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The terminology and notation used here are introduced in the following articles:
[13], [5], [1], [16], [6], [14], [11], [18], [17], [12], [15], 7], 3], [4], [10], [2], [8], [19],
and [9].

1. PRELIMINARIES

One can prove the following proposition

(1) Let S, T be up-complete Scott top-lattices and M be a subset of
SCMaps(S,T). Then | |gopaps(sry M is a continuous map from S into
T.

Let S be a non empty relational structure and let 7" be a non empty reflexive
relational structure. One can check that every map from S into 7' which is
constant is also monotone.

Let S be a non empty relational structure, let T be a reflexive non empty
relational structure, and let a be an element of the carrier of 7. One can check
that S — a is monotone.

One can prove the following propositions:

(2) Let S be anon empty relational structure and 7" be a lower-bounded anti-
symmetric reflexive non empty relational structure. Then Lyjonmaps(s,7) =
S — _LT.

(3) Let S be a non empty relational structure and 7 be an upper-
bounded antisymmetric reflexive non empty relational structure. Then
TMonMaps(S,T) =S+ Tr.
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(4) Let S, T be complete lattices, f be a monotone map from S into 7', and
x be an element of S. Then f(z) = sup(f°|z).

(5) Let S, T be complete lower-bounded lattices, f be a monotone map from
S into T', and x be an element of S. Then f(z) = | | {f(w); w ranges over
elements of S: w < x}.

(6) Let S be a relational structure, T' be a non empty relational structure,
and F be a subset of Tthe carrier of S Thep sup F' is a map from S into 7.

2. ON THE ScOTT CONTINUITY OF MAPS

Let X1, X2, Y be non empty relational structures, let f be a map from [ X7,
X ] into Y, and let = be an element of the carrier of X;. The functor Proj(f, z)
yields a map from X5 into Y and is defined as follows:

(Def. 1) Proj(f,z) = (curry f)(x).

For simplicity, we use the following convention: Xy, X5, Y denote non empty
relational structures, f denotes a map from [ X;, Xo] into Y, x denotes an
element of the carrier of Xi, and y denotes an element of the carrier of Xs.

We now state the proposition

(7) For every element y of the carrier of Xy holds (Proj(f,x))(y) = f({z,
y))-
Let X1, X2, Y be non empty relational structures, let f be a map from [ X7,

X ] into Y, and let y be an element of the carrier of Xo. The functor Proj(f,y)
yielding a map from X; into Y is defined by:

(Def. 2)  Proj(f,y) = (curry’ f)(y).

The following propositions are true:

(8) For every element x of the carrier of X holds (Proj(f,y))(z) = f({x,
v)-

(9) Let R, S, T be non empty relational structures, f be a map from
ER, S] into T, a be an element of R, and b be an element of S. Then
(Proj(f,a))(b) = (Proj(f,b))(a).

Let S be a non empty relational structure and let T' be a non empty reflexive
relational structure. Observe that there exists a map from S into 1" which is
antitone.

The following two propositions are true:

(10) Let R, S, T be non empty reflexive relational structures, f be a map
from [ R, S{ into T, a be an element of the carrier of R, and b be an
element of the carrier of S. If f is monotone, then Proj(f,a) is monotone
and Proj(f,b) is monotone.
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(11) Let R, S, T be non empty reflexive relational structures, f be a map
from [ R, S] into T, a be an element of the carrier of R, and b be an
element of the carrier of S. If f is antitone, then Proj(f, a) is antitone and
Proj(f,b) is antitone.

Let R, S, T be non empty reflexive relational structures, let f be a monotone
map from [ R, S'] into T, and let a be an element of the carrier of R. Note that
Proj(f,a) is monotone.

Let R, S, T be non empty reflexive relational structures, let f be a monotone
map from [ R, S into T, and let b be an element of the carrier of S. Note that
Proj(f,b) is monotone.

Let R, S, T be non empty reflexive relational structures, let f be an antitone
map from [ R, S] into T, and let a be an element of the carrier of R. Observe
that Proj(f,a) is antitone.

Let R, S, T be non empty reflexive relational structures, let f be an antitone
map from [ R, S ] into T, and let b be an element of the carrier of S. Note that
Proj(f,b) is antitone.

We now state several propositions:

(12) Let R, S, T be lattices and f be a map from [ R, S] into 7. Suppose
that for every element a of R and for every element b of S holds Proj(f,a)
is monotone and Proj(f,b) is monotone. Then f is monotone.

(13) Let R, S, T be lattices and f be a map from [ R, S] into T". Suppose
that for every element a of R and for every element b of S holds Proj(f,a)
is antitone and Proj(f,b) is antitone. Then f is antitone.

(14) Let R, S, T be lattices, f be a map from [ R, S ] into T, b be an element
of S, and X be a subset of R. Then (Proj(f,b))°X = f°} X, {b}{.

(15) Let R, S, T be lattices, f be a map from [ R, S| into T', b be an element
of R, and X be a subset of S. Then (Proj(f,b))°X = f°} {b}, X 1.

(16) Let R, S, T be lattices, f be a map from [ R, S ] into T, a be an element
of R, and b be an element of S. Suppose f is directed-sups-preserving.
Then Proj(f,a) is directed-sups-preserving and Proj(f, b) is directed-sups-
preserving.

(17) Let R, S, T be lattices, f be a monotone map from [ R, S] into T, a
be an element of R, b be an element of S, and X be a directed subset of
FR, S If sup f°X exists in T and a € 71(X) and b € m2(X), then f({a,
b)) < sup(f°X).

(18) Let R, S, T be complete lattices and f be a map from [ R, S into
T. Suppose that for every element a of R and for every element b of S
holds Proj(f, a) is directed-sups-preserving and Proj(f, b) is directed-sups-
preserving. Then f is directed-sups-preserving.

(19) Let S be a non empty 1-sorted structure, 7' be a non empty relational
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structure, and f be a set. Then f is an element of 7'the carrier of S if and

only if f is a map from .S into T'.

3. THE POSET OF CONTINUOUS MAPS

Let S be a topological structure and let 7' be a non empty FR-structure. The
functor [S — T yielding a strict relational structure is defined by the conditions
(Def. 3).

(Def. 3)i) [S — T] is a full relational substructure of T'the carrier of S 51
(ii)  for every set x holds = € the carrier of ([S — T1) iff there exists a map
f from S into T such that x = f and f is continuous.

Let S be a non empty topological space and let T be a non empty topological
space-like FR-structure. Observe that [S — T is non empty.

Let S be a non empty topological space and let T' be a non empty topological
space-like FR-structure. Note that [S — T is constituted functions.

One can prove the following propositions:

(20) Let S be a non empty topological space, T' be a non empty reflexive
topological space-like FR-structure, and x, y be elements of [S — T].
Then z < y if and only if for every element i of S holds (z(7), y(i)) € the
internal relation of T

(21) Let S be a non empty topological space, T' be a non empty reflexive
topological space-like FR-structure, and x be a set. Then x is a continuous
map from S into 7" if and only if z is an element of [S — T7.

Let S be a non empty topological space and let T' be a non empty reflexive
topological space-like FR-structure. Note that [S — T is reflexive.

Let S be a non empty topological space and let T" be a non empty transitive
topological space-like FR-structure. Note that [S — T is transitive.

Let S be a non empty topological space and let T" be a non empty anti-
symmetric topological space-like FR-structure. One can check that [S — T is
antisymmetric.

Let S be a non empty 1-sorted structure and let T" be a non empty topolo-
gical space-like FR-structure. One can verify that 7'the carrier of S ig constituted
functions.

One can prove the following three propositions:

(22) Let S be a non empty l-sorted structure, 7' be a complete lattice,
f, g, h be maps from S into 7T, and ¢ be an element of S. If h =
|_|(Tthe carrier of S){f, g}, then h(Z) = Sup{f(i)a g(l)}

(23) Let I be a non empty set and J be a relational structure yielding no-
nempty reflexive-yielding many sorted set indexed by I. Suppose that for
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every element i of I holds J(7) is a complete lattice. Let X be a subset of
[IJ and i be an element of I. Then (inf X)(i) = inf m; X.

(24) Let S be a non empty l-sorted structure, 7' be a complete lattice,
f, g, h be maps from S into 7T, and ¢ be an element of S. If h =
H(Tthe carrier of S){f,g}, then h(@) = Hlf{f(l), g(Z)}

Let S be a non empty 1-sorted structure and let T be a lattice. Observe that
every element of T'the carrier of S ig function-like and relation-like.

Let S, T be top-lattices. One can check that every element of [S — T is
function-like and relation-like.

One can prove the following propositions:

(25) Let S be a non empty relational structure, T be a complete lattice, F' be
a non empty subset of Tthe carrier of S "a1d j he an element of the carrier of
S. Then (sup F)(i) = | |p{f(i); f ranges over elements of T'the carrier of 5,

ferFy}.

(26) Let S, T be complete top-lattices, F' be a non empty subset of [S — T,
and ¢ be an element of the carrier of S. Then (|| zue carier or 5y F) (i) =
LIp{f(3); f ranges over elements of T'the carrier of 5. ¢ ¢ [}

In the sequel S denotes a non empty relational structure, T' denotes a com-
plete lattice, and i denotes an element of S.
Next we state two propositions:

(27) Let F be a non empty subset of Tthe carrier of S a4 D be a non empty
subset of S. Then (sup F)°D = {| ] {f(?); f ranges over elements of
Tthe carrier of S, £ [l ranges over elements of S: i € D}.

(28) Let S, T be complete Scott top-lattices, F' be a non empty subset of [S —
T], and D be a non empty subset of S. Then (|| carsier or 57 F)°D =
{LIp{f(9); f ranges over elements of Tthe carrier of 5. £ ¢ V. ranges over
elements of S: i € D}.

The scheme FraenkelF’RSS deals with a non empty relational structure A, a
unary functor F yielding a set, a unary functor G yielding a set, and and states
that:

{F(v1);v1 ranges over elements of A : Plvi|} = {G(v2); v2 ranges
over elements of A : P[va]}
provided the following condition is met:
e For every element v of A such that P[v] holds F(v) = G(v).

The following propositions are true:

(29) Let S, T be complete Scott top-lattices and F' be a non empty subset of
[S — T7. Then | |(pume camier or sy F' is & monotone map from ' into 7.

(30) Let S, T be complete Scott top-lattices, F' be a non empty subset of
[S — T}, and D be a directed non empty subset of 5. Then | | {||{g();
ranges over elements of S: i € D}; g ranges over elements of 7the carrier of S,
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g € F} = | {lUp{d (i"); ¢ ranges over elements of Tthe carrier of S. g/ ¢
F}; ¢ ranges over elements of S: i’ € D}.

(31) Let S, T be complete Scott top-lattices, F' be a non empty sub-
set of [S — TJ, and D be a directed non empty subset of S. Then
|_|T((|_|(Tthe carrier of ) F)OD) = (I_I(Tthe carrier of ) F)(Sup D)

(32) Let S, T be complete Scott top-lattices and F' be a non empty subset of
[S' — T. Then | |(pume camier o 5y F' € the carrier of ([S — T1).

(33) Let S be a non empty relational structure and 7" be a lower-bounded an-
tisymmetric non empty relational structure. Then L carrier o s = S +——
L.

(34) Let S be a non empty relational structure and 7" be an upper-bounded
antisymmetric non empty relational structure. Then T e carrier o 5 =
S+ TT.

Let S be a non empty reflexive relational structure, let T' be a complete
lattice, and let @ be an element of T. Note that S —— a is directed-sups-
preserving.

One can prove the following proposition

(35) Let S, T be complete Scott top-lattices. Then [S — 7] is a sups-
inheriting relational substructure of 7'the carrier of 5

Let S, T be complete Scott top-lattices. Observe that [S — T is complete.

We now state three propositions:

(36) For all non empty Scott complete top-lattices S, T holds Lig_7) = S
L.

(37) For all non empty Scott complete top-lattices S, T" holds Tis—m=5+—
Tr.

(38) For all Scott complete top-lattices S, T" holds SCMaps(S,T) = [S — T7.
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