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The terminology and notation used in this paper are introduced in the following
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[21], [13], [19], [16], and [7].

1. Preliminaries

We follow the rules: k, m are natural numbers, x, X are sets, and N is a set

with non empty elements.

Let f be a function and let g be a non empty function. One can verify that

f+·g is non empty and g+·f is non empty.

Let f , g be finite functions. Note that f+·g is finite.

Next we state two propositions:

(1) For all functions f , g holds dom f ≈ dom g iff f ≈ g.

(2) For all finite functions f , g such that dom f ∩ dom g = ∅ holds

card(f+·g) = card f + card g.

Let f be a function and let A be a set. Note that f \A is function-like and

relation-like.

One can prove the following two propositions:

(3) For all functions f , g such that x ∈ dom f \dom g holds (f \g)(x) = f(x).

(4) For every non empty finite set F holds cardF − 1 = cardF −′ 1.

303
c© 2001 University of Białystok

ISSN 1426–2630



304 artur korniłowicz

2. Product Like Sets

Let S be a functional set. The functor
∏

S yields a function and is defined

as follows:

(Def. 1)(i) For every set x holds x ∈ dom
∏

S iff for every function f such that

f ∈ S holds x ∈ dom f and for every set i such that i ∈ dom
∏

S holds∏
S(i) = πiS if S is non empty,

(ii)
∏

S = ∅, otherwise.

The following two propositions are true:

(5) For every non empty functional set S holds dom
∏

S =
⋂
{dom f : f

ranges over elements of S}.

(6) For every non empty functional set S and for every set i such that

i ∈ dom
∏

S holds
∏

S(i) = {f(i) : f ranges over elements of S}.

Let S be a set. We say that S is product-like if and only if:

(Def. 2) There exists a function f such that S =
∏

f.

Let f be a function. One can check that
∏

f is product-like.

Let us mention that every set which is product-like is also functional and

has common domain.

Let us observe that there exists a set which is product-like and non empty.

The following four propositions are true:

(7) For every functional set S with common domain holds dom
∏

S =

DOM(S).

(8) For every functional set S and for every set i such that i ∈ dom
∏

S holds∏
S(i) = πiS.

(9) For every functional set S with common domain holds S ⊆
∏∏

S .

(10) For every non empty product-like set S holds S =
∏∏

S .

Let D be a set. Observe that every set of finite sequences of D is functional.

Let i be a natural number and let D be a set. One can check that Di has

common domain.

Let i be a natural number and let D be a set. Note that Di is product-like.

3. Properties of AMI-Struct

One can prove the following propositions:

(11) Let N be a set, S be an AMI over N , and F be a finite partial state of

S. Then F \X is a finite partial state of S.
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(12) Let S be a von Neumann definite AMI over N and F be a programmed

finite partial state of S. Then F \X is a programmed finite partial state

of S.

Let N be a set with non empty elements, let S be a von Neumann definite

AMI over N , let i1, i2 be instruction-locations of S, and let I1, I2 be elements

of the instructions of S. Then [i1 7−→ I1, i2 7−→ I2] is a finite partial state of S.

Let N be a set with non empty elements and let S be a halting AMI over

N . Observe that there exists an instruction of S which is halting.

We now state three propositions:

(13) Let S be a standard von Neumann definite AMI over N , F be a lower

programmed finite partial state of S, and G be a programmed finite partial

state of S. If domF = domG, then G is lower.

(14) Let S be a standard von Neumann definite AMI over N , F be a lower

programmed finite partial state of S, and f be an instruction-location of

S. If f ∈ domF, then locnum(f) < cardF.

(15) Let S be a standard von Neumann definite AMI over N and F be a lower

programmed finite partial state of S. Then domF = {ilS(k); k ranges over

natural numbers: k < cardF}.

Let N be a set, let S be an AMI over N , and let I be an element of the

instructions of S. The functor AddressPart(I) is defined by:

(Def. 3) AddressPart(I) = I2.

Let N be a set, let S be an AMI over N , and let I be an element of the

instructions of S. Then AddressPart(I) is a finite sequence of elements of
⋃

N ∪

the objects of S.

We now state the proposition

(16) Let N be a set, S be an AMI over N , and I, J be elements of the

instructions of S. If InsCode(I) = InsCode(J) and AddressPart(I) =

AddressPart(J), then I = J.

Let N be a set and let S be an AMI over N . We say that S is homogeneous

if and only if:

(Def. 4) For all instructions I, J of S such that InsCode(I) = InsCode(J) holds

domAddressPart(I) = domAddressPart(J).

The following proposition is true

(17) For every instruction I of STC(N) holds AddressPart(I) = 0.

Let N be a set, let S be an AMI over N , and let T be an instruction type

of S. The functor AddressPartsT is defined by:

(Def. 5) AddressPartsT = {AddressPart(I); I ranges over instructions of S:

InsCode(I) = T}.

Let N be a set, let S be an AMI over N , and let T be an instruction type

of S. One can check that AddressPartsT is functional.
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Let N be a set with non empty elements, let S be a von Neumann definite

AMI over N , and let I be an instruction of S. We say that I is explicit-jump-

instruction if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let f be a set. Suppose f ∈ JUMP(I). Then there exists a set k

such that k ∈ domAddressPart(I) and f = (AddressPart(I))(k) and
∏
AddressParts InsCode(I)(k) = the instruction locations of S.

We say that I has ins-loc-in-jump if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let f be a set. Given a set k such that k ∈ domAddressPart(I) and

f = (AddressPart(I))(k) and
∏
AddressParts InsCode(I)(k) = the instruction

locations of S. Then f ∈ JUMP(I).

Let N be a set with non empty elements and let S be a von Neumann definite

AMI over N . We say that S is explicit-jump-instruction if and only if:

(Def. 8) Every instruction of S is explicit-jump-instruction.

We say that S has ins-loc-in-jump if and only if:

(Def. 9) Every instruction of S has ins-loc-in-jump.

Let N be a set and let S be an AMI over N . We say that S has non trivial

instruction locations if and only if:

(Def. 10) The instruction locations of S are non trivial.

Let N be a set with non empty elements. Note that every von Neumann

definite AMI over N which is standard has non trivial instruction locations.

Let N be a set with non empty elements. One can verify that there exists a

von Neumann definite AMI over N which is standard.

Let N be a set with non empty elements and let S be an AMI over N with

non trivial instruction locations. Observe that the instruction locations of S is

non trivial.

The following proposition is true

(18) Let S be a standard von Neumann definite AMI over N and I be an

instruction of S. If for every instruction-location f of S holds NIC(I, f) =

{NextLoc f}, then JUMP(I) is empty.

Let N be a set with non empty elements and let I be an instruction of

STC(N). Observe that JUMP(I) is empty.

Let N be a set and let S be an AMI over N . We say that S is regular if and

only if:

(Def. 11) For every instruction type T of S holds AddressPartsT is product-like.

Next we state the proposition

(19) For every instruction type T of STC(N) holds AddressPartsT = {0}.

Let N be a set with non empty elements. Observe that STC(N) is homoge-

neous explicit-jump-instruction and regular and has ins-loc-in-jump.
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Let N be a set with non empty elements. Note that there exists a von

Neumann definite AMI over N which is standard, halting, realistic, steady-

programmed, programmable, explicit-jump-instruction, homogeneous, and re-

gular and has non trivial instruction locations and ins-loc-in-jump.

Let N be a set with non empty elements, let S be a regular AMI over N , and

let T be an instruction type of S. Observe that AddressPartsT is product-like.

Let N be a set with non empty elements, let S be a homogeneous AMI over

N , and let T be an instruction type of S. Observe that AddressPartsT has

common domain.

Next we state the proposition

(20) Let S be a homogeneous AMI over N , I be an instruction of

S, and x be a set. Suppose x ∈ domAddressPart(I). Suppose
∏
AddressParts InsCode(I)(x) = the instruction locations of S. Then

(AddressPart(I))(x) is an instruction-location of S.

Let N be a set with non empty elements and let S be an explicit-jump-

instruction von Neumann definite AMI over N . Note that every instruction of

S is explicit-jump-instruction.

Let N be a set with non empty elements and let S be a von Neumann

definite AMI over N with ins-loc-in-jump. Observe that every instruction of S

has ins-loc-in-jump.

The following proposition is true

(21) Let S be a realistic von Neumann definite AMI over N with non trivial

instruction locations and I be an instruction of S. If I is halting, then

JUMP(I) is empty.

Let N be a set with non empty elements, let S be a halting realistic von

Neumann definite AMI over N with non trivial instruction locations, and let I

be a halting instruction of S. One can verify that JUMP(I) is empty.

Let N be a set with non empty elements and let S be a von Neumann definite

AMI over N with non trivial instruction locations. Observe that there exists a

finite partial state of S which is non trivial and programmed.

Let N be a set with non empty elements and let S be a standard halting

von Neumann definite AMI over N . One can verify that every non empty pro-

grammed finite partial state of S which is trivial is also unique-halt.

Let N be a set, let S be an AMI over N , and let I be an instruction of S.

We say that I is instruction location free if and only if:

(Def. 12) For every set x such that x ∈ domAddressPart(I) holds
∏
AddressParts InsCode(I)(x) 6= the instruction locations of S.

The following propositions are true:

(22) Let S be a halting explicit-jump-instruction realistic von Neumann de-

finite AMI over N with non trivial instruction locations and I be an in-

struction of S. If I is instruction location free, then JUMP(I) is empty.
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(23) Let S be a realistic von Neumann definite AMI over N with ins-loc-in-

jump and non trivial instruction locations and I be an instruction of S. If

I is halting, then I is instruction location free.

LetN be a set with non empty elements and let S be a realistic von Neumann

definite AMI over N with ins-loc-in-jump and non trivial instruction locations.

Observe that every instruction of S which is halting is also instruction location

free.

We now state the proposition

(24) Let S be a standard von Neumann definite AMI over N with ins-loc-in-

jump and I be an instruction of S. If I is sequential, then I is instruction

location free.

Let N be a set with non empty elements and let S be a standard von

Neumann definite AMI over N with ins-loc-in-jump. One can check that every

instruction of S which is sequential is also instruction location free.

Let N be a set with non empty elements and let S be a standard halting

von Neumann definite AMI over N . The functor StopS yielding a finite partial

state of S is defined by:

(Def. 13) StopS = ilS(0)7−→. haltS .

Let N be a set with non empty elements and let S be a standard halting

von Neumann definite AMI over N . Note that StopS is lower non empty pro-

grammed and trivial.

Let N be a set with non empty elements and let S be a standard realistic

halting von Neumann definite AMI over N . One can check that StopS is closed.

Let N be a set with non empty elements and let S be a standard halting

steady-programmed von Neumann definite AMI over N . Note that StopS is

autonomic.

We now state three propositions:

(25) For every standard halting von Neumann definite AMI S over N holds

card StopS = 1.

(26) Let S be a standard halting von Neumann definite AMI over N and F

be a pre-Macro of S. If cardF = 1, then F = StopS.

(27) For every standard halting von Neumann definite AMI S over N holds

LastLoc StopS = ilS(0).

Let N be a set with non empty elements and let S be a standard halting von

Neumann definite AMI over N . Note that StopS is halt-ending and unique-halt.

Let N be a set with non empty elements and let S be a standard halting

von Neumann definite AMI over N . Then StopS is a pre-Macro of S.
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4. On the Composition of Macro Instructions

Let N be a set with non empty elements, let S be a homogeneous regular

standard von Neumann definite AMI over N , let I be an element of the instruc-

tions of S, and let k be a natural number. The functor IncAddr(I, k) yielding

an instruction of S is defined by the conditions (Def. 14).

(Def. 14)(i) InsCode(IncAddr(I, k)) = InsCode(I),

(ii) domAddressPart(IncAddr(I, k)) = domAddressPart(I), and

(iii) for every set n such that n ∈ domAddressPart(I) holds if
∏
AddressParts InsCode(I)(n) = the instruction locations of S, then there exi-

sts an instruction-location f of S such that f = (AddressPart(I))(n)

and (AddressPart(IncAddr(I, k)))(n) = ilS(k + locnum(f)) and if
∏
AddressParts InsCode(I)(n) 6= the instruction locations of S, then

(AddressPart(IncAddr(I, k)))(n) = (AddressPart(I))(n).

Next we state three propositions:

(28) Let S be a homogeneous regular standard von Neumann definite AMI

over N and I be an element of the instructions of S. Then IncAddr(I, 0) =

I.

(29) Let S be a homogeneous regular standard von Neumann definite AMI

over N and I be an instruction of S. If I is instruction location free, then

IncAddr(I, k) = I.

(30) Let S be a halting standard realistic homogeneous regular von Neumann

definite AMI over N with ins-loc-in-jump. Then IncAddr(haltS , k) =

haltS .

Let N be a set with non empty elements, let S be a halting standard realistic

homogeneous regular von Neumann definite AMI over N with ins-loc-in-jump,

let I be a halting instruction of S, and let k be a natural number. Observe that

IncAddr(I, k) is halting.

We now state several propositions:

(31) Let S be a homogeneous regular standard von Neumann definite AMI

over N and I be an instruction of S. Then AddressParts InsCode(I) =

AddressParts InsCode(IncAddr(I, k)).

(32) Let S be a homogeneous regular standard von Neumann definite AMI

over N and I, J be instructions of S. Given a natural number k such that

IncAddr(I, k) = IncAddr(J, k). Suppose
∏
AddressParts InsCode(I)(x) = the

instruction locations of S. Then
∏
AddressParts InsCode(J)(x) = the instruc-

tion locations of S.

(33) Let S be a homogeneous regular standard von Neumann definite AMI

over N and I, J be instructions of S. Given a natural number k such that

IncAddr(I, k) = IncAddr(J, k). Suppose
∏
AddressParts InsCode(I)(x) 6= the
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instruction locations of S. Then
∏
AddressParts InsCode(J)(x) 6= the instruc-

tion locations of S.

(34) Let S be a homogeneous regular standard von Neumann definite AMI

over N and I, J be instructions of S. If there exists a natural number k

such that IncAddr(I, k) = IncAddr(J, k), then I = J.

(35) Let S be a homogeneous regular standard halting realistic von Neumann

definite AMI over N with ins-loc-in-jump and I be an instruction of S. If

IncAddr(I, k) = haltS , then I = haltS .

(36) Let S be a homogeneous regular standard halting realistic von Neumann

definite AMI over N with ins-loc-in-jump and I be an instruction of S. If

I is sequential, then IncAddr(I, k) is sequential.

(37) Let S be a homogeneous regular standard von Neumann definite AMI

over N and I be an instruction of S. Then IncAddr(IncAddr(I, k),m) =

IncAddr(I, k + m).

Let N be a set with non empty elements, let S be a homogeneous regular

standard von Neumann definite AMI over N , let p be a programmed finite

partial state of S, and let k be a natural number. The functor IncAddr(p, k)

yields a finite partial state of S and is defined as follows:

(Def. 15) dom IncAddr(p, k) = dom p and for every natural number m such that

ilS(m) ∈ dom p holds (IncAddr(p, k))(ilS(m)) = IncAddr(πilS(m)p, k).

Let N be a set with non empty elements, let S be a homogeneous regular

standard von Neumann definite AMI over N , let F be a programmed finite par-

tial state of S, and let k be a natural number. One can check that IncAddr(F, k)

is programmed.

Let N be a set with non empty elements, let S be a homogeneous regular

standard von Neumann definite AMI over N , let F be an empty programmed

finite partial state of S, and let k be a natural number. One can verify that

IncAddr(F, k) is empty.

Let N be a set with non empty elements, let S be a homogeneous regular

standard von Neumann definite AMI over N , let F be a non empty programmed

finite partial state of S, and let k be a natural number. One can verify that

IncAddr(F, k) is non empty.

Let N be a set with non empty elements, let S be a homogeneous regular

standard von Neumann definite AMI over N , let F be a lower programmed

finite partial state of S, and let k be a natural number. One can verify that

IncAddr(F, k) is lower.

The following propositions are true:

(38) Let S be a homogeneous regular standard von Neumann definite

AMI over N and F be a programmed finite partial state of S. Then

IncAddr(F, 0) = F.
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(39) Let S be a homogeneous regular standard von Neumann definite AMI

over N and F be a lower programmed finite partial state of S. Then

IncAddr(IncAddr(F, k),m) = IncAddr(F, k + m).

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , let p be a finite partial state of S, and let k be a natural

number. The functor Shift(p, k) yielding a finite partial state of S is defined by

the conditions (Def. 16).

(Def. 16)(i) domShift(p, k) = {ilS(m + k);m ranges over natural numbers:

ilS(m) ∈ dom p}, and

(ii) for every natural number m such that ilS(m) ∈ dom p holds

(Shift(p, k))(ilS(m + k)) = p(ilS(m)).

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , let F be a finite partial state of S, and let k be a natural

number. Note that Shift(F, k) is programmed.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , let F be an empty finite partial state of S, and let k be a

natural number. One can check that Shift(F, k) is empty.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , let F be a non empty programmed finite partial state of

S, and let k be a natural number. One can check that Shift(F, k) is non empty.

We now state four propositions:

(40) Let S be a standard von Neumann definite AMI over N and F be a

programmed finite partial state of S. Then Shift(F, 0) = F.

(41) Let S be a standard von Neumann definite AMI over N , F be a finite

partial state of S, and k be a natural number. If k > 0, then ilS(0) /∈

domShift(F, k).

(42) Let S be a standard von Neumann definite AMI over N and F be a

finite partial state of S. Then Shift(Shift(F,m), k) = Shift(F, m + k).

(43) Let S be a standard von Neumann definite AMI over N and F be a

programmed finite partial state of S. Then domF ≈ domShift(F, k).

Let N be a set with non empty elements, let S be a homogeneous regular

standard von Neumann definite AMI over N , and let I be an instruction of S.

We say that I is IC-good if and only if:

(Def. 17) For every natural number k and for all states s1, s2 of S such that s2 =

s1+·(ICS 7−→
. (IC(s1) + k)) holds ICExec(I,s1) + k = ICExec(IncAddr(I,k),s2).

Let N be a set with non empty elements and let S be a homogeneous regular

standard von Neumann definite AMI over N . We say that S is IC-good if and

only if:

(Def. 18) Every instruction of S is IC-good.
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Let N be a set with non empty elements, let S be an AMI over N , and let

I be an instruction of S. We say that I is Exec-preserving if and only if the

condition (Def. 19) is satisfied.

(Def. 19) Let s1, s2 be states of S. Suppose s1 and s2 are equal outside the instruc-

tion locations of S. Then Exec(I, s1) and Exec(I, s2) are equal outside the

instruction locations of S.

Let N be a set with non empty elements and let S be an AMI over N . We

say that S is Exec-preserving if and only if:

(Def. 20) Every instruction of S is Exec-preserving.

One can prove the following proposition

(44) Let S be a homogeneous regular standard von Neumann definite AMI

over N with ins-loc-in-jump and I be an instruction of S. If I is sequential,

then I is IC-good.

Let N be a set with non empty elements and let S be a homogeneous regular

standard von Neumann definite AMI over N with ins-loc-in-jump. Observe that

every instruction of S which is sequential is also IC-good.

The following proposition is true

(45) Let S be a homogeneous regular standard realistic von Neumann definite

AMI over N with ins-loc-in-jump and I be an instruction of S. If I is

halting, then I is IC-good.

Let N be a set with non empty elements and let S be a homogeneous regular

standard realistic von Neumann definite AMI over N with ins-loc-in-jump. Note

that every instruction of S which is halting is also IC-good.

The following proposition is true

(46) For every AMI S over N and for every instruction I of S such that I is

halting holds I is Exec-preserving.

Let N be a set with non empty elements and let S be an AMI over N .

Observe that every instruction of S which is halting is also Exec-preserving.

Let N be a set with non empty elements. One can verify that STC(N) is

IC-good and Exec-preserving.

Let N be a set with non empty elements. One can check that there exists

a homogeneous regular standard von Neumann definite AMI over N which is

halting, realistic, steady-programmed, programmable, explicit-jump-instruction,

IC-good, and Exec-preserving and has ins-loc-in-jump and non trivial instruc-

tion locations.

Let N be a set with non empty elements and let S be an IC-good homo-

geneous regular standard von Neumann definite AMI over N . Note that every

instruction of S is IC-good.

Let N be a set with non empty elements and let S be an Exec-preserving

AMI over N . Note that every instruction of S is Exec-preserving.
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Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let F be a non empty programmed finite partial state

of S. The functor CutLastLocF yielding a finite partial state of S is defined by:

(Def. 21) CutLastLocF = F \ (LastLocF 7−→. F (LastLocF )).

The following propositions are true:

(47) Let S be a standard von Neumann definite AMI over N and F be a non

empty programmed finite partial state of S. Then domCutLastLocF =

domF \ {LastLocF}.

(48) Let S be a standard von Neumann definite AMI over N and F be

a non empty programmed finite partial state of S. Then domF =

domCutLastLocF ∪ {LastLocF}.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let F be a non empty trivial programmed finite partial

state of S. Note that CutLastLocF is empty.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let F be a non empty programmed finite partial state

of S. Observe that CutLastLocF is programmed.

Let N be a set with non empty elements, let S be a standard von Neumann

definite AMI over N , and let F be a lower non empty programmed finite partial

state of S. Note that CutLastLocF is lower.

We now state three propositions:

(49) Let S be a standard von Neumann definite AMI over N and F be a non

empty programmed finite partial state of S. Then cardCutLastLocF =

cardF − 1.

(50) Let S be a homogeneous regular standard von Neumann definite AMI

over N , F be a lower non empty programmed finite partial state of

S, and G be a non empty programmed finite partial state of S. Then

domCutLastLocF ∩ domShift(IncAddr(G, cardF −′ 1), cardF −′ 1) = ∅.

(51) Let S be a standard halting von Neumann definite AMI over N , F

be a unique-halt lower non empty programmed finite partial state of S,

and I be an instruction-location of S. If I ∈ domCutLastLocF, then

(CutLastLocF )(I) 6= haltS .

Let N be a set with non empty elements, let S be a homogeneous regular

standard von Neumann definite AMI over N , and let F , G be non empty pro-

grammed finite partial states of S. The functor F ; G yields a finite partial state

of S and is defined by:

(Def. 22) F ; G = CutLastLocF+·Shift(IncAddr(G, cardF −′ 1), cardF −′ 1).

Let N be a set with non empty elements, let S be a homogeneous regu-

lar standard von Neumann definite AMI over N , and let F , G be non empty
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programmed finite partial states of S. Note that F ; G is non empty and pro-

grammed.

We now state the proposition

(52) Let S be a homogeneous regular standard von Neumann definite AMI

over N and F , G be lower non empty programmed finite partial states of

S. Then card(F ; G) = (cardF + cardG)− 1 and card(F ; G) = (cardF +

cardG)−′ 1.

Let N be a set with non empty elements, let S be a homogeneous regular

standard von Neumann definite AMI over N , and let F , G be lower non empty

programmed finite partial states of S. Observe that F ; G is lower.

We now state four propositions:

(53) Let S be a homogeneous regular standard von Neumann definite AMI

over N and F , G be lower non empty programmed finite partial states of

S. Then domF ⊆ dom(F ; G).

(54) Let S be a homogeneous regular standard von Neumann definite AMI

over N and F , G be lower non empty programmed finite partial states of

S. Then CutLastLocF ⊆ CutLastLocF ; G.

(55) Let S be a homogeneous regular standard von Neumann definite AMI

over N and F , G be lower non empty programmed finite partial states of

S. Then (F ; G)(LastLocF ) = (IncAddr(G, cardF −′ 1))(ilS(0)).

(56) Let S be a homogeneous regular standard von Neumann definite AMI

over N , F , G be lower non empty programmed finite partial states of S,

and f be an instruction-location of S. If locnum(f) < cardF − 1, then

(IncAddr(F, cardF −′ 1))(f) = (IncAddr(F ; G, cardF −′ 1))(f).

Let N be a set with non empty elements, let S be a homogeneous regular

standard realistic halting steady-programmed von Neumann definite AMI over

N with ins-loc-in-jump, and let F , G be halt-ending lower non empty program-

med finite partial states of S. Observe that F ; G is halt-ending.

Let N be a set with non empty elements, let S be a homogeneous regular

standard realistic halting steady-programmed von Neumann definite AMI over

N with ins-loc-in-jump, and let F , G be halt-ending unique-halt lower non

empty programmed finite partial states of S. Observe that F ; G is unique-halt.

Let N be a set with non empty elements, let S be a homogeneous regular

standard realistic halting steady-programmed von Neumann definite AMI over

N with ins-loc-in-jump, and let F , G be pre-Macros of S. Then F ; G is a pre-

Macro of S.

Let N be a set with non empty elements, let S be a realistic halting steady-

programmed IC-good Exec-preserving homogeneous regular standard von Neu-

mann definite AMI over N , and let F , G be closed lower non empty programmed

finite partial states of S. Observe that F ; G is closed.

We now state several propositions:



on the composition of macro instructions of . . . 315

(57) Let S be a homogeneous regular standard halting realistic von Neumann

definite AMI over N with ins-loc-in-jump. Then IncAddr(StopS, k) =

StopS.

(58) For every standard halting von Neumann definite AMI S over N holds

Shift(StopS, k) = ilS(k)7−→. haltS .

(59) Let S be a homogeneous regular standard halting realistic von Neumann

definite AMI overN with ins-loc-in-jump and F be a pre-Macro of S. Then

F ; StopS = F.

(60) Let S be a homogeneous regular standard halting von Neumann definite

AMI over N and F be a pre-Macro of S. Then StopS; F = F.

(61) Let S be a homogeneous regular standard realistic halting steady-

programmed von Neumann definite AMI over N with ins-loc-in-jump and

F , G, H be pre-Macros of S. Then (F ; G); H = F ; (G; H).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[10] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60,
1996.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[12] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[13] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,
1(3):495–500, 1990.

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[18] Andrzej Trybulec, Piotr Rudnicki, and Artur Korniłowicz. Standard ordering of instruc-
tion locations. Formalized Mathematics, 9(2):291–301, 2001.

[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.



316 artur korniłowicz

[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received April 14, 2000


