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The terminology and notation used here are introduced in the following articles:

[13], [5], [1], [16], [6], [14], [11], [18], [17], [12], [15], [7], [3], [4], [10], [2], [8], [19],

and [9].

1. Preliminaries

One can prove the following proposition

(1) Let S, T be up-complete Scott top-lattices and M be a subset of

SCMaps(S, T ). Then
⊔
SCMaps(S,T ) M is a continuous map from S into

T .

Let S be a non empty relational structure and let T be a non empty reflexive

relational structure. One can check that every map from S into T which is

constant is also monotone.

Let S be a non empty relational structure, let T be a reflexive non empty

relational structure, and let a be an element of the carrier of T . One can check

that S 7−→ a is monotone.

One can prove the following propositions:

(2) Let S be a non empty relational structure and T be a lower-bounded anti-

symmetric reflexive non empty relational structure. Then ⊥MonMaps(S,T ) =

S 7−→ ⊥T .

(3) Let S be a non empty relational structure and T be an upper-

bounded antisymmetric reflexive non empty relational structure. Then

⊤MonMaps(S,T ) = S 7−→ ⊤T .
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(4) Let S, T be complete lattices, f be a monotone map from S into T , and

x be an element of S. Then f(x) = sup(f◦↓x).

(5) Let S, T be complete lower-bounded lattices, f be a monotone map from

S into T , and x be an element of S. Then f(x) =
⊔

T {f(w);w ranges over

elements of S: w ¬ x}.

(6) Let S be a relational structure, T be a non empty relational structure,

and F be a subset of T the carrier of S . Then supF is a map from S into T .

2. On the Scott Continuity of Maps

Let X1, X2, Y be non empty relational structures, let f be a map from [:X1,

X2 :] into Y , and let x be an element of the carrier of X1. The functor Proj(f, x)

yields a map from X2 into Y and is defined as follows:

(Def. 1) Proj(f, x) = (curry f)(x).

For simplicity, we use the following convention: X1, X2, Y denote non empty

relational structures, f denotes a map from [:X1, X2 :] into Y , x denotes an

element of the carrier of X1, and y denotes an element of the carrier of X2.

We now state the proposition

(7) For every element y of the carrier of X2 holds (Proj(f, x))(y) = f(〈〈x,

y〉〉).

Let X1, X2, Y be non empty relational structures, let f be a map from [:X1,

X2 :] into Y , and let y be an element of the carrier of X2. The functor Proj(f, y)

yielding a map from X1 into Y is defined by:

(Def. 2) Proj(f, y) = (curry′ f)(y).

The following propositions are true:

(8) For every element x of the carrier of X1 holds (Proj(f, y))(x) = f(〈〈x,

y〉〉).

(9) Let R, S, T be non empty relational structures, f be a map from

[:R, S :] into T , a be an element of R, and b be an element of S. Then

(Proj(f, a))(b) = (Proj(f, b))(a).

Let S be a non empty relational structure and let T be a non empty reflexive

relational structure. Observe that there exists a map from S into T which is

antitone.

The following two propositions are true:

(10) Let R, S, T be non empty reflexive relational structures, f be a map

from [:R, S :] into T , a be an element of the carrier of R, and b be an

element of the carrier of S. If f is monotone, then Proj(f, a) is monotone

and Proj(f, b) is monotone.
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(11) Let R, S, T be non empty reflexive relational structures, f be a map

from [:R, S :] into T , a be an element of the carrier of R, and b be an

element of the carrier of S. If f is antitone, then Proj(f, a) is antitone and

Proj(f, b) is antitone.

Let R, S, T be non empty reflexive relational structures, let f be a monotone

map from [:R, S :] into T , and let a be an element of the carrier of R. Note that

Proj(f, a) is monotone.

Let R, S, T be non empty reflexive relational structures, let f be a monotone

map from [:R, S :] into T , and let b be an element of the carrier of S. Note that

Proj(f, b) is monotone.

Let R, S, T be non empty reflexive relational structures, let f be an antitone

map from [:R, S :] into T , and let a be an element of the carrier of R. Observe

that Proj(f, a) is antitone.

Let R, S, T be non empty reflexive relational structures, let f be an antitone

map from [:R, S :] into T , and let b be an element of the carrier of S. Note that

Proj(f, b) is antitone.

We now state several propositions:

(12) Let R, S, T be lattices and f be a map from [:R, S :] into T . Suppose

that for every element a of R and for every element b of S holds Proj(f, a)

is monotone and Proj(f, b) is monotone. Then f is monotone.

(13) Let R, S, T be lattices and f be a map from [:R, S :] into T . Suppose

that for every element a of R and for every element b of S holds Proj(f, a)

is antitone and Proj(f, b) is antitone. Then f is antitone.

(14) Let R, S, T be lattices, f be a map from [:R, S :] into T , b be an element

of S, and X be a subset of R. Then (Proj(f, b))◦X = f◦[:X, {b} :].

(15) Let R, S, T be lattices, f be a map from [:R, S :] into T , b be an element

of R, and X be a subset of S. Then (Proj(f, b))◦X = f◦[: {b}, X :].

(16) Let R, S, T be lattices, f be a map from [:R, S :] into T , a be an element

of R, and b be an element of S. Suppose f is directed-sups-preserving.

Then Proj(f, a) is directed-sups-preserving and Proj(f, b) is directed-sups-

preserving.

(17) Let R, S, T be lattices, f be a monotone map from [:R, S :] into T , a

be an element of R, b be an element of S, and X be a directed subset of

[:R, S :]. If sup f◦X exists in T and a ∈ π1(X) and b ∈ π2(X), then f(〈〈a,

b〉〉) ¬ sup(f◦X).

(18) Let R, S, T be complete lattices and f be a map from [:R, S :] into

T . Suppose that for every element a of R and for every element b of S

holds Proj(f, a) is directed-sups-preserving and Proj(f, b) is directed-sups-

preserving. Then f is directed-sups-preserving.

(19) Let S be a non empty 1-sorted structure, T be a non empty relational
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structure, and f be a set. Then f is an element of T the carrier of S if and

only if f is a map from S into T .

3. The Poset of Continuous Maps

Let S be a topological structure and let T be a non empty FR-structure. The

functor [S → T ] yielding a strict relational structure is defined by the conditions

(Def. 3).

(Def. 3)(i) [S → T ] is a full relational substructure of T the carrier of S , and

(ii) for every set x holds x ∈ the carrier of ([S → T ]) iff there exists a map

f from S into T such that x = f and f is continuous.

Let S be a non empty topological space and let T be a non empty topological

space-like FR-structure. Observe that [S → T ] is non empty.

Let S be a non empty topological space and let T be a non empty topological

space-like FR-structure. Note that [S → T ] is constituted functions.

One can prove the following propositions:

(20) Let S be a non empty topological space, T be a non empty reflexive

topological space-like FR-structure, and x, y be elements of [S → T ].

Then x ¬ y if and only if for every element i of S holds 〈〈x(i), y(i)〉〉 ∈ the

internal relation of T .

(21) Let S be a non empty topological space, T be a non empty reflexive

topological space-like FR-structure, and x be a set. Then x is a continuous

map from S into T if and only if x is an element of [S → T ].

Let S be a non empty topological space and let T be a non empty reflexive

topological space-like FR-structure. Note that [S → T ] is reflexive.

Let S be a non empty topological space and let T be a non empty transitive

topological space-like FR-structure. Note that [S → T ] is transitive.

Let S be a non empty topological space and let T be a non empty anti-

symmetric topological space-like FR-structure. One can check that [S → T ] is

antisymmetric.

Let S be a non empty 1-sorted structure and let T be a non empty topolo-

gical space-like FR-structure. One can verify that T the carrier of S is constituted

functions.

One can prove the following three propositions:

(22) Let S be a non empty 1-sorted structure, T be a complete lattice,

f , g, h be maps from S into T , and i be an element of S. If h =
⊔

(T the carrier of S){f, g}, then h(i) = sup{f(i), g(i)}.

(23) Let I be a non empty set and J be a relational structure yielding no-

nempty reflexive-yielding many sorted set indexed by I. Suppose that for
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every element i of I holds J(i) is a complete lattice. Let X be a subset of
∏

J and i be an element of I. Then (infX)(i) = inf πiX.

(24) Let S be a non empty 1-sorted structure, T be a complete lattice,

f , g, h be maps from S into T , and i be an element of S. If h =

⌈−⌉(T the carrier of S){f, g}, then h(i) = inf{f(i), g(i)}.

Let S be a non empty 1-sorted structure and let T be a lattice. Observe that

every element of T the carrier of S is function-like and relation-like.

Let S, T be top-lattices. One can check that every element of [S → T ] is

function-like and relation-like.

One can prove the following propositions:

(25) Let S be a non empty relational structure, T be a complete lattice, F be

a non empty subset of T the carrier of S , and i be an element of the carrier of

S. Then (supF )(i) =
⊔

T {f(i); f ranges over elements of T the carrier of S :

f ∈ F}.

(26) Let S, T be complete top-lattices, F be a non empty subset of [S → T ],

and i be an element of the carrier of S. Then (
⊔

(T the carrier of S) F )(i) =
⊔

T {f(i); f ranges over elements of T the carrier of S : f ∈ F}.

In the sequel S denotes a non empty relational structure, T denotes a com-

plete lattice, and i denotes an element of S.

Next we state two propositions:

(27) Let F be a non empty subset of T the carrier of S and D be a non empty

subset of S. Then (supF )◦D = {
⊔

T {f(i); f ranges over elements of

T the carrier of S : f ∈ F}; i ranges over elements of S: i ∈ D}.

(28) Let S, T be complete Scott top-lattices, F be a non empty subset of [S →

T ], and D be a non empty subset of S. Then (
⊔

(T the carrier of S) F )◦D =

{
⊔

T {f(i); f ranges over elements of T the carrier of S : f ∈ F}; i ranges over

elements of S: i ∈ D}.

The scheme FraenkelF’RSS deals with a non empty relational structure A, a

unary functor F yielding a set, a unary functor G yielding a set, and and states

that:

{F(v1); v1 ranges over elements of A : P[v1]} = {G(v2); v2 ranges

over elements of A : P[v2]}

provided the following condition is met:

• For every element v of A such that P[v] holds F(v) = G(v).

The following propositions are true:

(29) Let S, T be complete Scott top-lattices and F be a non empty subset of

[S → T ]. Then
⊔

(T the carrier of S) F is a monotone map from S into T .

(30) Let S, T be complete Scott top-lattices, F be a non empty subset of

[S → T ], and D be a directed non empty subset of S. Then
⊔

T {
⊔

T {g(i); i

ranges over elements of S: i ∈ D}; g ranges over elements of T the carrier of S :
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g ∈ F} =
⊔

T {
⊔

T {g
′(i′); g′ ranges over elements of T the carrier of S : g′ ∈

F}; i′ ranges over elements of S: i′ ∈ D}.

(31) Let S, T be complete Scott top-lattices, F be a non empty sub-

set of [S → T ], and D be a directed non empty subset of S. Then
⊔

T ((
⊔

(T the carrier of S) F )◦D) = (
⊔

(T the carrier of S) F )(supD).

(32) Let S, T be complete Scott top-lattices and F be a non empty subset of

[S → T ]. Then
⊔

(T the carrier of S) F ∈ the carrier of ([S → T ]).

(33) Let S be a non empty relational structure and T be a lower-bounded an-

tisymmetric non empty relational structure. Then ⊥T the carrier of S = S 7−→

⊥T .

(34) Let S be a non empty relational structure and T be an upper-bounded

antisymmetric non empty relational structure. Then ⊤T the carrier of S =

S 7−→ ⊤T .

Let S be a non empty reflexive relational structure, let T be a complete

lattice, and let a be an element of T . Note that S 7−→ a is directed-sups-

preserving.

One can prove the following proposition

(35) Let S, T be complete Scott top-lattices. Then [S → T ] is a sups-

inheriting relational substructure of T the carrier of S .

Let S, T be complete Scott top-lattices. Observe that [S → T ] is complete.

We now state three propositions:

(36) For all non empty Scott complete top-lattices S, T holds ⊥[S→T ] = S 7−→

⊥T .

(37) For all non empty Scott complete top-lattices S, T holds ⊤[S→T ] = S 7−→

⊤T .

(38) For all Scott complete top-lattices S, T holds SCMaps(S, T ) = [S → T ].
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