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Summary. The widely used textbook by Brassard and Bratley [2] inclu-
des a chapter devoted to asymptotic notation (Chapter 3, pp. 79-97). We have
attempted to test how suitable the current version of Mizar is for recording this
type of material in its entirety. A more detailed report on this experiment will
be available separately. This article presents the development of notions and a
follow-up article [9] includes examples and solutions to problems. The prelimina-
ries introduce a number of properties of real sequences, some operations on real
sequences, and a characterization of convergence. The remaining sections in this
article correspond to sections of Chapter 3 of [2]. Section 2 defines the O notation
and proves the threshold, maximum, and limit rules. Section 3 introduces the 2
and © notations and their analogous rules. Conditional asymptotic notation is
defined in Section 4 where smooth functions are also discussed. Section 5 defines
some operations on asymptotic notation (we have decided not to introduce the
asymptotic notation for functions of several variables as it is a straightforward
generalization of notions for unary functions).

MML Identifier: ASYMPT_O.

The terminology and notation used in this paper have been introduced in the
following articles: [13], [11], [3], [4], [8], [1], [10], [5], [14], [7], [6], and [12].
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1. PRELIMINARIES

In this paper ¢, d denote real numbers and n, N denote natural numbers.

In this article we present several logical schemes. The scheme FinSegRng1
deals with natural numbers A, B, a non empty set C, and a unary functor F
yielding an element of C, and states that:

{F(i); 1 ranges over natural numbers: A < i A i < B} is a finite
non empty subset of C
provided the parameters meet the following requirement:
o ALB.

The scheme FinlmiInitl deals with a natural number A, a non empty set B,
and a unary functor F yielding an element of B, and states that:

{F(n);n ranges over natural numbers: n < A} is a finite non
empty subset of B
for all values of the parameters.

The scheme FinImlInit2 deals with a natural number A, a non empty set B,

and a unary functor F yielding an element of B, and states that:
{F(n);n ranges over natural numbers: n < A} is a finite non
empty subset of B
provided the parameters meet the following requirement:
o A>0.
Let ¢ be a real number. We say that c is positive if and only if:

(Def. 1) ¢>0.
We say that c is negative if and only if:
(Def. 2) ¢< 0.
We say that c is logbase if and only if:
(Def. 3) ¢>0and c# 1.
One can check the following observations:
% there exists a real number which is positive,
* there exists a real number which is negative,
% there exists a real number which is logbase,
* there exists a real number which is non negative,
% there exists a real number which is non positive, and
% there exists a real number which is non logbase.

Let f be a sequence of real numbers. We say that f is eventually-nonnegative
if and only if:

(Def. 4) There exists N such that for every n such that n > N holds f(n) > 0.
We say that f is positive if and only if:
(Def. 5) For every n holds f(n) > 0.
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We say that f is eventually-positive if and only if:
(Def. 6) There exists N such that for every n such that n > N holds f(n) > 0.
We say that f is eventually-nonzero if and only if:
(Def. 7) There exists N such that for every n such that n > N holds f(n) # 0.
We say that f is eventually-nondecreasing if and only if:
(Def. 8) There exists N such that for every n such that n > N holds f(n) <
fln+1).

Let us mention that there exists a sequence of real numbers which is eventually-
nonnegative, eventually-nonzero, positive, eventually-positive, and eventually-
nondecreasing.

One can verify the following observations:

* every sequence of real numbers which is positive is also eventually-
positive,

x every sequence of real numbers which is eventually-positive is also eventually-
nonnegative and eventually-nonzero, and

* every sequence of real numbers which is eventually-nonnegative and
eventually-nonzero is also eventually-positive.

Let f, g be eventually-nonnegative sequences of real numbers. Note that
f + g is eventually-nonnegative.

Let f be a sequence of real numbers and let ¢ be a real number. The functor
c+ f yields a sequence of real numbers and is defined by:

(Def. 9) For every n holds (¢+ f)(n) = c+ f(n).

We introduce f + ¢ as a synonym of ¢ + f.

Let f be an eventually-nonnegative sequence of real numbers and let ¢ be a
positive real number. One can check that ¢ f is eventually-nonnegative.

Let f be an eventually-nonnegative sequence of real numbers and let ¢ be a
non negative real number. Note that ¢ + f is eventually-nonnegative.

Let f be an eventually-nonnegative sequence of real numbers and let ¢ be a
positive real number. One can check that ¢ + f is eventually-positive.

Let f, g be sequences of real numbers. The functor max(f,g) yielding a
sequence of real numbers is defined as follows:

(Def. 10) For every n holds (max(f, g))(n) = max(f(n),g(n)).

Let us notice that the functor max(f, g) is commutative.
Let f be a sequence of real numbers and let g be an eventually-nonnegative
sequence of real numbers. One can check that max(f, g) is eventually-nonnegative.
Let f be a sequence of real numbers and let g be an eventually-positive
sequence of real numbers. One can verify that max(f, g) is eventually-positive.
Let f, g be sequences of real numbers. We say that g majorizes f if and only
if:
(Def. 11) There exists N such that for every n such that n > N holds f(n) < g(n).
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The following propositions are true:

(1) Let f be asequence of real numbers and N be a natural number. Suppose
that for every m such that n > N holds f(n) < f(n + 1). Let n, m be
natural numbers. If N <n and n < m, then f(n) < f(m).

(2) Let f, g be eventually-positive sequences of real numbers. If f/g is
convergent and lim(f/g) # 0, then ¢/f is convergent and lim(g/f) =
(lim(f/g))~".

(3) For every eventually-nonnegative sequence f of real numbers such that
f is convergent holds 0 < lim f.

(4) Let f, g be sequences of real numbers. If f is convergent and g is conver-
gent and g majorizes f, then lim f < lim g.

(5) Let f be a sequence of real numbers and g be an eventually-nonzero
sequence of real numbers. If f/g is divergent to +o0, then g/ f is convergent

and lim(g/f) = 0.

2. A NOTATION FOR ”"THE ORDER OF”

Let f be an eventually-nonnegative sequence of real numbers. The functor O(f)
yielding a non empty set of functions from N to R is defined by:

(Def. 12)  O(f) = {t;t ranges over elements of R": Ven (>0 A A, (n>2N =
t(n) <c-f(n) A t(n)>0))}.
The following propositions are true:

(6) Let z be a set and f be an eventually-nonnegative sequence of real
numbers. Suppose z € O(f). Then z is an eventually-nonnegative sequence
of real numbers.

(7) Let f be a positive sequence of real numbers and ¢ be an eventually-
nonnegative sequence of real numbers. Then ¢t € O(f) if and only if there
exists ¢ such that ¢ > 0 and for every n holds t(n) < c¢- f(n).

(8) Let f be an eventually-positive sequence of real numbers, ¢ be an
eventually-nonnegative sequence of real numbers, and N be a natural num-
ber. Suppose t € O(f) and for every n such that n > N holds f(n) > 0.
Then there exists ¢ such that ¢ > 0 and for every n such that n > N holds
t(n) <c- f(n).

(9) For all eventually-nonnegative sequences f, g of real numbers holds
O(f + g) = O(max(f,g)).

(10) For every eventually-nonnegative sequence f of real numbers holds f €
o(f)-
(11) For all eventually-nonnegative sequences f, g of real numbers such that

f € 0(g) holds O(f) € O(g)-
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(12) For all eventually-nonnegative sequences f, g, h of real numbers such
that f € O(g) and g € O(h) holds f € O(h).

(13) Let f be an eventually-nonnegative sequence of real numbers and ¢ be a
positive real number. Then O(f) = O(c f).

(14) Let ¢ be a non negative real number and z, f be eventually-nonnegative
sequences of real numbers. If z € O(f), then z € O(c+ f).

(15) For all eventually-positive sequences f, g of real numbers such that f/g
is convergent and lim(f/g) > 0 holds O(f) = O(g).

(16) Let f, g be eventually-positive sequences of real numbers. If f/g is co-
nvergent and lim(f/g) = 0, then f € O(g) and g ¢ O(f).

(17) Let f, g be eventually-positive sequences of real numbers. If f/g is di-
vergent to +o0, then f ¢ O(g) and g € O(f).

3. OTHER ASYMPTOTIC NOTATION

Let f be an eventually-nonnegative sequence of real numbers. The functor Q(f)
yielding a non empty set of functions from N to R is defined by:
(Def. 13)  Q(f) = {t;t ranges over elements of RY: Van @>0 A A, (n>2N =
t(n) >d- f(n) A t(n)>0))}.
The following propositions are true:

(18) Let = be a set and f be an eventually-nonnegative sequence of real
numbers. Suppose x € Q(f). Then x is an eventually-nonnegative sequence
of real numbers.

(19) For all eventually-nonnegative sequences f, g of real numbers holds f €
Q(g) iff g € O(f).

(20) For every eventually-nonnegative sequence f of real numbers holds f €
Q(f).

(21) For all eventually-nonnegative sequences f, g, h of real numbers such
that f € Q(g) and g € Q(h) holds f € Q(h).

(22) For all eventually-positive sequences f, g of real numbers such that f/g
is convergent and lim(f/g) > 0 holds Q(f) = Q(g).

(23) Let f, g be eventually-positive sequences of real numbers. If f/g is co-
nvergent and lim(f/g) = 0, then g € Q(f) and f ¢ Q(g).

(24) Let f, g be eventually-positive sequences of real numbers. If f/g is di-
vergent to o0, then g ¢ Q(f) and f € Q(g).

(25) Let f, t be positive sequences of real numbers. Then ¢ € Q(f) if and only
if there exists d such that d > 0 and for every n holds d - f(n) < t(n).

(26) For all eventually-nonnegative sequences f, g of real numbers holds Q(f+

9) = Q(max(f, g)).
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Let f be an eventually-nonnegative sequence of real numbers. The functor
O(f) yielding a non empty set of functions from N to R is defined as follows:
(Def. 14) O(f) = O(f) N Q).
Next we state several propositions:

(27) Let f be an eventually-nonnegative sequence of real numbers. Then
O(f) = {t;t ranges over elements of R: Vean (€>0Ad>0AA, (n>
N = d- f(n) <t(n) A t(n)<c-f(n))}

(28) For every eventually-nonnegative sequence f of real numbers holds f €
o(f).

(29) For all eventually-nonnegative sequences f, g of real numbers such that
f € ©O(g) holds g € ©(f).

(30) For all eventually-nonnegative sequences f, g, h of real numbers such
that f € ©(g) and g € ©(h) holds f € O(h).

(31) Let f, t be positive sequences of real numbers. Then t € O(f) if and
only if there exist ¢, d such that ¢ > 0 and d > 0 and for every n holds
d- f(n) <t(n)and t(n) <c- f(n).

(32) For all eventually-nonnegative sequences f, g of real numbers holds ©( f+
g) = O(max(f,g)).

(33) For all eventually-positive sequences f, g of real numbers such that f/g
is convergent and lim(f/g) > 0 holds f € O(g).

(34) Let f, g be eventually-positive sequences of real numbers. If f/g is co-
nvergent and lim(f/g) = 0, then f € O(g) and f ¢ O(g).

(35) Let f, g be eventually-positive sequences of real numbers. If f/g is di-
vergent to oo, then f € Q(g) and f ¢ ©O(g).

4. CONDITIONAL ASYMPTOTIC NOTATION

Let f be an eventually-nonnegative sequence of real numbers and let X be a
set. The functor O(f|X) yields a non empty set of functions from N to R and
is defined as follows:

(Def. 15)  O(f|X) = {t;t ranges over elements of RN: Ven (e>0 A A, (n >
N AneX = tn)<c-f(n) A tln)>0))}.
Let f be an eventually-nonnegative sequence of real numbers and let X be
a set. The functor Q(f|X) yields a non empty set of functions from N to R and
is defined by:
(Def. 16) Q(f|X) = {t;t ranges over elements of RN: Van (@>0 A A, (n >
N AneX = tn)=d-f(n) A tin)>0))}.
Let f be an eventually-nonnegative sequence of real numbers and let X be

a set. The functor O(f|X) yielding a non empty set of functions from N to R is
defined by the condition (Def. 17).
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(Def. 17) ©O(f|X) = {t;t ranges over elements of R": Vean (€>0 A d>0 A
AN, (>N AneX = d-f(n)<t(n) A tin)<c-f(n)))}
Next we state the proposition
(36) For every eventually-nonnegative sequence f of real numbers and for
every set X holds O(f|X) = O(f|X) N Q(f|X).

Let f be a sequence of real numbers and let b be a natural number. The
functor f yielding a sequence of real numbers is defined by:

(Def. 18) For every n holds fy(n) = f(b-n).

Let f be an eventually-nonnegative sequence of real numbers and let b be a
natural number. We say that f is smooth w.r.t. b if and only if:

(Def. 19) f is eventually-nondecreasing and f, € O(f).

Let f be an eventually-nonnegative sequence of real numbers. We say that
f is smooth if and only if:

(Def. 20) For every natural number b such that b > 2 holds f is smooth w.r.t. b.
We now state four propositions:

(37) Let f be an eventually-nonnegative sequence of real numbers. Given a
natural number b such that b > 2 and f is smooth w.r.t. b. Then f is
smooth.

(38) Let f be an eventually-nonnegative sequence of real numbers, ¢ be an
eventually-nonnegative eventually-nondecreasing sequence of real num-
bers, and b be a natural number. Suppose f is smooth and b > 2 and
t € O(f|{b"™ : n ranges over natural numbers}). Then ¢t € O(f).

(39) Let f be an eventually-nonnegative sequence of real numbers, ¢ be an
eventually-nonnegative eventually-nondecreasing sequence of real num-
bers, and b be a natural number. Suppose f is smooth and b > 2 and
t € Q(f|{b™ : n ranges over natural numbers}). Then ¢t € Q(f).

(40) Let f be an eventually-nonnegative sequence of real numbers, ¢ be an
eventually-nonnegative eventually-nondecreasing sequence of real num-
bers, and b be a natural number. Suppose f is smooth and b > 2 and
t € ©O(f|{b™ : n ranges over natural numbers}). Then ¢t € O(f).

5. OPERATIONS ON ASYMPTOTIC NOTATION

Let X be a non empty set and let ', G be non empty sets of functions from X
to R. The functor F' 4 G yields a non empty set of functions from X to R and
is defined by the condition (Def. 21).
(Def. 21) F+G = {t;t ranges over elements of RX: Vg clement of RX (f €A g€
G A /\n:element of X t(n) - f(n) + g(n))}



142 RICHARD KRUEGER et al.

Let X be a non empty set and let F';, G be non empty sets of functions from
X to R. The functor max(F, @) yields a non empty set of functions from X to
R and is defined by the condition (Def. 22).

(Def. 22) max(F,G) = {t;t ranges over elements of R¥: V.o element of X (f €

FoA g e G A /\n:element of X t(n) = max(f(n)ag(n)))}
Next we state two propositions:

(41) For all eventually-nonnegative sequences f, g of real numbers holds
O(f) +0(g) = O(f + g9).
(42) For all eventually-nonnegative sequences f, g of real numbers holds

max(O(f), 0(g)) = O(max(f,g)).

Let F, G be non empty sets of functions from N to R. The functor F¢
yielding a non empty set of functions from N to R is defined by the condition
(Def. 23).

(Def. 23) F¢ = {t; t ranges over elements of R\: \/f,g:element of BY VN eloment of N
(feF NgeG NN (n>N = t(n)= f(n)9™)}

n:element of N
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