FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001
University of Bialystok

On the Composition of Macro Instructions
of Standard Computers

Artur Kornitowicz
University of Bialtystok

MML Identifier: AMISTD_2.

The terminology and notation used in this paper are introduced in the following
papers: [18], [11], [17], [12], [20], [1], [3], [14], [4], [8], [15], [5], [6], [2], [10], [9],
[21], [13], [19], [16], and [7].

1. PRELIMINARIES

We follow the rules: k, m are natural numbers, z, X are sets, and NV is a set
with non empty elements.

Let f be a function and let g be a non empty function. One can verify that
f+-g is non empty and g+-f is non empty.

Let f, g be finite functions. Note that f+-¢ is finite.

Next we state two propositions:

(1) For all functions f, g holds dom f ~ domg iff f ~ g.
(2) For all finite functions f, g such that dom f N domg = { holds
card(f+-g) = card f + card g.
Let f be a function and let A be a set. Note that f\ A is function-like and
relation-like.
One can prove the following two propositions:
(3) For all functions f, g such that z € dom f\dom g holds (f\g)(z) = f(z).

(4) For every non empty finite set F' holds card F — 1 = card F —' 1.

@ 2001 University of Bialystok
303 ISSN 1426-2630

304 ARTUR KORNILOWICZ

2. ProbpucCT LIKE SETS

Let S be a functional set. The functor [[¢ yields a function and is defined
as follows:

(Def. 1)(i) For every set « holds « € dom]][g iff for every function f such that
f € S holds x € dom f and for every set ¢ such that i € dom[]g holds
[[g(¢) = mS if S is non empty,

(i) [Ig =0, otherwise.
The following two propositions are true:
(5) For every non empty functional set S holds dom[[¢ = ({dom f : f
ranges over elements of S'}.
(6) For every non empty functional set S and for every set i such that
i € dom][]g holds [[¢(i) = {f() : f ranges over elements of S}.
Let S be a set. We say that S is product-like if and only if:
(Def. 2) There exists a function f such that S =[] f.
Let f be a function. One can check that [] f is product-like.
Let us mention that every set which is product-like is also functional and
has common domain.
Let us observe that there exists a set which is product-like and non empty.
The following four propositions are true:
(7) For every functional set S with common domain holds dom[[¢ =
DOM(S).
(8) For every functional set S and for every set i such that i € dom []¢ holds
[I5(i) = mS.
(9) For every functional set S with common domain holds S C [[]]g -
(10) For every non empty product-like set S holds S =[]]]g.
Let D be a set. Observe that every set of finite sequences of D is functional.
Let i be a natural number and let D be a set. One can check that D’ has
common domain.
Let ¢ be a natural number and let D be a set. Note that D is product-like.

3. PROPERTIES OF AMI-STRUCT

One can prove the following propositions:

(11) Let N be a set, S be an AMI over N, and F' be a finite partial state of
S. Then F'\ X is a finite partial state of S.

ON THE COMPOSITION OF MACRO INSTRUCTIONS OF ... 305

(12) Let S be a von Neumann definite AMI over N and F' be a programmed
finite partial state of S. Then F'\ X is a programmed finite partial state
of S.

Let N be a set with non empty elements, let S be a von Neumann definite
AMI over N, let i1, io be instruction-locations of S, and let I1, Is be elements
of the instructions of S. Then [i; — I3,i3 — I5] is a finite partial state of S.

Let N be a set with non empty elements and let S be a halting AMI over
N. Observe that there exists an instruction of S which is halting.

We now state three propositions:

(13) Let S be a standard von Neumann definite AMI over N, F' be a lower
programmed finite partial state of S, and G be a programmed finite partial
state of S. If dom F' = dom G, then G is lower.

(14) Let S be a standard von Neumann definite AMI over N, F' be a lower
programmed finite partial state of S, and f be an instruction-location of
S. If f € dom F, then locnum(f) < card F.

(15) Let S be a standard von Neumann definite AMI over N and F' be a lower
programmed finite partial state of S. Then dom F' = {ilg(k); k ranges over
natural numbers: k < card F'}.

Let N be a set, let S be an AMI over N, and let I be an element of the
instructions of S. The functor AddressPart(I) is defined by:

(Def. 3) AddressPart(I) = I5.

Let N be a set, let S be an AMI over N, and let I be an element of the
instructions of S. Then AddressPart(/) is a finite sequence of elements of | J N U
the objects of S.

We now state the proposition

(16) Let N be a set, S be an AMI over N, and I, J be elements of the
instructions of S. If InsCode(/) = InsCode(J) and AddressPart(l) =
AddressPart(J), then I = J.

Let N be a set and let S be an AMI over N. We say that S is homogeneous
if and only if:

(Def. 4) For all instructions I, J of S such that InsCode(I) = InsCode(J) holds
dom AddressPart(I) = dom AddressPart(.J).

The following proposition is true
(17) For every instruction I of STC(NN) holds AddressPart(/) = 0.
Let N be a set, let S be an AMI over N, and let T" be an instruction type
of S. The functor AddressPartsT is defined by:
(Def. 5) AddressPartsT = {AddressPart(/); I ranges over instructions of S:
InsCode(I) =T'}.
Let N be a set, let S be an AMI over N, and let T" be an instruction type
of S. One can check that AddressPartsT is functional.

306 ARTUR KORNILOWICZ

Let N be a set with non empty elements, let S be a von Neumann definite
AMI over N, and let I be an instruction of S. We say that [is explicit-jump-
instruction if and only if the condition (Def. 6) is satisfied.
(Def. 6) Let f be a set. Suppose f € JUMP(I). Then there exists a set k
such that k£ € dom AddressPart(/) and f = (AddressPart(/))(k) and
[T addressParts nsCode(r) (k) = the instruction locations of S.
We say that I has ins-loc-in-jump if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let f be a set. Given a set k such that k& € dom AddressPart(/) and
[= (AddressPart(I))(k) and []qaressparts msCode(r) (K) = the instruction
locations of S. Then f € JUMP([).

Let N be a set with non empty elements and let .S be a von Neumann definite
AMI over N. We say that S is explicit-jump-instruction if and only if:

(Def. 8) Every instruction of S is explicit-jump-instruction.
We say that S has ins-loc-in-jump if and only if:
(Def. 9) Every instruction of S has ins-loc-in-jump.

Let N be a set and let S be an AMI over N. We say that .S has non trivial
instruction locations if and only if:

(Def. 10) The instruction locations of S are non trivial.

Let N be a set with non empty elements. Note that every von Neumann
definite AMI over N which is standard has non trivial instruction locations.

Let N be a set with non empty elements. One can verify that there exists a
von Neumann definite AMI over N which is standard.

Let N be a set with non empty elements and let S be an AMI over N with
non trivial instruction locations. Observe that the instruction locations of S is
non trivial.

The following proposition is true

(18) Let S be a standard von Neumann definite AMI over N and I be an
instruction of S. If for every instruction-location f of S holds NIC(Z, f) =
{NextLoc f}, then JUMP(I) is empty.

Let N be a set with non empty elements and let I be an instruction of
STC(N). Observe that JUMP(I) is empty.

Let N be a set and let S be an AMI over N. We say that S is regular if and
only if:

(Def. 11) For every instruction type T of S holds AddressPartsT is product-like.

Next we state the proposition

(19) For every instruction type 17" of STC(NN) holds AddressPartsT = {0}.

Let N be a set with non empty elements. Observe that STC(V) is homoge-
neous explicit-jump-instruction and regular and has ins-loc-in-jump.

ON THE COMPOSITION OF MACRO INSTRUCTIONS OF ... 307

Let N be a set with non empty elements. Note that there exists a von
Neumann definite AMI over NN which is standard, halting, realistic, steady-
programmed, programmable, explicit-jump-instruction, homogeneous, and re-
gular and has non trivial instruction locations and ins-loc-in-jump.

Let N be a set with non empty elements, let .S be a regular AMI over N, and
let T' be an instruction type of S. Observe that AddressPartsT is product-like.

Let N be a set with non empty elements, let S be a homogeneous AMI over
N, and let T be an instruction type of S. Observe that AddressPartsT has
common domain.

Next we state the proposition

(20) Let S be a homogeneous AMI over N, I be an instruction of
S, and z be a set. Suppose x € dom AddressPart(l). Suppose
[T AddressParts msCode(r)(#) = the instruction locations of S. Then
(AddressPart(I))(x) is an instruction-location of S.

Let N be a set with non empty elements and let S be an explicit-jump-
instruction von Neumann definite AMI over N. Note that every instruction of
S is explicit-jump-instruction.

Let N be a set with non empty elements and let S be a von Neumann
definite AMI over N with ins-loc-in-jump. Observe that every instruction of S
has ins-loc-in-jump.

The following proposition is true

(21) Let S be a realistic von Neumann definite AMI over N with non trivial
instruction locations and I be an instruction of S. If I is halting, then
JUMP(I) is empty.

Let N be a set with non empty elements, let S be a halting realistic von
Neumann definite AMI over N with non trivial instruction locations, and let I
be a halting instruction of S. One can verify that JUMP(I) is empty.

Let NV be a set with non empty elements and let S be a von Neumann definite
AMI over N with non trivial instruction locations. Observe that there exists a
finite partial state of .S which is non trivial and programmed.

Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N. One can verify that every non empty pro-
grammed finite partial state of S which is trivial is also unique-halt.

Let N be a set, let S be an AMI over N, and let I be an instruction of S.
We say that I is instruction location free if and only if:

(Def. 12) For every set =z such that =z € domAddressPart(/) holds
[T AddressParts nsCode(r) (%) # the instruction locations of S.

The following propositions are true:

(22) Let S be a halting explicit-jump-instruction realistic von Neumann de-
finite AMI over N with non trivial instruction locations and I be an in-
struction of S. If I is instruction location free, then JUMP(/) is empty.

308 ARTUR KORNILOWICZ

(23) Let S be a realistic von Neumann definite AMI over N with ins-loc-in-
jump and non trivial instruction locations and I be an instruction of S. If
1 is halting, then [is instruction location free.

Let N be a set with non empty elements and let S be a realistic von Neumann
definite AMI over N with ins-loc-in-jump and non trivial instruction locations.
Observe that every instruction of S which is halting is also instruction location
free.

We now state the proposition

(24) Let S be a standard von Neumann definite AMI over N with ins-loc-in-
jump and I be an instruction of S. If I is sequential, then [is instruction
location free.

Let N be a set with non empty elements and let S be a standard von
Neumann definite AMI over N with ins-loc-in-jump. One can check that every
instruction of S which is sequential is also instruction location free.

Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N. The functor Stop S yielding a finite partial
state of S is defined by:

(Def. 13) Stop S =ilg(0)——haltg.

Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N. Note that Stop S is lower non empty pro-
grammed and trivial.

Let N be a set with non empty elements and let S be a standard realistic
halting von Neumann definite AMI over N. One can check that Stop S is closed.

Let N be a set with non empty elements and let S be a standard halting
steady-programmed von Neumann definite AMI over N. Note that Stop S is
autonomic.

We now state three propositions:

(25) For every standard halting von Neumann definite AMI S over N holds
card Stop S = 1.
(26) Let S be a standard halting von Neumann definite AMI over N and F'
be a pre-Macro of S. If card F = 1, then F' = Stop S.
(27) For every standard halting von Neumann definite AMI S over N holds
LastLoc Stop S = ilg(0).
Let N be a set with non empty elements and let S be a standard halting von
Neumann definite AMI over V. Note that Stop S is halt-ending and unique-halt.
Let N be a set with non empty elements and let S be a standard halting
von Neumann definite AMI over N. Then Stop S is a pre-Macro of S.

ON THE COMPOSITION OF MACRO INSTRUCTIONS OF ... 309

4. ON THE COMPOSITION OF MACRO INSTRUCTIONS

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N, let I be an element of the instruc-
tions of S, and let k& be a natural number. The functor IncAddr(/, k) yielding
an instruction of S is defined by the conditions (Def. 14).

(Def. 14)(i) InsCode(IncAddr(7,k)) = InsCode(I),

(ii) dom AddressPart(IncAddr(/,k)) = dom AddressPart(/), and

(iii) for every set m such that n € dom AddressPart(I) holds if
[T AddressParts nsCode(r) () = the instruction locations of S, then there exi-
sts an instruction-location f of S such that f = (AddressPart(l))(n)
and (AddressPart(IncAddr(Z,k)))(n) = ilg(k + locnum(f)) and if
[T AddressParts msCode(r) ()~ 7 the instruction locations of S, then
(AddressPart(IncAddr(Z, k)))(n) = (AddressPart(I))(n).

Next we state three propositions:

(28) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I be an element of the instructions of S. Then IncAddr(7,0) =
I.

(29) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I be an instruction of S. If I is instruction location free, then
IncAddr(1,k) = I.

(30) Let S be a halting standard realistic homogeneous regular von Neumann
definite AMI over N with ins-loc-in-jump. Then IncAddr(haltg, k) =
haltg.

Let N be a set with non empty elements, let S be a halting standard realistic
homogeneous regular von Neumann definite AMI over N with ins-loc-in-jump,
let I be a halting instruction of S, and let k£ be a natural number. Observe that
IncAddr(7, k) is halting.

We now state several propositions:

(31) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I be an instruction of S. Then AddressPartsInsCode(I) =
AddressParts InsCode(IncAddr (7, k)).

(32) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I, J be instructions of S. Given a natural number k such that
IIlCAddI‘(I, k) = IIlCAddI‘(J, k) Suppose HAddressParts InsCode(I) (x) = the
instruction locations of S. Then [],gqressParts nsCode(s)(#) = the instruc-
tion locations of S.

(33) Let S be a homogeneous regular standard von Neumann definite AMI

over N and I, J be instructions of S. Given a natural number &k such that
IncAddr(Z, k) = IncAddr(J, k). Suppose [aqdressParts nsCode(r)(€) # the

310 ARTUR KORNILOWICZ

instruction locations of S. Then [],qqessparts nsCode(s) () # the instruc-
tion locations of S.

(34) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I, J be instructions of S. If there exists a natural number &
such that IncAddr(7, k) = IncAddr(J, k), then I = J.

(35) Let S be a homogeneous regular standard halting realistic von Neumann
definite AMI over N with ins-loc-in-jump and I be an instruction of S. If
IncAddr(/, k) = haltg, then I = haltg.

(36) Let S be a homogeneous regular standard halting realistic von Neumann
definite AMI over N with ins-loc-in-jump and I be an instruction of S. If
I is sequential, then IncAddr(7, k) is sequential.

(37) Let S be a homogeneous regular standard von Neumann definite AMI
over N and I be an instruction of S. Then IncAddr(IncAddr(I, k), m) =
IncAddr(Z, k +m).

Let N be a set with non empty elements, let .S be a homogeneous regular
standard von Neumann definite AMI over N, let p be a programmed finite
partial state of S, and let k£ be a natural number. The functor IncAddr(p, k)
yields a finite partial state of S and is defined as follows:

(Def. 15) dom IncAddr(p, k) = domp and for every natural number m such that
ils(m) € domp holds (IncAddr(p, k))(ils(m)) = IncAddr (g (), k)-

Let N be a set with non empty elements, let .S be a homogeneous regular
standard von Neumann definite AMI over N, let F' be a programmed finite par-
tial state of S, and let k be a natural number. One can check that IncAddr(F, k)
is programmed.

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N, let F' be an empty programmed
finite partial state of S, and let £ be a natural number. One can verify that
IncAddr(F, k) is empty.

Let N be a set with non empty elements, let S be a homogeneous regular
standard von Neumann definite AMI over N, let F' be a non empty programmed
finite partial state of S, and let £ be a natural number. One can verify that
IncAddr(F, k) is non empty.

Let N be a set with non empty elements, let .S be a homogeneous regular
standard von Neumann definite AMI over N, let F' be a lower programmed
finite partial state of S, and let £ be a natural number. One can verify that
IncAddr(F, k) is lower.

The following propositions are true:
(38) Let S be a homogeneous regular standard von Neumann definite

AMI over N and F be a programmed finite partial state of S. Then
IncAddr(F,0) = F.

ON THE COMPOSITION OF MACRO INSTRUCTIONS OF ... 311

(39) Let S be a homogeneous regular standard von Neumann definite AMI

over N and F be a lower programmed finite partial state of S. Then
IncAddr(IncAddr(F, k), m) = IncAddr(F, k + m).

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N, let p be a finite partial state of S, and let k be a natural
number. The functor Shift(p, k) yielding a finite partial state of S is defined by
the conditions (Def. 16).

(Def. 16)(1) dom Shift(p,k) = {ils(m + k);m ranges over natural numbers:
ilg(m) € dom p}, and

(i) for every natural number m such that ilg(m) € domp holds

(Shift(p, k))(ils(m + k)) = p(ils(m)).

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N, let F' be a finite partial state of S, and let k be a natural
number. Note that Shift(F, k) is programmed.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N, let F' be an empty finite partial state of S, and let k be a
natural number. One can check that Shift(F, k) is empty.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N, let F' be a non empty programmed finite partial state of
S, and let k£ be a natural number. One can check that Shift(F, k) is non empty.

We now state four propositions:

(40) Let S be a standard von Neumann definite AMI over N and F be a
programmed finite partial state of S. Then Shift(F,0) = F.

(41) Let S be a standard von Neumann definite AMI over N, F' be a finite
partial state of S, and k be a natural number. If £ > 0, then ilg(0) ¢
dom Shift(F, k).

(42) Let S be a standard von Neumann definite AMI over N and F be a
finite partial state of S. Then Shift(Shift(F,m), k) = Shift(F, m + k).
(43) Let S be a standard von Neumann definite AMI over N and F be a
programmed finite partial state of S. Then dom F' ~ dom Shift(F’ k).

Let N be a set with non empty elements, let .S be a homogeneous regular
standard von Neumann definite AMI over N, and let I be an instruction of S.
We say that I is IC-good if and only if:

(Def. 17) For every natural number k and for all states si, sy of S such that sy =
51+ (ICs—=—(ICy,) + k)) holds ICgyec(1,6,) + k = ICEyec(IncAddr(1,k),s2)-

Let N be a set with non empty elements and let .S be a homogeneous regular

standard von Neumann definite AMI over N. We say that S is IC-good if and
only if:

(Def. 18) Every instruction of S is IC-good.

312 ARTUR KORNILOWICZ

Let N be a set with non empty elements, let S be an AMI over N, and let
I be an instruction of S. We say that I is Exec-preserving if and only if the
condition (Def. 19) is satisfied.

(Def. 19) Let s1, s2 be states of S. Suppose s; and sy are equal outside the instruc-
tion locations of S. Then Exec(I, s1) and Exec(I, s2) are equal outside the
instruction locations of S.

Let N be a set with non empty elements and let S be an AMI over N. We
say that S is Exec-preserving if and only if:

(Def. 20) Every instruction of S is Exec-preserving.
One can prove the following proposition

(44) Let S be a homogeneous regular standard von Neumann definite AMI
over N with ins-loc-in-jump and [be an instruction of S. If I is sequential,
then I is IC-good.

Let N be a set with non empty elements and let .S be a homogeneous regular
standard von Neumann definite AMI over NV with ins-loc-in-jump. Observe that
every instruction of S which is sequential is also IC-good.

The following proposition is true

(45) Let S be a homogeneous regular standard realistic von Neumann definite
AMI over N with ins-loc-in-jump and I be an instruction of S. If I is
halting, then I is IC-good.

Let N be a set with non empty elements and let S be a homogeneous regular
standard realistic von Neumann definite AMI over N with ins-loc-in-jump. Note
that every instruction of S which is halting is also IC-good.

The following proposition is true

(46) For every AMI S over N and for every instruction I of S such that I is
halting holds I is Exec-preserving.

Let N be a set with non empty elements and let S be an AMI over N.
Observe that every instruction of S which is halting is also Exec-preserving.

Let N be a set with non empty elements. One can verify that STC(N) is
IC-good and Exec-preserving.

Let N be a set with non empty elements. One can check that there exists
a homogeneous regular standard von Neumann definite AMI over N which is
halting, realistic, steady-programmed, programmable, explicit-jump-instruction,
IC-good, and Exec-preserving and has ins-loc-in-jump and non trivial instruc-
tion locations.

Let N be a set with non empty elements and let S be an IC-good homo-
geneous regular standard von Neumann definite AMI over N. Note that every
instruction of S is IC-good.

Let N be a set with non empty elements and let S be an Exec-preserving
AMI over N. Note that every instruction of S is Exec-preserving.

ON THE COMPOSITION OF MACRO INSTRUCTIONS OF ... 313

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N, and let F' be a non empty programmed finite partial state
of S. The functor CutLastLoc F' yielding a finite partial state of S is defined by:

(Def. 21) CutLastLoc F' = F'\ (LastLoc Fi—— F(LastLoc F)).

The following propositions are true:

(47) Let S be a standard von Neumann definite AMI over N and F' be a non
empty programmed finite partial state of S. Then dom CutLastLoc F' =
dom F'\ {LastLoc F'}.

(48) Let S be a standard von Neumann definite AMI over N and F be
a non empty programmed finite partial state of S. Then dom F =
dom CutLastLoc F' U {LastLoc F'}.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N, and let F' be a non empty trivial programmed finite partial
state of S. Note that CutLastLoc F' is empty.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N, and let F' be a non empty programmed finite partial state
of S. Observe that CutLastLoc F' is programmed.

Let N be a set with non empty elements, let S be a standard von Neumann
definite AMI over N, and let F' be a lower non empty programmed finite partial
state of S. Note that CutLastLoc F' is lower.

We now state three propositions:

(49) Let S be a standard von Neumann definite AMI over N and F' be a non
empty programmed finite partial state of S. Then card CutLastLoc F =
card F' — 1.

(50) Let S be a homogeneous regular standard von Neumann definite AMI
over N, I be a lower non empty programmed finite partial state of
S, and G be a non empty programmed finite partial state of S. Then
dom CutLastLoc F' N dom Shift(IncAddr(G, card F —' 1), card F —' 1) = {).

(51) Let S be a standard halting von Neumann definite AMI over N, F'
be a unique-halt lower non empty programmed finite partial state of S,
and I be an instruction-location of S. If I € dom CutLastLoc F, then
(CutLastLoc F))(I) # haltg.

Let N be a set with non empty elements, let .S be a homogeneous regular
standard von Neumann definite AMI over N, and let F'; G be non empty pro-
grammed finite partial states of S. The functor F'; G yields a finite partial state
of S and is defined by:

(Def. 22) F; G = CutLastLoc F+- Shift(IncAddr(G, card F —' 1), card F —' 1).

Let N be a set with non empty elements, let S be a homogeneous regu-
lar standard von Neumann definite AMI over N, and let F', G be non empty

314 ARTUR KORNILOWICZ

programmed finite partial states of S. Note that F'; G is non empty and pro-
grammed.
We now state the proposition

(52) Let S be a homogeneous regular standard von Neumann definite AMI
over N and F', G be lower non empty programmed finite partial states of
S. Then card(F; G) = (card F' + card G) — 1 and card(F; G) = (card F' +
card G) —' 1.

Let N be a set with non empty elements, let .S be a homogeneous regular
standard von Neumann definite AMI over N, and let F', G be lower non empty
programmed finite partial states of S. Observe that F'; G is lower.

We now state four propositions:

(53) Let S be a homogeneous regular standard von Neumann definite AMI
over N and F', G be lower non empty programmed finite partial states of
S. Then dom F' C dom(F'; G).

(54) Let S be a homogeneous regular standard von Neumann definite AMI
over N and F', G be lower non empty programmed finite partial states of
S. Then CutLastLoc F' C CutLastLoc F'; G.

(55) Let S be a homogeneous regular standard von Neumann definite AMI
over N and F', G be lower non empty programmed finite partial states of
S. Then (F'; G)(LastLoc F') = (IncAddr(G, card F —' 1))(ilg(0)).

(56) Let S be a homogeneous regular standard von Neumann definite AMI
over N, F', G be lower non empty programmed finite partial states of S,
and f be an instruction-location of S. If locnum(f) < card F' — 1, then
(IncAddr(F,card F —' 1))(f) = (IncAddr(F; G,card F —' 1))(f).

Let N be a set with non empty elements, let .S be a homogeneous regular
standard realistic halting steady-programmed von Neumann definite AMI over
N with ins-loc-in-jump, and let F', G be halt-ending lower non empty program-
med finite partial states of S. Observe that F'; G is halt-ending.

Let N be a set with non empty elements, let S be a homogeneous regular
standard realistic halting steady-programmed von Neumann definite AMI over
N with ins-loc-in-jump, and let F', G be halt-ending unique-halt lower non
empty programmed finite partial states of S. Observe that F'; GG is unique-halt.

Let N be a set with non empty elements, let .S be a homogeneous regular
standard realistic halting steady-programmed von Neumann definite AMI over
N with ins-loc-in-jump, and let F'; G be pre-Macros of S. Then F'; G is a pre-
Macro of S.

Let N be a set with non empty elements, let S be a realistic halting steady-
programmed IC-good Exec-preserving homogeneous regular standard von Neu-
mann definite AMI over IV, and let F', G be closed lower non empty programmed
finite partial states of S. Observe that F'; G is closed.

We now state several propositions:

ON THE COMPOSITION OF MACRO INSTRUCTIONS OF ... 315

(57) Let S be a homogeneous regular standard halting realistic von Neumann
definite AMI over N with ins-loc-in-jump. Then IncAddr(Stop S, k) =
Stop S.

(58) For every standard halting von Neumann definite AMI S over N holds
Shift(Stop S, k) = ﬂs(k)b'—)haltg.

(59) Let S be a homogeneous regular standard halting realistic von Neumann
definite AMI over N with ins-loc-in-jump and F' be a pre-Macro of S. Then
F; StopS = F.

(60) Let S be a homogeneous regular standard halting von Neumann definite
AMI over N and F be a pre-Macro of S. Then Stop S; F' = F.

(61) Let S be a homogeneous regular standard realistic halting steady-
programmed von Neumann definite AMI over N with ins-loc-in-jump and
F, G, H be pre-Macros of S. Then (F; G); H = F; (G; H).

REFERENCES

| Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41-46, 1990.

] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[5] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[6] Czestaw Bylinski. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

[7] Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.
[8] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.
[10] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60,

1996.
[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151-160, 1992.

[12] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83-86, 1993.

| Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

[15] Andrzej Trybulec. Function domains and Freenkel operator. Formalized Mathematics,
1(8):495-500, 1990.

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51-56, 1993.

[18] Andrzej Trybulec, Piotr Rudnicki, and Artur Kornitowicz. Standard ordering of instruc-
tion locations. Formalized Mathematics, 9(2):291-301, 2001.

[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[20] Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

316 ARTUR KORNILOWICZ

[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received April 14, 2000

