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The terminology and notation used in this paper have been introduced in the

following articles: [29], [16], [12], [13], [11], [1], [2], [32], [18], [30], [24], [25], [26],

[27], [3], [9], [34], [35], [33], [28], [15], [21], [37], [10], [31], [20], [23], [5], [14], [6],

[22], [8], [4], [19], [36], and [7].

Let I be a set and let J be a relational structure yielding many sorted set

indexed by I. We introduce I -prodPOS J as a synonym of
∏

J.

Let I be a set and let J be a relational structure yielding nonempty many

sorted set indexed by I. One can check that I -prodPOS J is constituted func-

tions.

Let I be a set and let J be a topological space yielding nonempty many

sorted set indexed by I. We introduce I -prodTOP J as a synonym of
∏

J.

Let X, Y be non empty topological spaces. The functor [X → Y ] yields a

non empty strict relational structure and is defined as follows:

(Def. 1) [X → Y ] = [X → ΩY ].

Let X, Y be non empty topological spaces. Observe that [X → Y ] is reflexive

transitive and constituted functions.

Let X be a non empty topological space and let Y be a non empty T0

topological space. Observe that [X → Y ] is antisymmetric.

We now state three propositions:

(1) Let X, Y be non empty topological spaces and a be a set. Then a is an

element of [X → Y ] if and only if a is a continuous map from X into ΩY.
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(2) Let X, Y be non empty topological spaces and a be a set. Then a is an

element of [X → Y ] if and only if a is a continuous map from X into Y .

(3) Let X, Y be non empty topological spaces, a, b be elements of [X → Y ],

and f , g be maps from X into ΩY. If a = f and b = g, then a ¬ b iff

f ¬ g.

Let X, Y be non empty topological spaces, let x be a point of X, and let A

be a subset of the carrier of ([X → Y ]). Then πxA is a subset of ΩY.

Let X, Y be non empty topological spaces, let x be a set, and let A be a

non empty subset of the carrier of ([X → Y ]). Observe that πxA is non empty.

We now state three propositions:

(4) Ω(the Sierpiński space) is a topological augmentation of 21
⊆.

(5) Let X be a non empty topological space. Then there exists a map f from

〈the topology of X, ⊆〉 into [X → the Sierpiński space] such that f is iso-

morphic and for every open subset V of X holds f(V ) = χV,the carrier of X .

(6) Let X be a non empty topological space. Then 〈the topology of X, ⊆〉

and [X → the Sierpiński space] are isomorphic.

Let X, Y , Z be non empty topological spaces and let f be a continuous map

from Y into Z. The functor [X → f ] yields a map from [X → Y ] into [X → Z]

and is defined by:

(Def. 2) For every continuous map g from X into Y holds ([X → f ])(g) = f · g.

The functor [f → X] yields a map from [Z → X] into [Y → X] and is defined

by:

(Def. 3) For every continuous map g from Z into X holds ([f → X])(g) = g · f.

The following propositions are true:

(7) Let X be a non empty topological space and Y be a monotone conver-

gence T0-space. Then [X → Y ] is a directed-sups-inheriting relational

substructure of (ΩY )the carrier of X .

(8) For every non empty topological space X and for every monotone co-

nvergence T0-space Y holds [X → Y ] is up-complete.

(9) For all non empty topological spaces X, Y , Z and for every continuous

map f from Y into Z holds [X → f ] is monotone.

(10) Let X, Y be non empty topological spaces and f be a continuous map

from Y into Y . If f is idempotent, then [X → f ] is idempotent.

(11) For all non empty topological spaces X, Y , Z and for every continuous

map f from Y into Z holds [f → X] is monotone.

(12) Let X, Y be non empty topological spaces and f be a continuous map

from Y into Y . If f is idempotent, then [f → X] is idempotent.

(13) Let X, Y , Z be non empty topological spaces, f be a continuous map

from Y into Z, x be an element of X, and A be a subset of [X → Y ].
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Then πx([X → f ])◦A = f◦πxA.

(14) Let X be a non empty topological space, Y , Z be monotone convergence

T0-spaces, and f be a continuous map from Y into Z. Then [X → f ] is

directed-sups-preserving.

(15) Let X, Y , Z be non empty topological spaces, f be a continuous map

from Y into Z, x be an element of Y , and A be a subset of [Z → X]. Then

πx([f → X])◦A = πf(x)A.

(16) Let Y , Z be non empty topological spaces,X be a monotone convergence

T0-space, and f be a continuous map from Y into Z. Then [f → X] is

directed-sups-preserving.

(17) Let X, Z be non empty topological spaces and Y be a non empty sub-

space of Z. Then [X → Y ] is a full relational substructure of [X → Z].

(18) Let Z be a monotone convergence T0-space, Y be a non empty subspace

of Z, and f be a continuous map from Z into Y . Suppose f is a retraction.

Then ΩY is a directed-sups-inheriting relational substructure of ΩZ.

(19) Let X be a non empty topological space, Z be a monotone convergence

T0-space, Y be a non empty subspace of Z, and f be a continuous map

from Z into Y . If f is a retraction, then [X → f ] is a retraction of [X → Z]

into [X → Y ].

(20) Let X be a non empty topological space, Z be a monotone convergence

T0-space, and Y be a non empty subspace of Z. If Y is a retract of Z, then

[X → Y ] is a retract of [X → Z].

(21) Let X, Y , Z be non empty topological spaces and f be a continuous map

from Y into Z. If f is a homeomorphism, then [X → f ] is isomorphic.

(22) Let X, Y , Z be non empty topological spaces. If Y and Z are home-

omorphic, then [X → Y ] and [X → Z] are isomorphic.

(23) Let X be a non empty topological space, Z be a monotone convergence

T0-space, and Y be a non empty subspace of Z. Suppose Y is a retract of

Z and [X → Z] is complete and continuous. Then [X → Y ] is complete

and continuous.

(24) Let X be a non empty topological space and Y , Z be monotone conver-

gence T0-spaces. Suppose Y is a topological retract of Z and [X → Z] is

complete and continuous. Then [X → Y ] is complete and continuous.

(25) Let Y be a non trivial T0-space. Suppose Y is not a T1 space. Then the

Sierpiński space is a topological retract of Y .

(26) Let X be a non empty topological space and Y be a non trivial T0-space.

If [X → Y ] has l.u.b.’s, then Y is not a T1 space.

One can check that the Sierpiński space is non trivial and monotone conver-

gence.
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One can verify that there exists a T0-space which is injective, monotone

convergence, and non trivial.

The following propositions are true:

(27) Let X be a non empty topological space and Y be a monotone conver-

gence non trivial T0-space. If [X → Y ] is complete and continuous, then

〈the topology of X, ⊆〉 is continuous.

(28) Let X be a non empty topological space, x be a point of X, and Y

be a monotone convergence T0-space. Then there exists a directed-sups-

preserving projection map F from [X → Y ] into [X → Y ] such that

(i) for every continuous map f from X into Y holds F (f) = X 7−→ f(x),

and

(ii) there exists a continuous map h from X into X such that h = X 7−→ x

and F = [h→ Y ].

(29) Let X be a non empty topological space and Y be a monotone co-

nvergence T0-space. If [X → Y ] is complete and continuous, then ΩY is

complete and continuous.

(30) Let X be a non empty 1-sorted structure, I be a non empty set, J

be a topological space yielding nonempty many sorted set indexed by I,

f be a map from X into I -prodTOP J, and i be an element of I. Then

(commute(f))(i) = proj(J, i) · f.

(31) For every 1-sorted structure S and for every set M holds the support of

M 7−→ S = M 7−→ the carrier of S.

(32) Let X, Y be non empty topological spaces, M be a non empty set,

and f be a continuous map from X into M -prodTOP(M 7−→ Y ). Then

commute(f) is a function from M into the carrier of ([X → Y ]).

(33) For all non empty topological spaces X, Y holds the carrier of ([X →

Y ]) ⊆ (the carrier of Y )the carrier of X .

(34) Let X, Y be non empty topological spaces, M be a non empty set, and

f be a function from M into the carrier of ([X → Y ]). Then commute(f)

is a continuous map from X into M -prodTOP(M 7−→ Y ).

(35) Let X be a non empty topological space and M be a non empty set.

Then there exists a map F from [X → M -prodTOP(M 7−→ the Sier-

piński space)] into M -prodPOS(M 7−→ ([X → the Sierpiński space]))

such that F is isomorphic and for every continuous map f from X into

M -prodTOP(M 7−→ the Sierpiński space) holds F (f) = commute(f).

(36) LetX be a non empty topological space andM be a non empty set. Then

[X → M -prodTOP(M 7−→ the Sierpiński space)] and M -prodPOS(M 7−→

([X → the Sierpiński space])) are isomorphic.

(37) Let X be a non empty topological space. Suppose 〈the topology of X, ⊆〉

is continuous. Let Y be an injective T0-space. Then [X → Y ] is complete
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and continuous.

Let us observe that there exists a top-lattice which is non trivial, complete,

and Scott.

Next we state the proposition

(38) Let X be a non empty topological space and L be a non trivial complete

Scott top-lattice. Then [X → L] is complete and continuous if and only if

〈the topology of X, ⊆〉 is continuous and L is continuous.

Let f be a function. Observe that Union disjoint f is relation-like.

Let f be a function. The functor Gf yields a binary relation and is defined

as follows:

(Def. 4) Gf = (Union disjoint f)`.

In the sequel x, y are sets and f is a function.

We now state three propositions:

(39) 〈〈x, y〉〉 ∈ Gf iff x ∈ dom f and y ∈ f(x).

(40) For every finite set X holds π1(X) is finite and π2(X) is finite.

(41) Let X, Y be non empty topological spaces, S be a Scott topological

augmentation of 〈the topology of Y , ⊆〉, and f be a map from X into S.

If Gf is an open subset of [:X, Y :], then f is continuous.

Let W be a binary relation and let X be a set. The functor ΘX(W ) yielding

a function is defined by:

(Def. 5) domΘX(W ) = X and for every x such that x ∈ X holds (ΘX(W ))(x) =

W ◦{x}.

One can prove the following proposition

(42) For every binary relation W and for every set X such that domW ⊆ X

holds GΘX(W ) = W.

Let X, Y be topological spaces. Observe that every subset of the carrier of

[:X, Y :] is relation-like and every element of the topology of [:X, Y :] is relation-

like.

Next we state four propositions:

(43) Let X, Y be non empty topological spaces, W be an open subset of [:X,

Y :], and x be a point of X. Then W ◦{x} is an open subset of Y .

(44) Let X, Y be non empty topological spaces, S be a Scott topological

augmentation of 〈the topology of Y , ⊆〉, and W be an open subset of [:X,

Y :]. Then Θthe carrier of X(W ) is a continuous map from X into S.

(45) Let X, Y be non empty topological spaces, S be a Scott topological

augmentation of 〈the topology of Y , ⊆〉, and W1, W2 be open subsets

of [:X, Y :]. Suppose W1 ⊆ W2. Let f1, f2 be elements of [X → S]. If

f1 = Θthe carrier of X(W1) and f2 = Θthe carrier of X(W2), then f1 ¬ f2.



116 grzegorz bancerek

(46) Let X, Y be non empty topological spaces and S be a Scott topological

augmentation of 〈the topology of Y , ⊆〉. Then there exists a map F from

〈the topology of [:X, Y :], ⊆〉 into [X → S] such that F is monotone and

for every open subset W of [:X, Y :] holds F (W ) = Θthe carrier of X(W ).
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