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Summary. This article introduces properties of complex function, calcu-
lations of them, boundedness and constant.

MML Identifier: CFUNCT_1.

The articles [11], [2], [1], [9], [3], [4], [5], [12], [6], [7], [10], and [8] provide the
terminology and notation for this paper.

1. DEFINITIONS OF COMPLEX FUNCTIONS

For simplicity, we adopt the following convention: X, Y are sets, C' is a non
empty set, ¢ is an element of C, f, fi, fo, f3, ¢, g1 are partial functions from C
to C, p is a real number, and r, g are elements of C.

A Complex is an element of C.

Let us consider C, f1, fo. The functor % yields a partial function from C to
C and is defined as follows:

(Def. 1) dom(%) = dom f; N (dom f3 \ f2=1({0c})) and for every c such that

ce dom(%) holds (%)c = (fi)e ((f2)e) "

Let us consider C, f. The functor % yields a partial function from C to C

and is defined by:

(Def. 2) dom(%) =dom £\ f~1({0Oc}) and for every c such that ¢ € dom(%) holds
(%)c = (fc)_l'
Next we state a number of propositions:
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(3)! dom(fi + fo) = dom f; Ndom f5 and for every c such that ¢ € dom(f; +
f2) holds (f1 + f2)e = (f1)e + (f2)e-

(4) dom(f1—f2) = dom fiNdom f; and for every ¢ such that ¢ € dom(f1— f2)
holds (f1 — f2)e = (f1)e — (f2)e-

(5) dom(fi f2) = dom f; N'dom fo and for every c¢ such that ¢ € dom(f1 f2)
holds (fl f2)e = (fi)e- (f2)e-

(6) dom( >) = dom f1 N (dom f3 \ f271({0c})) and for every c such that
ce dom(fl) holds (£)e = (f1)e - ((f2)e) ™

(7) dom(r f) = dom f and for every ¢ such that ¢ € dom(r f) holds (r f). =
r- fe.

(9)2 dom(—f) = dom f and for every ¢ such that ¢ € dom(—f) holds (—f). =

*fc-
(10) dom(%) = dom f\ f~1({Oc}) and for every c such that c € dom(%) holds
(%)c = (fe)” .

(15)* dom(;) C domg and domgn (domg\ g~'({0c})) = domg\ g~ ({Oc}).

(16) dom(f1 f2) \ (fi 2)7'({0c}) = (domfi \ fi7'({Oc})) N (dom fo \
'({0c}))-
If ce dom(%), then f. # Oc.
)

(17)
(18) (3)'({oc}h) =

(19)  [fI7H({0}) = f~'({0c}) and (= f)~'({0c}) = f~H({0c}).
(20) dom(é) = dom(f[dom(%)).

(21)

It r # O, then (r f)~'({0¢}) = £~ ({0¢})-

2. BASIC PROPERTIES OF OPERATIONS

The following propositions are true:

(22) (fitfo)+fs=fi+(fatf3)
(23) (f1f2) fs=fi(f2 f3).

(24) (it fo)fs=frifs+ fafs
(25) fa(fi+fo)=[fsfitf3fa
(26) 7 (f1f2)=(rf1)f2

(27) r(fif2) = fi(r f2).

(28) (fi—fa)fa=frifs— fafs

!The propositions (1) and (2) have been removed.
2The proposition (8) has been removed.
3The propositions (11)—(14) have been removed.
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PROPERTY OF COMPLEX FUNCTIONS

[3f1— f3 fa = f3(f1 — fo).
r(fi+fo)=rfi+rfo
(r-q)f=r(qf)
r(fi—fo) =1 fi—1fo
fi = fa=(=1c) (fa — f1)-

fi—(fe+fa)=Ffi—fo—fs

Icf=1/.

fi=(fe=f3)=(fi— f2) + fs.
fi+(fe—f3)=(fi + f2) — fs.

|f1 fal = fal | fol-

Ir fI = Ir[f].
—f=(1c)f
—f=1r
Ji—fe=hH+—f
fi——fo=fi+ fo
é:f[dom(%).
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L f(g1ldom(L))
(61) ?Zigfl 91
1
fH o fig—af
(62) f g fg
f 7|
(63) |5l =1

(64) (fi+f)IX = fil X+fo X and (fi+f2) [ X = fi] X+ foand (fi+f2)[X
fi+ folX

(65) (f1 fz)fX = ([11X) (f2IX) and (f1 fo)IX = (f11X) f2 and (f1 f2)[X =

f1(fa] X).
(66) (—f)IX = —f1X and 31X = 7L and [f[]X = |f]X].

(67) (=) X = (I X=fal X and (fi—fo)[X = fil X—foand (fi—f2) [ X =

fi— folX
(68) %[X:fXand X = LK and L1X = 4/

T2
(69) (r f)IX =r(fIX).

f2f

3. TOTAL PARTIAL FUNCTIONS FROM A DOMAIN, TO COMPLEX

We now state a number of propositions:
(70)(1)  f1 is total and fs is total iff f; + fo is total,
(ii)  fi is total and fo is total iff f; — fo is total, and
(iii)  fi is total and fo is total iff fi fo is total.

(71) f is total iff r f is total.

(72) f is total iff —f is total.

(73) f is total iff | f] is total.

(74) % is total iff f~1({Oc}) = 0 and f is total.

(75) f1 is total and fo~1({Oc}) = 0 and f5 is total iff % is total.

(76) If f1 is total and f3 is total, then (fi+f2)c = (f1)c+(f2)c and (f1—f2)e =

(fi)e = (f2)e and (f1 f2)e = (f1)e - (f2)e-
If f is total, then (r f). =r- fe.

(77)
(78) If f is total, then (—f). = —f. and |f|(c) = |f|-
(79) If 1 is total, then ( Ye = (fo) L

(80)

If f1 is total and = 7 s total, then ( )C = (f1)e- ((f2)e)!
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4. BOUNDED AND CONSTANT PARTIAL FUNCTIONS FROM A DOMAIN, TO
COMPLEX

Let us consider C, f, Y. We say that f is bounded on Y if and only if:
(Def. 3) |f| is bounded on Y.
The following propositions are true:

(81) f is bounded on Y iff there exists a real number p such that for every ¢
such that ¢ € Y Ndom f holds |f.| < p.

If Y C X and f is bounded on X, then f is bounded on Y.
If X Ndom f = (), then f is bounded on X.
If f is bounded on Y, then r f is bounded on Y.

(82
(83
(84
(
(

~— — ~— ~— ~—

85) |f| is lower bounded on X.

86) If f is bounded on Y, then |f| is bounded on Y and —f is bounded on
Y.

(87) If f1 is bounded on X and fy is bounded on Y, then f; + fa is bounded
on X NY.

(88) If f1 is bounded on X and fs is bounded on Y, then fi f5 is bounded on
XNY and f; — fo is bounded on X NY.

(89) 1If f is bounded on X and bounded on Y, then f is bounded on X UY.

(90) Suppose fi is a constant on X and f5 is a constant on Y. Then f; + fo
is a constant on X NY and f; — fy is a constant on X NY and f; fo is a
constant on X NY.

(91) If f is a constant on Y, then ¢ f is a constant on Y.

(92) If f is a constant on Y, then |f]| is a constant on Y and — f is a constant
onY.

(93) If f is a constant on Y, then f is bounded on Y.

(94) If f is a constant on Y, then for every r holds r f is bounded on Y and
—f is bounded on Y and |f| is bounded on Y.

(95) If f; is bounded on X and f5 is a constant on Y, then f; + fo is bounded
on X NY.

(96) Suppose fi is bounded on X and f5 is a constant on Y. Then f; — fo is
bounded on X NY and fs — f; is bounded on X NY and f; f5 is bounded
on X NY.
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