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Summary. The widely used textbook by Brassard and Bratley [2] inclu-
des a chapter devoted to asymptotic notation (Chapter 3, pp. 79–97). We have
attempted to test how suitable the current version of Mizar is for recording this
type of material in its entirety. A more detailed report on this experiment will
be available separately. This article presents the development of notions and a
follow-up article [9] includes examples and solutions to problems. The prelimina-
ries introduce a number of properties of real sequences, some operations on real
sequences, and a characterization of convergence. The remaining sections in this
article correspond to sections of Chapter 3 of [2]. Section 2 defines the O notation
and proves the threshold, maximum, and limit rules. Section 3 introduces the Ω

and Θ notations and their analogous rules. Conditional asymptotic notation is
defined in Section 4 where smooth functions are also discussed. Section 5 defines
some operations on asymptotic notation (we have decided not to introduce the
asymptotic notation for functions of several variables as it is a straightforward
generalization of notions for unary functions).

MML Identifier: ASYMPT 0.

The terminology and notation used in this paper have been introduced in the

following articles: [13], [11], [3], [4], [8], [1], [10], [5], [14], [7], [6], and [12].
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1. Preliminaries

In this paper c, d denote real numbers and n, N denote natural numbers.

In this article we present several logical schemes. The scheme FinSegRng1

deals with natural numbers A, B, a non empty set C, and a unary functor F

yielding an element of C, and states that:

{F(i); i ranges over natural numbers: A ¬ i ∧ i ¬ B} is a finite

non empty subset of C

provided the parameters meet the following requirement:

• A ¬ B.

The scheme FinImInit1 deals with a natural number A, a non empty set B,

and a unary functor F yielding an element of B, and states that:

{F(n);n ranges over natural numbers: n ¬ A} is a finite non

empty subset of B

for all values of the parameters.

The scheme FinImInit2 deals with a natural number A, a non empty set B,

and a unary functor F yielding an element of B, and states that:

{F(n);n ranges over natural numbers: n < A} is a finite non

empty subset of B

provided the parameters meet the following requirement:

• A > 0.

Let c be a real number. We say that c is positive if and only if:

(Def. 1) c > 0.

We say that c is negative if and only if:

(Def. 2) c < 0.

We say that c is logbase if and only if:

(Def. 3) c > 0 and c 6= 1.

One can check the following observations:

∗ there exists a real number which is positive,

∗ there exists a real number which is negative,

∗ there exists a real number which is logbase,

∗ there exists a real number which is non negative,

∗ there exists a real number which is non positive, and

∗ there exists a real number which is non logbase.

Let f be a sequence of real numbers. We say that f is eventually-nonnegative

if and only if:

(Def. 4) There exists N such that for every n such that n ­ N holds f(n) ­ 0.

We say that f is positive if and only if:

(Def. 5) For every n holds f(n) > 0.
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We say that f is eventually-positive if and only if:

(Def. 6) There exists N such that for every n such that n ­ N holds f(n) > 0.

We say that f is eventually-nonzero if and only if:

(Def. 7) There exists N such that for every n such that n ­ N holds f(n) 6= 0.

We say that f is eventually-nondecreasing if and only if:

(Def. 8) There exists N such that for every n such that n ­ N holds f(n) ¬

f(n + 1).

Let us mention that there exists a sequence of real numbers which is eventually-

nonnegative, eventually-nonzero, positive, eventually-positive, and eventually-

nondecreasing.

One can verify the following observations:

∗ every sequence of real numbers which is positive is also eventually-

positive,

∗ every sequence of real numbers which is eventually-positive is also eventually-

nonnegative and eventually-nonzero, and

∗ every sequence of real numbers which is eventually-nonnegative and

eventually-nonzero is also eventually-positive.

Let f , g be eventually-nonnegative sequences of real numbers. Note that

f + g is eventually-nonnegative.

Let f be a sequence of real numbers and let c be a real number. The functor

c + f yields a sequence of real numbers and is defined by:

(Def. 9) For every n holds (c + f)(n) = c + f(n).

We introduce f + c as a synonym of c + f.

Let f be an eventually-nonnegative sequence of real numbers and let c be a

positive real number. One can check that c f is eventually-nonnegative.

Let f be an eventually-nonnegative sequence of real numbers and let c be a

non negative real number. Note that c + f is eventually-nonnegative.

Let f be an eventually-nonnegative sequence of real numbers and let c be a

positive real number. One can check that c + f is eventually-positive.

Let f , g be sequences of real numbers. The functor max(f, g) yielding a

sequence of real numbers is defined as follows:

(Def. 10) For every n holds (max(f, g))(n) = max(f(n), g(n)).

Let us notice that the functor max(f, g) is commutative.

Let f be a sequence of real numbers and let g be an eventually-nonnegative

sequence of real numbers. One can check that max(f, g) is eventually-nonnegative.

Let f be a sequence of real numbers and let g be an eventually-positive

sequence of real numbers. One can verify that max(f, g) is eventually-positive.

Let f , g be sequences of real numbers. We say that g majorizes f if and only

if:

(Def. 11) There exists N such that for every n such that n ­ N holds f(n) ¬ g(n).
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The following propositions are true:

(1) Let f be a sequence of real numbers andN be a natural number. Suppose

that for every n such that n ­ N holds f(n) ¬ f(n + 1). Let n, m be

natural numbers. If N ¬ n and n ¬ m, then f(n) ¬ f(m).

(2) Let f , g be eventually-positive sequences of real numbers. If f/g is

convergent and lim(f/g) 6= 0, then g/f is convergent and lim(g/f) =

(lim(f/g))−1.

(3) For every eventually-nonnegative sequence f of real numbers such that

f is convergent holds 0 ¬ lim f.

(4) Let f , g be sequences of real numbers. If f is convergent and g is conver-

gent and g majorizes f , then lim f ¬ lim g.

(5) Let f be a sequence of real numbers and g be an eventually-nonzero

sequence of real numbers. If f/g is divergent to+∞, then g/f is convergent

and lim(g/f) = 0.

2. A Notation for ”the order of”

Let f be an eventually-nonnegative sequence of real numbers. The functor O(f)

yielding a non empty set of functions from N to R is defined by:

(Def. 12) O(f) = {t; t ranges over elements of RN:
∨

c,N (c > 0 ∧
∧

n (n ­ N ⇒

t(n) ¬ c · f(n) ∧ t(n) ­ 0))}.

The following propositions are true:

(6) Let x be a set and f be an eventually-nonnegative sequence of real

numbers. Suppose x ∈ O(f). Then x is an eventually-nonnegative sequence

of real numbers.

(7) Let f be a positive sequence of real numbers and t be an eventually-

nonnegative sequence of real numbers. Then t ∈ O(f) if and only if there

exists c such that c > 0 and for every n holds t(n) ¬ c · f(n).

(8) Let f be an eventually-positive sequence of real numbers, t be an

eventually-nonnegative sequence of real numbers, andN be a natural num-

ber. Suppose t ∈ O(f) and for every n such that n ­ N holds f(n) > 0.

Then there exists c such that c > 0 and for every n such that n ­ N holds

t(n) ¬ c · f(n).

(9) For all eventually-nonnegative sequences f , g of real numbers holds

O(f + g) = O(max(f, g)).

(10) For every eventually-nonnegative sequence f of real numbers holds f ∈

O(f).

(11) For all eventually-nonnegative sequences f , g of real numbers such that

f ∈ O(g) holds O(f) ⊆ O(g).



asymptotic notation. part i: theory 139

(12) For all eventually-nonnegative sequences f , g, h of real numbers such

that f ∈ O(g) and g ∈ O(h) holds f ∈ O(h).

(13) Let f be an eventually-nonnegative sequence of real numbers and c be a

positive real number. Then O(f) = O(c f).

(14) Let c be a non negative real number and x, f be eventually-nonnegative

sequences of real numbers. If x ∈ O(f), then x ∈ O(c + f).

(15) For all eventually-positive sequences f , g of real numbers such that f/g

is convergent and lim(f/g) > 0 holds O(f) = O(g).

(16) Let f , g be eventually-positive sequences of real numbers. If f/g is co-

nvergent and lim(f/g) = 0, then f ∈ O(g) and g /∈ O(f).

(17) Let f , g be eventually-positive sequences of real numbers. If f/g is di-

vergent to +∞, then f /∈ O(g) and g ∈ O(f).

3. Other Asymptotic Notation

Let f be an eventually-nonnegative sequence of real numbers. The functor Ω(f)

yielding a non empty set of functions from N to R is defined by:

(Def. 13) Ω(f) = {t; t ranges over elements of RN:
∨

d,N (d > 0 ∧
∧

n (n ­ N ⇒

t(n) ­ d · f(n) ∧ t(n) ­ 0))}.

The following propositions are true:

(18) Let x be a set and f be an eventually-nonnegative sequence of real

numbers. Suppose x ∈ Ω(f). Then x is an eventually-nonnegative sequence

of real numbers.

(19) For all eventually-nonnegative sequences f , g of real numbers holds f ∈

Ω(g) iff g ∈ O(f).

(20) For every eventually-nonnegative sequence f of real numbers holds f ∈

Ω(f).

(21) For all eventually-nonnegative sequences f , g, h of real numbers such

that f ∈ Ω(g) and g ∈ Ω(h) holds f ∈ Ω(h).

(22) For all eventually-positive sequences f , g of real numbers such that f/g

is convergent and lim(f/g) > 0 holds Ω(f) = Ω(g).

(23) Let f , g be eventually-positive sequences of real numbers. If f/g is co-

nvergent and lim(f/g) = 0, then g ∈ Ω(f) and f /∈ Ω(g).

(24) Let f , g be eventually-positive sequences of real numbers. If f/g is di-

vergent to +∞, then g /∈ Ω(f) and f ∈ Ω(g).

(25) Let f , t be positive sequences of real numbers. Then t ∈ Ω(f) if and only

if there exists d such that d > 0 and for every n holds d · f(n) ¬ t(n).

(26) For all eventually-nonnegative sequences f , g of real numbers holds Ω(f+

g) = Ω(max(f, g)).
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Let f be an eventually-nonnegative sequence of real numbers. The functor

Θ(f) yielding a non empty set of functions from N to R is defined as follows:

(Def. 14) Θ(f) = O(f) ∩ Ω(f).

Next we state several propositions:

(27) Let f be an eventually-nonnegative sequence of real numbers. Then

Θ(f) = {t; t ranges over elements of RN:
∨

c,d,N (c > 0 ∧ d > 0 ∧
∧

n (n ­

N ⇒ d · f(n) ¬ t(n) ∧ t(n) ¬ c · f(n)))}.

(28) For every eventually-nonnegative sequence f of real numbers holds f ∈

Θ(f).

(29) For all eventually-nonnegative sequences f , g of real numbers such that

f ∈ Θ(g) holds g ∈ Θ(f).

(30) For all eventually-nonnegative sequences f , g, h of real numbers such

that f ∈ Θ(g) and g ∈ Θ(h) holds f ∈ Θ(h).

(31) Let f , t be positive sequences of real numbers. Then t ∈ Θ(f) if and

only if there exist c, d such that c > 0 and d > 0 and for every n holds

d · f(n) ¬ t(n) and t(n) ¬ c · f(n).

(32) For all eventually-nonnegative sequences f , g of real numbers holdsΘ(f+

g) = Θ(max(f, g)).

(33) For all eventually-positive sequences f , g of real numbers such that f/g

is convergent and lim(f/g) > 0 holds f ∈ Θ(g).

(34) Let f , g be eventually-positive sequences of real numbers. If f/g is co-

nvergent and lim(f/g) = 0, then f ∈ O(g) and f /∈ Θ(g).

(35) Let f , g be eventually-positive sequences of real numbers. If f/g is di-

vergent to +∞, then f ∈ Ω(g) and f /∈ Θ(g).

4. Conditional Asymptotic Notation

Let f be an eventually-nonnegative sequence of real numbers and let X be a

set. The functor O(f |X) yields a non empty set of functions from N to R and

is defined as follows:

(Def. 15) O(f |X) = {t; t ranges over elements of R
N:

∨
c,N (c > 0 ∧

∧
n (n ­

N ∧ n ∈ X ⇒ t(n) ¬ c · f(n) ∧ t(n) ­ 0))}.

Let f be an eventually-nonnegative sequence of real numbers and let X be

a set. The functor Ω(f |X) yields a non empty set of functions from N to R and

is defined by:

(Def. 16) Ω(f |X) = {t; t ranges over elements of R
N:

∨
d,N (d > 0 ∧

∧
n (n ­

N ∧ n ∈ X ⇒ t(n) ­ d · f(n) ∧ t(n) ­ 0))}.

Let f be an eventually-nonnegative sequence of real numbers and let X be

a set. The functor Θ(f |X) yielding a non empty set of functions from N to R is

defined by the condition (Def. 17).
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(Def. 17) Θ(f |X) = {t; t ranges over elements of R
N:

∨
c,d,N (c > 0 ∧ d > 0 ∧

∧
n (n ­ N ∧ n ∈ X ⇒ d · f(n) ¬ t(n) ∧ t(n) ¬ c · f(n)))}.

Next we state the proposition

(36) For every eventually-nonnegative sequence f of real numbers and for

every set X holds Θ(f |X) = O(f |X) ∩ Ω(f |X).

Let f be a sequence of real numbers and let b be a natural number. The

functor fb yielding a sequence of real numbers is defined by:

(Def. 18) For every n holds fb(n) = f(b · n).

Let f be an eventually-nonnegative sequence of real numbers and let b be a

natural number. We say that f is smooth w.r.t. b if and only if:

(Def. 19) f is eventually-nondecreasing and fb ∈ O(f).

Let f be an eventually-nonnegative sequence of real numbers. We say that

f is smooth if and only if:

(Def. 20) For every natural number b such that b ­ 2 holds f is smooth w.r.t. b.

We now state four propositions:

(37) Let f be an eventually-nonnegative sequence of real numbers. Given a

natural number b such that b ­ 2 and f is smooth w.r.t. b. Then f is

smooth.

(38) Let f be an eventually-nonnegative sequence of real numbers, t be an

eventually-nonnegative eventually-nondecreasing sequence of real num-

bers, and b be a natural number. Suppose f is smooth and b ­ 2 and

t ∈ O(f |{bn : n ranges over natural numbers}). Then t ∈ O(f).

(39) Let f be an eventually-nonnegative sequence of real numbers, t be an

eventually-nonnegative eventually-nondecreasing sequence of real num-

bers, and b be a natural number. Suppose f is smooth and b ­ 2 and

t ∈ Ω(f |{bn : n ranges over natural numbers}). Then t ∈ Ω(f).

(40) Let f be an eventually-nonnegative sequence of real numbers, t be an

eventually-nonnegative eventually-nondecreasing sequence of real num-

bers, and b be a natural number. Suppose f is smooth and b ­ 2 and

t ∈ Θ(f |{bn : n ranges over natural numbers}). Then t ∈ Θ(f).

5. Operations on Asymptotic Notation

Let X be a non empty set and let F , G be non empty sets of functions from X

to R. The functor F + G yields a non empty set of functions from X to R and

is defined by the condition (Def. 21).

(Def. 21) F +G = {t; t ranges over elements of RX :
∨

f,g : element of RX (f ∈ F ∧ g ∈

G ∧
∧

n : element of X t(n) = f(n) + g(n))}.
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Let X be a non empty set and let F , G be non empty sets of functions from

X to R. The functor max(F, G) yields a non empty set of functions from X to

R and is defined by the condition (Def. 22).

(Def. 22) max(F,G) = {t; t ranges over elements of R
X :

∨
f,g : element of RX (f ∈

F ∧ g ∈ G ∧
∧

n : element of X t(n) = max(f(n), g(n)))}.

Next we state two propositions:

(41) For all eventually-nonnegative sequences f , g of real numbers holds

O(f) + O(g) = O(f + g).

(42) For all eventually-nonnegative sequences f , g of real numbers holds

max(O(f), O(g)) = O(max(f, g)).

Let F , G be non empty sets of functions from N to R. The functor FG

yielding a non empty set of functions from N to R is defined by the condition

(Def. 23).

(Def. 23) FG = {t; t ranges over elements of RN:
∨

f,g : element of RN

∨
N : element of N

(f ∈ F ∧ g ∈ G ∧
∧

n : element of N
(n ­ N ⇒ t(n) = f(n)g(n)))}.
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