Property of Complex Functions

Takashi Mitsuishi Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. This article introduces properties of complex function, calculations of them, boundedness and constant.

MML Identifier: CFUNCT_1.

The articles [11], [2], [1], [9], [3], [4], [5], [12], [6], [7], [10], and [8] provide the terminology and notation for this paper.

1. Definitions of Complex Functions

For simplicity, we adopt the following convention: X, Y are sets, C is a non empty set, c is an element of C, f, f_1 , f_2 , f_3 , g, g_1 are partial functions from C to \mathbb{C} , p is a real number, and r, q are elements of \mathbb{C} .

A Complex is an element of \mathbb{C} .

Let us consider C, f_1 , f_2 . The functor $\frac{f_1}{f_2}$ yields a partial function from C to \mathbb{C} and is defined as follows:

(Def. 1) $\operatorname{dom}(\frac{f_1}{f_2}) = \operatorname{dom} f_1 \cap (\operatorname{dom} f_2 \setminus f_2^{-1}(\{0_{\mathbb{C}}\}))$ and for every c such that $c \in \operatorname{dom}(\frac{f_1}{f_2})$ holds $(\frac{f_1}{f_2})_c = (f_1)_c \cdot ((f_2)_c)^{-1}$.

Let us consider C, f. The functor $\frac{1}{f}$ yields a partial function from C to \mathbb{C} and is defined by:

(Def. 2) $\operatorname{dom}(\frac{1}{f}) = \operatorname{dom} f \setminus f^{-1}(\{0_{\mathbb{C}}\})$ and for every c such that $c \in \operatorname{dom}(\frac{1}{f})$ holds $(\frac{1}{f})_c = (f_c)^{-1}$.

Next we state a number of propositions:

- (3)¹ dom $(f_1 + f_2) = \text{dom } f_1 \cap \text{dom } f_2$ and for every c such that $c \in \text{dom}(f_1 + f_2)$ holds $(f_1 + f_2)_c = (f_1)_c + (f_2)_c$.
- (4) $\operatorname{dom}(f_1 f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1 f_2)$ holds $(f_1 f_2)_c = (f_1)_c (f_2)_c$.
- (5) $\operatorname{dom}(f_1 f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1 f_2)$ holds $(f_1 f_2)_c = (f_1)_c \cdot (f_2)_c$.
- (6) $\operatorname{dom}(\frac{f_1}{f_2}) = \operatorname{dom} f_1 \cap (\operatorname{dom} f_2 \setminus f_2^{-1}(\{0_{\mathbb{C}}\}))$ and for every c such that $c \in \operatorname{dom}(\frac{f_1}{f_2})$ holds $(\frac{f_1}{f_2})_c = (f_1)_c \cdot ((f_2)_c)^{-1}$.
- (7) $\operatorname{dom}(r f) = \operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}(r f)$ holds $(r f)_c = r \cdot f_c$.
- (9)² dom(-f) = dom f and for every c such that $c \in \text{dom}(-f)$ holds $(-f)_c = -f_c$.
- (10) $\operatorname{dom}(\frac{1}{f}) = \operatorname{dom} f \setminus f^{-1}(\{0_{\mathbb{C}}\})$ and for every c such that $c \in \operatorname{dom}(\frac{1}{f})$ holds $(\frac{1}{f})_c = (f_c)^{-1}$.
- $(15)^3 \quad \operatorname{dom}(\tfrac{1}{g}) \subseteq \operatorname{dom} g \text{ and } \operatorname{dom} g \cap (\operatorname{dom} g \setminus g^{-1}(\{0_{\mathbb{C}}\})) = \operatorname{dom} g \setminus g^{-1}(\{0_{\mathbb{C}}\}).$
- (16) $\operatorname{dom}(f_1 f_2) \setminus (f_1 f_2)^{-1}(\{0_{\mathbb{C}}\}) = (\operatorname{dom} f_1 \setminus f_1^{-1}(\{0_{\mathbb{C}}\})) \cap (\operatorname{dom} f_2 \setminus f_2^{-1}(\{0_{\mathbb{C}}\})).$
- (17) If $c \in \text{dom}(\frac{1}{f})$, then $f_c \neq 0_{\mathbb{C}}$.
- $(18) \quad (\frac{1}{f})^{-1}(\{0_{\mathbb{C}}\}) = \emptyset.$
- (19) $|f|^{-1}(\{0\}) = f^{-1}(\{0_{\mathbb{C}}\})$ and $(-f)^{-1}(\{0_{\mathbb{C}}\}) = f^{-1}(\{0_{\mathbb{C}}\})$.
- (20) $\operatorname{dom}(\frac{1}{\frac{1}{f}}) = \operatorname{dom}(f \upharpoonright \operatorname{dom}(\frac{1}{f})).$
- (21) If $r \neq 0_{\mathbb{C}}$, then $(r f)^{-1}(\{0_{\mathbb{C}}\}) = f^{-1}(\{0_{\mathbb{C}}\})$.

2. Basic Properties of Operations

The following propositions are true:

- (22) $(f_1 + f_2) + f_3 = f_1 + (f_2 + f_3).$
- (23) $(f_1 f_2) f_3 = f_1 (f_2 f_3).$
- (24) $(f_1 + f_2) f_3 = f_1 f_3 + f_2 f_3$.
- (25) $f_3(f_1+f_2)=f_3f_1+f_3f_2$.
- (26) $r(f_1 f_2) = (r f_1) f_2$.
- (27) $r(f_1 f_2) = f_1(r f_2).$
- (28) $(f_1 f_2) f_3 = f_1 f_3 f_2 f_3$.

¹The propositions (1) and (2) have been removed.

²The proposition (8) has been removed.

³The propositions (11)–(14) have been removed.

(29)
$$f_3 f_1 - f_3 f_2 = f_3 (f_1 - f_2).$$

(30)
$$r(f_1 + f_2) = r f_1 + r f_2$$
.

$$(31) \quad (r \cdot q) f = r (q f).$$

(32)
$$r(f_1 - f_2) = r f_1 - r f_2$$
.

(33)
$$f_1 - f_2 = (-1_{\mathbb{C}}) (f_2 - f_1).$$

$$(34) f_1 - (f_2 + f_3) = f_1 - f_2 - f_3.$$

(35)
$$1_{\mathbb{C}} f = f$$
.

(36)
$$f_1 - (f_2 - f_3) = (f_1 - f_2) + f_3$$
.

(37)
$$f_1 + (f_2 - f_3) = (f_1 + f_2) - f_3$$
.

(38)
$$|f_1 f_2| = |f_1| |f_2|$$
.

(39)
$$|r f| = |r| |f|$$
.

(40)
$$-f = (-1_{\mathbb{C}}) f$$
.

(41)
$$--f = f$$
.

$$(42) f_1 - f_2 = f_1 + -f_2.$$

$$(43) \quad f_1 - -f_2 = f_1 + f_2.$$

$$(44) \quad \frac{1}{\frac{1}{f}} = f \upharpoonright \operatorname{dom}(\frac{1}{f}).$$

$$(45) \quad \frac{1}{f_1 f_2} = \frac{1}{f_1} \frac{1}{f_2}.$$

(46) If
$$r \neq 0_{\mathbb{C}}$$
, then $\frac{1}{rf} = r^{-1} \frac{1}{f}$.

$$(47) \quad 1_{\mathbb{C}} \neq 0_{\mathbb{C}}.$$

$$(48) \quad (-1_{\mathbb{C}})^{-1} = -1_{\mathbb{C}}.$$

(49)
$$\frac{1}{-f} = (-1_{\mathbb{C}}) \frac{1}{f}$$
.

(50)
$$\frac{1}{|f|} = |\frac{1}{f}|.$$

$$(51) \quad \frac{f}{g} = f \, \frac{1}{g}$$

(51)
$$\frac{f}{g} = f \frac{1}{g}.$$
(52)
$$r \frac{g}{f} = \frac{r g}{f}.$$

(53)
$$\frac{f}{g}g = f \upharpoonright \operatorname{dom}(\frac{1}{g}).$$

$$(54) \quad \frac{f}{g} \, \frac{f_1}{g_1} = \frac{f \, f_1}{g \, g_1}$$

(54)
$$\frac{f}{g} \frac{f_1}{g_1} = \frac{f}{g} \frac{f_1}{g_1}.$$

(55) $\frac{1}{f_1} = \frac{f_2 \upharpoonright \text{dom}(\frac{1}{f_2})}{f_1}.$

(56)
$$g \frac{f_1}{f_2} = \frac{g f_1}{f_2}$$
.

$$(57) \quad \frac{g}{\frac{f_1}{f_2}} = \frac{g\left(f_2 \upharpoonright \operatorname{dom}\left(\frac{1}{f_2}\right)\right)}{f_1}.$$

(58)
$$-\frac{f}{g} = \frac{-f}{g}$$
 and $\frac{f}{-g} = -\frac{f}{g}$.

(59)
$$\frac{f_1}{f} + \frac{f_2}{f} = \frac{f_1 + f_2}{f}$$
 and $\frac{f_1}{f} - \frac{f_2}{f} = \frac{f_1 - f_2}{f}$.

(60)
$$\frac{f_1}{f} + \frac{g_1}{g} = \frac{f_1 g + g_1 f}{f g}$$
.

$$(61) \quad \frac{\frac{f}{g}}{\frac{f_1}{g_1}} = \frac{f\left(g_1 \upharpoonright \operatorname{dom}\left(\frac{1}{g_1}\right)\right)}{g \, f_1}.$$

(62)
$$\frac{f_1}{f} - \frac{g_1}{g} = \frac{f_1 g - g_1 f}{f g}$$
.

- (63) $\left| \frac{f_1}{f_2} \right| = \frac{|f_1|}{|f_2|}.$
- (64) $(f_1+f_2) \upharpoonright X = f_1 \upharpoonright X + f_2 \upharpoonright X$ and $(f_1+f_2) \upharpoonright X = f_1 \upharpoonright X + f_2$ and $(f_1+f_2) \upharpoonright X = f_1 + f_2 \upharpoonright X$.
- (65) $(f_1 f_2) \upharpoonright X = (f_1 \upharpoonright X) (f_2 \upharpoonright X)$ and $(f_1 f_2) \upharpoonright X = (f_1 \upharpoonright X) f_2$ and $(f_1 f_2) \upharpoonright X = f_1 (f_2 \upharpoonright X)$.
- (66) $(-f) \upharpoonright X = -f \upharpoonright X$ and $\frac{1}{f} \upharpoonright X = \frac{1}{f \upharpoonright X}$ and $|f| \upharpoonright X = |f \upharpoonright X|$.
- (67) $(f_1-f_2) \upharpoonright X = f_1 \upharpoonright X f_2 \upharpoonright X$ and $(f_1-f_2) \upharpoonright X = f_1 \upharpoonright X f_2$ and $(f_1-f_2) \upharpoonright X = f_1 f_2 \upharpoonright X$.
- (68) $\frac{f_1}{f_2} \upharpoonright X = \frac{f_1 \upharpoonright X}{f_2 \upharpoonright X}$ and $\frac{f_1}{f_2} \upharpoonright X = \frac{f_1 \upharpoonright X}{f_2}$ and $\frac{f_1}{f_2} \upharpoonright X = \frac{f_1}{f_2 \upharpoonright X}$.
- (69) $(r f) \upharpoonright X = r (f \upharpoonright X).$

3. Total Partial Functions from a Domain, to Complex

We now state a number of propositions:

- (70)(i) f_1 is total and f_2 is total iff $f_1 + f_2$ is total,
 - (ii) f_1 is total and f_2 is total iff $f_1 f_2$ is total, and
- (iii) f_1 is total and f_2 is total iff $f_1 f_2$ is total.
- (71) f is total iff r f is total.
- (72) f is total iff -f is total.
- (73) f is total iff |f| is total.
- (74) $\frac{1}{f}$ is total iff $f^{-1}(\{0_{\mathbb{C}}\}) = \emptyset$ and f is total.
- (75) f_1 is total and $f_2^{-1}(\{0_{\mathbb{C}}\}) = \emptyset$ and f_2 is total iff $\frac{f_1}{f_2}$ is total.
- (76) If f_1 is total and f_2 is total, then $(f_1+f_2)_c = (f_1)_c + (f_2)_c$ and $(f_1-f_2)_c = (f_1)_c (f_2)_c$ and $(f_1 f_2)_c = (f_1)_c \cdot (f_2)_c$.
- (77) If f is total, then $(r f)_c = r \cdot f_c$.
- (78) If f is total, then $(-f)_c = -f_c$ and $|f|(c) = |f_c|$.
- (79) If $\frac{1}{f}$ is total, then $(\frac{1}{f})_c = (f_c)^{-1}$.
- (80) If f_1 is total and $\frac{1}{f_2}$ is total, then $(\frac{f_1}{f_2})_c = (f_1)_c \cdot ((f_2)_c)^{-1}$.

4. Bounded and Constant Partial Functions from a Domain, to Complex

Let us consider C, f, Y. We say that f is bounded on Y if and only if: (Def. 3) |f| is bounded on Y.

The following propositions are true:

- (81) f is bounded on Y iff there exists a real number p such that for every c such that $c \in Y \cap \text{dom } f$ holds $|f_c| \leq p$.
- (82) If $Y \subseteq X$ and f is bounded on X, then f is bounded on Y.
- (83) If $X \cap \text{dom } f = \emptyset$, then f is bounded on X.
- (84) If f is bounded on Y, then r f is bounded on Y.
- (85) |f| is lower bounded on X.
- (86) If f is bounded on Y, then |f| is bounded on Y and -f is bounded on Y.
- (87) If f_1 is bounded on X and f_2 is bounded on Y, then $f_1 + f_2$ is bounded on $X \cap Y$.
- (88) If f_1 is bounded on X and f_2 is bounded on Y, then f_1 f_2 is bounded on $X \cap Y$ and $f_1 f_2$ is bounded on $X \cap Y$.
- (89) If f is bounded on X and bounded on Y, then f is bounded on $X \cup Y$.
- (90) Suppose f_1 is a constant on X and f_2 is a constant on Y. Then $f_1 + f_2$ is a constant on $X \cap Y$ and $f_1 f_2$ is a constant on $X \cap Y$ and $f_1 f_2$ is a constant on $X \cap Y$.
- (91) If f is a constant on Y, then q f is a constant on Y.
- (92) If f is a constant on Y, then |f| is a constant on Y and -f is a constant on Y.
- (93) If f is a constant on Y, then f is bounded on Y.
- (94) If f is a constant on Y, then for every r holds r f is bounded on Y and -f is bounded on Y and |f| is bounded on Y.
- (95) If f_1 is bounded on X and f_2 is a constant on Y, then $f_1 + f_2$ is bounded on $X \cap Y$.
- (96) Suppose f_1 is bounded on X and f_2 is a constant on Y. Then $f_1 f_2$ is bounded on $X \cap Y$ and $f_2 f_1$ is bounded on $X \cap Y$ and f_1 f_2 is bounded on $X \cap Y$.

References

- [1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121-124, 1993.
- [2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.

- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [5] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- [6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
- 1990. [9] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
- 1990. [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
- [12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

Received December 7, 1999