n into L. Then
eval(c, x) = coefficient c.

(25) Let n be an ordinal number, L be a right zeroed add-associative ri-
ght complementable unital distributive non trivial double loop struc-
ture, a be an element of L, and x be a function from n into L. Then
eval(a (n,L), x) = a.

5. Multiplication with Coefficients

Let X be a set, let L be a non empty multiplicative loop with zero structure,
let p be a series of X, L, and let a be an element of L. The functor a · p yields
a series of X, L and is defined by:

(Def. 10) For every bag b of X holds (a · p)(b) = a · p(b).

The functor p · a yields a series of X, L and is defined by:

(Def. 11) For every bag b of X holds (p · a)(b) = p(b) · a.

Let X be a set, let L be a left zeroed right zeroed add-cancelable distributive
non empty double loop structure, let p be a finite-Support series of X, L, and let
a be an element of L. Note that a · p is finite-Support and p ·a is finite-Support.

One can prove the following propositions:

(26) Let X be a set, L be a commutative non empty multiplicative loop with
zero structure, p be a series of X, L, and a be an element of L. Then
a · p = p · a.

(27) Let n be an ordinal number, L be an add-associative right complemen-
table right zeroed left distributive non empty double loop structure, p be
a series of n, L, and a be an element of L. Then a · p = (a (n, L)) ∗ p.
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(28) Let n be an ordinal number, L be an add-associative right complemen-
table right zeroed right distributive non empty double loop structure, p

be a series of n, L, and a be an element of L. Then p · a = p ∗ (a (n,L)).
(29) Let n be an ordinal number, L be an Abelian left zeroed right ze-

roed add-associative right complementable unital associative commuta-
tive distributive non trivial double loop structure, p be a polynomial of
n, L, a be an element of L, and x be a function from n into L. Then
eval(a · p, x) = a · eval(p, x).

(30) Let n be an ordinal number, L be a left zeroed right zeroed add-left-
cancelable add-associative right complementable unital associative integral
domain-like distributive non trivial double loop structure, p be a polyno-
mial of n, L, a be an element of L, and x be a function from n into L.
Then eval(a · p, x) = a · eval(p, x).

(31) Let n be an ordinal number, L be an Abelian left zeroed right ze-
roed add-associative right complementable unital associative commuta-
tive distributive non trivial double loop structure, p be a polynomial of
n, L, a be an element of L, and x be a function from n into L. Then
eval(p · a, x) = eval(p, x) · a.

(32) Let n be an ordinal number, L be a left zeroed right zeroed add-left-
cancelable add-associative right complementable unital associative com-
mutative distributive integral domain-like non trivial double loop struc-
ture, p be a polynomial of n, L, a be an element of L, and x be a function
from n into L. Then eval(p · a, x) = eval(p, x) · a.

(33) Let n be an ordinal number, L be an Abelian left zeroed right ze-
roed add-associative right complementable unital associative commuta-
tive distributive non trivial double loop structure, p be a polynomial of
n, L, a be an element of L, and x be a function from n into L. Then
eval((a (n,L)) ∗ p, x) = a · eval(p, x).

(34) Let n be an ordinal number, L be an Abelian left zeroed right ze-
roed add-associative right complementable unital associative commuta-
tive distributive non trivial double loop structure, p be a polynomial of
n, L, a be an element of L, and x be a function from n into L. Then
eval(p ∗ (a (n,L)), x) = eval(p, x) · a.
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Summary. In this article, we show properties of calculating type state
machines. In the first section, we have defined calculating type state machines of
which the state transition only depends on the first input. We have also proved
theorems of the state machines. In the second section, we defined Moore machines
with final states. We also introduced the concept of result of the Moore machines.
In the last section, we proved the correctness of several calculating type of Moore
machines.

MML Identifier: FSM 2.

The terminology and notation used in this paper have been introduced in the
following articles: [10], [3], [16], [11], [2], [14], [9], [4], [5], [1], [8], [17], [7], [13],
[15], [12], and [6].

1. Calculating Type

For simplicity, we use the following convention: m denotes a natural number,
x, y denote real numbers, i, j denote non empty natural numbers, I, O denote
non empty sets, s, s1, s2, s3 denote elements of I, w, w1, w2 denote finite
sequences of elements of I, t denotes an element of O, S denotes a non empty
FSM over I, and q, q1 denote states of S.

Let us consider I, S, q, w. We introduce GEN(w, q) as a synonym of
(q, w)-admissible.
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Let us consider I, S, q, w. Note that GEN(w, q) is non empty.
The following propositions are true:

(1) GEN(〈s〉, q) = 〈q, (the transition of S)(〈〈q, s〉〉)〉.
(2) GEN(〈s1, s2〉, q) = 〈q, (the transition of S)(〈〈q, s1〉〉), (the transition of

S)(〈〈(the transition of S)(〈〈q, s1〉〉), s2〉〉)〉.
(3) GEN(〈s1, s2, s3〉, q) = 〈q, (the transition of S)(〈〈q, s1〉〉), (the transition of

S)(〈〈(the transition of S)(〈〈q, s1〉〉), s2〉〉), (the transition of S)(〈〈(the transi-
tion of S)(〈〈(the transition of S)(〈〈q, s1〉〉), s2〉〉), s3〉〉)〉.

Let us consider I, S. We say that S is calculating type if and only if the
condition (Def. 1) is satisfied.

(Def. 1) Let given j and given w1, w2. Suppose w1(1) = w2(1) and j ¬
len w1 + 1 and j ¬ len w2 + 1. Then (GEN(w1, the initial state of
S))(j) = (GEN(w2, the initial state of S))(j).

The following propositions are true:

(4) Suppose S is calculating type. Let given w1, w2. Suppose w1(1) = w2(1).
Then GEN(w1, the initial state of S) and GEN(w2, the initial state of S)
are c=-comparable.

(5) Suppose that for all w1, w2 such that w1(1) = w2(1) holds GEN(w1, the
initial state of S) and GEN(w2, the initial state of S) are c=-comparable.
Then S is calculating type.

(6) Suppose S is calculating type. Let given w1, w2. Suppose w1(1) = w2(1)
and len w1 = len w2. Then GEN(w1, the initial state of S) = GEN(w2, the
initial state of S).

(7) Suppose that for all w1, w2 such that w1(1) = w2(1) and len w1 = len w2

holds GEN(w1, the initial state of S) = GEN(w2, the initial state of S).
Then S is calculating type.

Let us consider I, S, q, s. We say that q is accessible via s if and only if:

(Def. 2) There exists a finite sequence w of elements of I such that the initial

state of S
〈s〉aw−→ q.

Let us consider I, S, q. We say that q is accessible if and only if:

(Def. 3) There exists a finite sequence w of elements of I such that the initial
state of S

w−→ q.

We now state four propositions:

(8) If q is accessible via s, then q is accessible.

(9) If q is accessible and q 6= the initial state of S, then there exists s such
that q is accessible via s.

(10) The initial state of S is accessible.

(11) Suppose S is calculating type and q is accessible via s. Then there exists
a non empty natural number m such that for every w if len w + 1 ­ m
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and w(1) = s, then q = (GEN(w, the initial state of S))(m) and for every
i such that i < m holds (GEN(w, the initial state of S))(i) 6= q.

Let us consider I, S. We say that S is regular if and only if:

(Def. 4) Every state of S is accessible.

We now state several propositions:

(12) If for all s1, s2, q holds (the transition of S)(〈〈q, s1〉〉) = (the transition of
S)(〈〈q, s2〉〉), then S is calculating type.

(13) Let given S. Suppose that
(i) for all s1, s2, q such that q 6= the initial state of S holds (the transition

of S)(〈〈q, s1〉〉) = (the transition of S)(〈〈q, s2〉〉), and
(ii) for all s, q1 holds (the transition of S)(〈〈q1, s〉〉) 6= the initial state of S.

Then S is calculating type.

(14) Suppose S is regular and calculating type. Let given s1, s2, q. If q 6= the
initial state of S, then (GEN(〈s1〉, q))(2) = (GEN(〈s2〉, q))(2).

(15) Suppose S is regular and calculating type. Let given s1, s2, q. Suppose
q 6= the initial state of S. Then (the transition of S)(〈〈q, s1〉〉) = (the
transition of S)(〈〈q, s2〉〉).

(16) Suppose S is regular and calculating type. Let given s, s1, s2, q. Suppose
(the transition of S)(〈〈the initial state of S, s1〉〉) 6= (the transition of
S)(〈〈the initial state of S, s2〉〉). Then (the transition of S)(〈〈q, s〉〉) 6= the
initial state of S.

2. State Machine with Final States

Let I be a set. We introduce state machines over I with final states which
are extensions of FSM over I and are systems
〈 a carrier, a transition, an initial state, final states 〉,

where the carrier is a set, the transition is a function from [: the carrier, I :] into
the carrier, the initial state is an element of the carrier, and the final states
constitute a subset of the carrier.

Let I be a set. One can check that there exists a state machine over I with
final states which is non empty.

Let us consider I, s and let S be a non empty state machine over I with
final states. We say that s leads to final state of S if and only if:

(Def. 5) There exists a state q of S such that q is accessible via s and q ∈ the
final states of S.

Let us consider I and let S be a non empty state machine over I with final
states. We say that S is halting if and only if:

(Def. 6) s leads to final state of S.
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Let I be a set and let O be a non empty set. We consider Moore state
machines over I and O with final states as extensions of state machine over I

with final states and Moore-FSM over I, O as systems
〈 a carrier, a transition, an output function, an initial state, final states 〉,

where the carrier is a set, the transition is a function from [: the carrier, I :] into
the carrier, the output function is a function from the carrier into O, the initial
state is an element of the carrier, and the final states constitute a subset of the
carrier.

Let I be a set and let O be a non empty set. Observe that there exists a
Moore state machine over I and O with final states which is non empty and
strict.

Let us consider I, O, let i, f be sets, and let o be a function from {i, f}
into O. The functor I -TwoStatesMooreSM(i, f, o) yielding a non empty strict
Moore state machine over I and O with final states is defined by the conditions
(Def. 7).

(Def. 7)(i) The carrier of I -TwoStatesMooreSM(i, f, o) = {i, f},
(ii) the transition of I -TwoStatesMooreSM(i, f, o) = [: {i, f}, I :] 7−→ f,

(iii) the output function of I -TwoStatesMooreSM(i, f, o) = o,

(iv) the initial state of I -TwoStatesMooreSM(i, f, o) = i, and
(v) the final states of I -TwoStatesMooreSM(i, f, o) = {f}.
One can prove the following proposition

(17) Let i, f be sets, o be a function from {i, f} into O, and given
j. If 1 < j and j ¬ len w + 1, then (GEN(w, the initial state of
I -TwoStatesMooreSM(i, f, o)))(j) = f.

Let us consider I, O, let i, f be sets, and let o be a function from {i, f} into
O. Observe that I -TwoStatesMooreSM(i, f, o) is calculating type.

Let us consider I, O, let i, f be sets, and let o be a function from {i, f} into
O. One can check that I -TwoStatesMooreSM(i, f, o) is halting.

In the sequel n, m are non empty natural numbers and M is a non empty
Moore state machine over I and O with final states.

Next we state the proposition

(18) Suppose that
(i) M is calculating type,
(ii) s leads to final state of M , and
(iii) the initial state of M /∈ the final states of M .

Then there exists a non empty natural number m such that
(iv) for every w such that len w + 1 ­ m and w(1) = s holds (GEN(w, the

initial state of M))(m) ∈ the final states of M , and
(v) for all w, j such that j ¬ len w + 1 and w(1) = s and j < m holds

(GEN(w, the initial state of M))(j) /∈ the final states of M .
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3. Correctness of a Result of State Machine

Let us consider I, O, M , s and let t be a set. We say that t is a result of s

in M if and only if the condition (Def. 8) is satisfied.

(Def. 8) There exists m such that for every w if w(1) = s, then if m ¬ len w + 1,

then t = (the output function of M)((GEN(w, the initial state of M))(m))
and (GEN(w, the initial state of M))(m) ∈ the final states of M and for
every n such that n < m and n ¬ len w+1 holds (GEN(w, the initial state
of M))(n) /∈ the final states of M .

We now state several propositions:

(19) Suppose the initial state of M ∈ the final states of M . Then (the output
function of M)(the initial state of M) is a result of s in M .

(20) Suppose that
(i) M is calculating type,
(ii) s leads to final state of M , and
(iii) the initial state of M /∈ the final states of M .

Then there exists t which is a result of s in M .

(21) Suppose M is calculating type and s leads to final state of M . Let t1, t2
be elements of O. If t1 is a result of s in M and t2 is a result of s in M ,
then t1 = t2.

(22) Let X be a non empty set, f be a binary operation on X, and M be
a non empty Moore state machine over [:X, X :] and X ∪ {X} with final
states. Suppose that

(i) M is calculating type,
(ii) the carrier of M = X ∪ {X},
(iii) the final states of M = X,

(iv) the initial state of M = X,

(v) the output function of M = idthe carrier of M , and
(vi) for all elements x, y of X holds (the transition of M)(〈〈the initial state

of M , 〈〈x, y〉〉〉〉) = f(x, y).
Then M is halting and for all elements x, y of X holds f(x, y) is a result
of 〈〈x, y〉〉 in M .

(23) Let M be a non empty Moore state machine over [:R, R :] and R ∪ {R}
with final states. Suppose that M is calculating type and the carrier of
M = R∪{R} and the final states of M = R and the initial state of M = R
and the output function of M = idthe carrier of M and for all x, y such that
x ­ y holds (the transition of M)(〈〈the initial state of M , 〈〈x, y〉〉〉〉) = x

and for all x, y such that x < y holds (the transition of M)(〈〈the initial
state of M , 〈〈x, y〉〉〉〉) = y. Let x, y be elements of R. Then max(x, y) is a
result of 〈〈x, y〉〉 in M .
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(24) Let M be a non empty Moore state machine over [:R, R :] and R ∪ {R}
with final states. Suppose that M is calculating type and the carrier of
M = R∪{R} and the final states of M = R and the initial state of M = R
and the output function of M = idthe carrier of M and for all x, y such that
x < y holds (the transition of M)(〈〈the initial state of M , 〈〈x, y〉〉〉〉) = x

and for all x, y such that x ­ y holds (the transition of M)(〈〈the initial
state of M , 〈〈x, y〉〉〉〉) = y. Let x, y be elements of R. Then min(x, y) is a
result of 〈〈x, y〉〉 in M .

(25) Let M be a non empty Moore state machine over [:R, R :] and R ∪ {R}
with final states. Suppose that

(i) M is calculating type,
(ii) the carrier of M = R ∪ {R},
(iii) the final states of M = R,

(iv) the initial state of M = R,

(v) the output function of M = idthe carrier of M , and
(vi) for all x, y holds (the transition of M)(〈〈the initial state of M , 〈〈x,

y〉〉〉〉) = x + y.

Let x, y be elements of R. Then x + y is a result of 〈〈x, y〉〉 in M .

(26) Let M be a non empty Moore state machine over [:R, R :] and R ∪ {R}
with final states. Suppose that M is calculating type and the carrier of
M = R∪{R} and the final states of M = R and the initial state of M = R
and the output function of M = idthe carrier of M and for all x, y such that
x > 0 or y > 0 holds (the transition of M)(〈〈the initial state of M , 〈〈x,

y〉〉〉〉) = 1 and for all x, y such that x = 0 or y = 0 but x ¬ 0 but y ¬ 0 holds
(the transition of M)(〈〈the initial state of M , 〈〈x, y〉〉〉〉) = 0 and for all x, y

such that x < 0 and y < 0 holds (the transition of M)(〈〈the initial state of
M , 〈〈x, y〉〉〉〉) = −1. Let x, y be elements of R. Then max(sgn x, sgn y) is a
result of 〈〈x, y〉〉 in M .

Let us consider I, O. Note that there exists a non empty Moore state machine
over I and O with final states which is calculating type and halting.

Let us consider I. Observe that there exists a non empty state machine over
I with final states which is calculating type and halting.

Let us consider I, O, let M be a calculating type halting non empty Moore
state machine over I and O with final states, and let us consider s. The functor
Result(s,M) yields an element of O and is defined as follows:

(Def. 9) Result(s, M) is a result of s in M .

Next we state several propositions:

(27) For every function f from {0, 1} into O holds
Result(s, I -TwoStatesMooreSM(0, 1, f)) = f(1).

(28) Let M be a calculating type halting non empty Moore state machine
over [:R, R :] and R ∪ {R} with final states. Suppose that
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(i) the carrier of M = R ∪ {R},
(ii) the final states of M = R,

(iii) the initial state of M = R,

(iv) the output function of M = idthe carrier of M ,

(v) for all x, y such that x ­ y holds (the transition of M)(〈〈the initial
state of M , 〈〈x, y〉〉〉〉) = x, and

(vi) for all x, y such that x < y holds (the transition of M)(〈〈the initial
state of M , 〈〈x, y〉〉〉〉) = y.

Let x, y be elements of R. Then Result(〈〈x, y〉〉,M) = max(x, y).

(29) Let M be a calculating type halting non empty Moore state machine
over [:R, R :] and R ∪ {R} with final states. Suppose that

(i) the carrier of M = R ∪ {R},
(ii) the final states of M = R,

(iii) the initial state of M = R,

(iv) the output function of M = idthe carrier of M ,

(v) for all x, y such that x < y holds (the transition of M)(〈〈the initial
state of M , 〈〈x, y〉〉〉〉) = x, and

(vi) for all x, y such that x ­ y holds (the transition of M)(〈〈the initial
state of M , 〈〈x, y〉〉〉〉) = y.

Let x, y be elements of R. Then Result(〈〈x, y〉〉,M) = min(x, y).

(30) Let M be a calculating type halting non empty Moore state machine
over [:R, R :] and R ∪ {R} with final states. Suppose that

(i) the carrier of M = R ∪ {R},
(ii) the final states of M = R,

(iii) the initial state of M = R,

(iv) the output function of M = idthe carrier of M , and
(v) for all x, y holds (the transition of M)(〈〈the initial state of M , 〈〈x,

y〉〉〉〉) = x + y.

Let x, y be elements of R. Then Result(〈〈x, y〉〉,M) = x + y.

(31) Let M be a calculating type halting non empty Moore state machine
over [:R, R :] and R ∪ {R} with final states. Suppose that the carrier of
M = R∪{R} and the final states of M = R and the initial state of M = R
and the output function of M = idthe carrier of M and for all x, y such that
x > 0 or y > 0 holds (the transition of M)(〈〈the initial state of M , 〈〈x,

y〉〉〉〉) = 1 and for all x, y such that x = 0 or y = 0 but x ¬ 0 but y ¬ 0
holds (the transition of M)(〈〈the initial state of M , 〈〈x, y〉〉〉〉) = 0 and for
all x, y such that x < 0 and y < 0 holds (the transition of M)(〈〈the initial
state of M , 〈〈x, y〉〉〉〉) = −1. Let x, y be elements of R. Then Result(〈〈x,

y〉〉, M) = max(sgn x, sgn y).
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Summary. This article is a continuation of [2] article. Further properties
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1. Tree and Classification of a Set

For simplicity, we follow the rules: A denotes a relational structure, X de-
notes a non empty set, P1, P2, P3, Y , a, b, c, x denote sets, and S1 denotes a
subset of Y .

Let us consider A. We say that A has superior elements if and only if:

(Def. 1) There exists an element of A which is superior of the internal relation of
A.

Let us consider A. We say that A has comparable down elements if and only
if:

(Def. 2) For all elements x, y of A such that there exists an element z of A such
that z ¬ x and z ¬ y holds x ¬ y or y ¬ x.

The following proposition is true
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(1) For every set a holds 〈{{a}},⊆〉 is non empty, reflexive, transitive, and
antisymmetric and has superior elements and comparable down elements.

Let us observe that there exists a relational structure which is non empty,
reflexive, transitive, antisymmetric, and strict and has superior elements and
comparable down elements.

A tree is a poset with superior elements and comparable down elements.
Next we state four propositions:

(2) For every equivalence relation E1 of X and for all sets x, y, z such that
z ∈ [x](E1) and z ∈ [y](E1) holds [x](E1) = [y](E1).

(3) For every partition P of X and for all sets x, y, z such that x ∈ P and
y ∈ P and z ∈ x and z ∈ y holds x = y.

(4) For all sets C, x such that C is a classification of X and x ∈ ⋃
C holds

x ⊆ X.

(5) For every set C such that C is a strong classification of X holds 〈⋃ C,⊆〉
is a tree.

2. The Hierarchy of a Set

Let us consider Y . We say that Y is hierarchic if and only if:

(Def. 3) For all sets x, y such that x ∈ Y and y ∈ Y holds x ⊆ y or y ⊆ x or x

misses y.

One can verify that every set which is trivial is also hierarchic.
Let us note that there exists a set which is non trivial and hierarchic.
The following propositions are true:

(6) ∅ is hierarchic.

(7) {∅} is hierarchic.

Let us consider Y . A family of subsets of Y is said to be a hierarchy of Y if:

(Def. 4) It is hierarchic.

Let us consider Y . We say that Y is mutually-disjoint if and only if:

(Def. 5) For all sets x, y such that x ∈ Y and y ∈ Y and x 6= y holds x misses y.

In the sequel H denotes a hierarchy of Y .
Let us consider Y . Observe that there exists a family of subsets of Y which

is mutually-disjoint.
Next we state three propositions:

(8) ∅ is mutually-disjoint.

(9) {∅} is mutually-disjoint.

(10) {a} is mutually-disjoint.
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Let us consider Y and let F be a family of subsets of Y . We say that F is
T3 if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let A be a subset of Y . Suppose A ∈ F. Let x be an element of Y . If
x /∈ A, then there exists a subset B of Y such that x ∈ B and B ∈ F and
A misses B.

We now state the proposition

(11) For every family F of subsets of Y such that F = ∅ holds F is T3.

Let us consider Y . One can verify that there exists a hierarchy of Y which
is covering and T3.

Let us consider Y and let F be a family of subsets of Y . We say that F is
lower-bounded if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let B be a set. Suppose B 6= ∅ and B ⊆ F and for all a, b such that
a ∈ B and b ∈ B holds a ⊆ b or b ⊆ a. Then there exists c such that c ∈ F

and c ⊆ ⋂
B.

Next we state the proposition

(12) Let B be a mutually-disjoint family of subsets of Y . Suppose that for
every set b such that b ∈ B holds S1 misses b and Y 6= ∅. Then B∪{S1} is a
mutually-disjoint family of subsets of Y and if S1 6= ∅, then

⋃
(B∪{S1}) 6=⋃

B.

Let us consider Y and let F be a family of subsets of Y . We say that F has
maximum elements if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let S be a subset of Y . Suppose S ∈ F. Then there exists a subset T

of Y such that S ⊆ T and T ∈ F and for every subset V of Y such that
T ⊆ V and V ∈ F holds V = Y.

3. Some Properties of Partitions, Hierarchies and Classifications
of Sets

The following propositions are true:

(13) For every covering hierarchy H of Y such that H has maximum elements
there exists a partition P of Y such that P ⊆ H.

(14) Let H be a covering hierarchy of Y and B be a mutually-disjoint family
of subsets of Y . Suppose B ⊆ H and for every mutually-disjoint family C

of subsets of Y such that C ⊆ H and
⋃

B ⊆ ⋃
C holds B = C. Then B

is a partition of Y .

(15) Let H be a covering T3 hierarchy of Y . Suppose H is lower-bounded and
∅ /∈ H. Let A be a subset of Y and B be a mutually-disjoint family of
subsets of Y . Suppose that

(i) A ∈ B,
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(ii) B ⊆ H, and

(iii) for every mutually-disjoint family C of subsets of Y such that A ∈ C

and C ⊆ H and
⋃

B ⊆ ⋃
C holds

⋃
B =

⋃
C.

Then B is a partition of Y .

(16) Let H be a covering T3 hierarchy of Y . Suppose H is lower-bounded and
∅ /∈ H. Let A be a subset of Y and B be a mutually-disjoint family of
subsets of Y . Suppose A ∈ B and B ⊆ H and for every mutually-disjoint
family C of subsets of Y such that A ∈ C and C ⊆ H and B ⊆ C holds
B = C. Then B is a partition of Y .

(17) Let H be a covering T3 hierarchy of Y . Suppose H is lower-bounded and
∅ /∈ H. Let A be a subset of Y . If A ∈ H, then there exists a partition P

of Y such that A ∈ P and P ⊆ H.

(18) Let h be a non empty set, P4 be a partition of X, and h1 be a set.
Suppose h1 ∈ P4 and h ⊆ h1. Let P6 be a partition of X. Suppose h ∈ P6

and for every x such that x ∈ P6 holds x ⊆ h1 or h1 ⊆ x or h1 misses
x. Let P5 be a set. Suppose that for every a holds a ∈ P5 iff a ∈ P6 and
a ⊆ h1. Then P5 ∪ (P4 \ {h1}) is a partition of X and P5 ∪ (P4 \ {h1}) is
finer than P4.

(19) Let h be a non empty set. Suppose h ⊆ X. Let P8 be a partition of X.
Suppose there exists a set h2 such that h2 ∈ P8 and h2 ⊆ h and for every
x such that x ∈ P8 holds x ⊆ h or h ⊆ x or h misses x. Let P7 be a set.
Suppose that for every x holds x ∈ P7 iff x ∈ P8 and x misses h. Then

(i) P7 ∪ {h} is a partition of X,

(ii) P8 is finer than P7 ∪ {h}, and

(iii) for every partition P4 of X such that P8 is finer than P4 and for every
set h1 such that h1 ∈ P4 and h ⊆ h1 holds P7 ∪ {h} is finer than P4.

(20) Let H be a covering T3 hierarchy of X. Suppose that

(i) H is lower-bounded,

(ii) ∅ /∈ H, and

(iii) for every set C1 such that C1 6= ∅ and C1 ⊆ PARTITIONS(X) and for
all sets P9, P10 such that P9 ∈ C1 and P10 ∈ C1 holds P9 is finer than P10

or P10 is finer than P9 there exist P1, P2 such that P1 ∈ C1 and P2 ∈ C1

and for every P3 such that P3 ∈ C1 holds P3 is finer than P2 and P1 is
finer than P3.

Then there exists a classification C of X such that
⋃

C = H.
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