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Summary. In this paper, we proved some elementary predicate calculus
formulae containing the quantifiers of Boolean valued functions with respect to

partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC19.

The terminology and notation used in this paper have been introduced in the

following articles: [1], [2], [3], [4], and [5].

For simplicity, we adopt the following rules: Y is a non empty set, a is

an element of BVF(Y ), G is a subset of PARTITIONS(Y ), and A, B, C are

partitions of Y .

One can prove the following propositions:

(1) If G is a coordinate and G = {A, B,C} and A 6= B and B 6= C and

C 6= A, then ∃¬∃a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(2) If G is a coordinate and G = {A, B,C} and A 6= B and B 6= C and

C 6= A, then ∀¬∃a,AG,BG ⋐ ∃∃
¬a,BG,AG.

(3) If G is a coordinate and G = {A, B,C} and A 6= B and B 6= C and

C 6= A, then ∃¬∃a,AG,BG ⋐ ∀∃
¬a,BG,AG.

(4) If G is a coordinate and G = {A, B,C} and A 6= B and B 6= C and

C 6= A, then ∀¬∃a,AG,BG ⋐ ∀∃
¬a,BG,AG.

(5) If G is a coordinate and G = {A, B,C} and A 6= B and B 6= C and

C 6= A, then ∀¬∃a,AG,BG ⋐ ∃∀
¬a,BG,AG.

(6) If G is a coordinate and G = {A, B,C} and A 6= B and B 6= C and

C 6= A, then ∀¬∃a,AG,BG ⋐ ∀∀
¬a,BG,AG.
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(7) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∃∀
¬a,AG,BG ⋐ ¬∃∀a,BG,AG.

(8) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ¬∃∀a,BG,AG.

(9) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ¬∀∃a,BG,AG.

(10) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ¬∃∃a,BG,AG.

(11) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∃∃
¬a,AG,BG ⋐ ∃¬∀a,BG,AG.

(12) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∃
¬a,AG,BG ⋐ ∃¬∀a,BG,AG.

(13) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∃∀
¬a,AG,BG ⋐ ∃¬∀a,BG,AG.

(14) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ∃¬∀a,BG,AG.

(15) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∃∀
¬a,AG,BG ⋐ ∀¬∀a,BG,AG.

(16) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ∀¬∀a,BG,AG.

(17) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ∃¬∃a,BG,AG.

(18) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ∀¬∃a,BG,AG.

(19) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∃∃
¬a,AG,BG ⋐ ∃∃

¬a,BG,AG.

(21)1 If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∃∀
¬a,AG,BG ⋐ ∃∃

¬a,BG,AG.

(22) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ∃∃

¬a,BG,AG.

(23) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∃∀
¬a,AG,BG ⋐ ∀∃

¬a,BG,AG.

(24) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ∀∃

¬a,BG,AG.

(25) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ∃∀

¬a,BG,AG.

(26) If G is a coordinate and G = {A,B, C} and A 6= B and B 6= C and

C 6= A, then ∀∀
¬a,AG,BG ⋐ ∀∀

¬a,BG,AG.

1The proposition (20) has been removed.
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