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The notation and terminology used here are introduced in the following papers:

[21], [15], [1], [14], [6], [7], [19], [9], [8], [17], [2], [22], [18], [13], [12], [20], [16],

[23], [11], [4], [5], [10], and [3].

1. Preliminaries

The scheme SeqLambda1C deals with a natural number A, a non empty set

B, a unary functor F yielding a set, a unary functor G yielding a set, and and

states that:

There exists a finite sequence p of elements of B such that len p =

A and for every natural number i such that i ∈ SegA holds if

P[i], then p(i) = F(i) and if not P[i], then p(i) = G(i)

provided the following requirement is met:

• For every natural number i such that i ∈ SegA holds if P[i], then

F(i) ∈ B and if not P[i], then G(i) ∈ B.

Let X be a set and let p be a finite sequence of elements of 2X . Then rng p

is a family of subsets of X.

Let us observe that Boolean is finite.

We now state two propositions:

1This work has been supported by KBN Grant 8 T11C 018 12.
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(2)2 For every natural number i and for every finite set D holds Di is finite.

(3) For every finite set T holds every family of subsets of T is finite.

Let T be a finite set. One can check that every family of subsets of T is

finite.

Let T be a finite 1-sorted structure. One can verify that every family of

subsets of T is finite.

One can prove the following proposition

(4) For every infinite set X there exist sets x, y such that x ∈ X and y ∈ X

and x 6= y.

2. Components

Let X be a set, let p be a finite sequence of elements of 2X , and let q be a

finite sequence of elements of Boolean. The functor MergeSequence(p, q) yielding

a finite sequence of elements of 2X is defined as follows:

(Def. 1) lenMergeSequence(p, q) = len p and for every natural number i such that

i ∈ dom p holds (MergeSequence(p, q))(i) = (q(i) = true → p(i), X \ p(i)).

One can prove the following propositions:

(5) Let X be a set, p be a finite sequence of elements of 2X , and q be a finite

sequence of elements of Boolean. Then domMergeSequence(p, q) = dom p.

(6) Let X be a set, p be a finite sequence of elements of 2X , q be a finite

sequence of elements of Boolean, and i be a natural number. If q(i) = true,

then (MergeSequence(p, q))(i) = p(i).

(7) Let X be a set, p be a finite sequence of elements of 2X , q be a finite

sequence of elements of Boolean, and i be a natural number. If i ∈ dom p

and q(i) = false, then (MergeSequence(p, q))(i) = X \ p(i).

(8) For every set X and for every finite sequence q of elements of Boolean

holds lenMergeSequence(ε2X , q) = 0.

(9) For every set X and for every finite sequence q of elements of Boolean

holds MergeSequence(ε2X , q) = ε2X .

(10) For every set X and for every element x of 2X and for every finite

sequence q of elements of Boolean holds lenMergeSequence(〈x〉, q) = 1.

(11) Let X be a set, x be an element of 2X , and q be a finite sequence of

elements of Boolean. Then

(i) if q(1) = true, then (MergeSequence(〈x〉, q))(1) = x, and

(ii) if q(1) = false, then (MergeSequence(〈x〉, q))(1) = X \ x.

2The proposition (1) has been removed.



components and basis of topological spaces 27

(12) For every set X and for all elements x, y of 2X and for every finite

sequence q of elements of Boolean holds lenMergeSequence(〈x, y〉, q) = 2.

(13) Let X be a set, x, y be elements of 2X , and q be a finite sequence of

elements of Boolean. Then

(i) if q(1) = true, then (MergeSequence(〈x, y〉, q))(1) = x,

(ii) if q(1) = false, then (MergeSequence(〈x, y〉, q))(1) = X \ x,

(iii) if q(2) = true, then (MergeSequence(〈x, y〉, q))(2) = y, and

(iv) if q(2) = false, then (MergeSequence(〈x, y〉, q))(2) = X \ y.

(14) Let X be a set, x, y, z be elements of 2X , and q be a finite sequence of

elements of Boolean. Then lenMergeSequence(〈x, y, z〉, q) = 3.

(15) Let X be a set, x, y, z be elements of 2X , and q be a finite sequence of

elements of Boolean. Then

(i) if q(1) = true, then (MergeSequence(〈x, y, z〉, q))(1) = x,

(ii) if q(1) = false, then (MergeSequence(〈x, y, z〉, q))(1) = X \ x,

(iii) if q(2) = true, then (MergeSequence(〈x, y, z〉, q))(2) = y,

(iv) if q(2) = false, then (MergeSequence(〈x, y, z〉, q))(2) = X \ y,

(v) if q(3) = true, then (MergeSequence(〈x, y, z〉, q))(3) = z, and

(vi) if q(3) = false, then (MergeSequence(〈x, y, z〉, q))(3) = X \ z.

(16) Let X be a set and p be a finite sequence of elements of 2X . Then

{Intersect(rngMergeSequence(p, q)); q ranges over finite sequences of ele-

ments of Boolean: len q = len p} is a family of subsets of X.

Let X be a set and let Y be a finite family of subsets of X. The functor

ComponentsY yields a family of subsets of X and is defined by the condition

(Def. 2).

(Def. 2) There exists a finite sequence p of elements of 2X such that len p = cardY

and rng p = Y and ComponentsY = {Intersect(rngMergeSequence(p, q)); q

ranges over finite sequences of elements of Boolean: len q = len p}.

Let X be a set and let Y be a finite family of subsets of X. Note that

ComponentsY is finite.

One can prove the following four propositions:

(17) For every set X and for every empty family Y of subsets of X holds

ComponentsY = {X}.

(18) For every set X and for all finite families Y , Z of subsets of X such that

Z ⊆ Y holds ComponentsY is finer than ComponentsZ.

(19) For every set X and for every finite family Y of subsets of X holds
⋃
ComponentsY = X.

(20) Let X be a set, Y be a finite family of subsets of X, and A, B be sets. If

A ∈ ComponentsY and B ∈ ComponentsY and A 6= B, then A ∩B = ∅.

Let X be a set and let Y be a finite family of subsets of X. We say that Y

is in general position if and only if:
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(Def. 3) ∅ /∈ ComponentsY.

We now state three propositions:

(21) Let X be a set and Y , Z be finite families of subsets of X. If Z is in

general position and Y ⊆ Z, then Y is in general position.

(22) For every non empty set X holds every empty family of subsets of X is

in general position.

(23) Let X be a non empty set and Y be a finite family of subsets of X. If Y

is in general position, then ComponentsY is a partition of X.

3. About Basis of Topological Spaces

We now state two propositions:

(24) For every non empty relational structure L holds ΩL is infs-closed and

sups-closed.

(25) For every non empty relational structure L holds ΩL has bottom and

top.

Let L be a non empty relational structure. Observe that ΩL is infs-closed

and sups-closed and has bottom and top.

The following propositions are true:

(26) For every continuous sup-semilattice L holds ΩL is a CLbasis of L.

(27) For every up-complete non empty poset L such that L is finite holds the

carrier of L = the carrier of CompactSublatt(L).

(28) For every lower-bounded sup-semilattice L and for every subset B of L

such that B is infinite holds B = finsups(B) .

(29) For every T0 non empty topological space T holds the carrier of T ⊆

the topology of T .

(30) Let T be a topological structure and X be a subset of T . Suppose X is

open. Let B be a finite family of subsets of T . Suppose B is a basis of T .

Let Y be a set. If Y ∈ ComponentsB, then X ∩ Y = ∅ or Y ⊆ X.

(31) For every T0 topological space T such that T is infinite holds every basis

of T is infinite.

(32) Let T be a non empty topological space. Suppose T is finite. Let B be a

basis of T and x be an element of T . Then
⋂
{A; A ranges over elements

of the topology of T : x ∈ A} ∈ B.
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