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Summary. Inaccessible, strongly inaccessible and measurable cardinals
are defined, and it is proved that a measurable cardinal is strongly inaccessible.
Filters on sets are defined, some facts related to the section about cardinals are
proved. Existence of the Ulam matrix on non-limit cardinals is proved.
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The notation and terminology used here are introduced in the following papers:

[13], [2], [1], [5], [9], [6], [7], [3], [4], [14], [10], [12], [11], and [8].

1. Some Facts about Filters and Ideals on Sets

One can verify that there exists an ordinal number which is limit.

Let X, Y be sets. Then X \ Y is a subset of X.

We now state the proposition

(1) For every set x and for every infinite set X holds {x} < X .

Let X be an infinite set. Observe that X is infinite.

The scheme ElemProp deals with a non empty set A, a set B, and a unary

predicate P, and states that:

P[B]

provided the following condition is met:

• B ∈ {y; y ranges over elements of A : P[y]}.

For simplicity, we follow the rules: N is a cardinal number, M is an aleph,

X is a non empty set, Y , Z, Z1, Z2, Y1, Y2 are subsets of X, and S is a subset

of 2X .
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One can prove the following proposition

(2)(i) {X} is a non empty subset of 2X ,

(ii) ∅ /∈ {X}, and

(iii) for all Y1, Y2 holds if Y1 ∈ {X} and Y2 ∈ {X}, then Y1 ∩Y2 ∈ {X} and

if Y1 ∈ {X} and Y1 ⊆ Y2, then Y2 ∈ {X}.

Let us consider X. A non empty subset of 2X is said to be a filter of X if:

(Def. 1) ∅ /∈ it and for all Y1, Y2 holds if Y1 ∈ it and Y2 ∈ it, then Y1 ∩ Y2 ∈ it

and if Y1 ∈ it and Y1 ⊆ Y2, then Y2 ∈ it.

The following propositions are true:

(3) Let F be a set. Then F is a filter of X if and only if the following

conditions are satisfied:

(i) F is a non empty subset of 2X ,

(ii) ∅ /∈ F, and

(iii) for all Y1, Y2 holds if Y1 ∈ F and Y2 ∈ F, then Y1 ∩ Y2 ∈ F and if

Y1 ∈ F and Y1 ⊆ Y2, then Y2 ∈ F.

(4) {X} is a filter of X.

In the sequel F , F1, F2, U1 denote filters of X.

The following propositions are true:

(5) X ∈ F.

(6) If Y ∈ F, then X \ Y /∈ F.

(7) Let I be a non empty subset of 2X . Suppose that for every Y holds Y ∈ I

iff Y c ∈ F. Then X /∈ I and for all Y1, Y2 holds if Y1 ∈ I and Y2 ∈ I, then

Y1 ∪ Y2 ∈ I and if Y1 ∈ I and Y2 ⊆ Y1, then Y2 ∈ I.

Let us consider X, S. We introduce dualS as a synonym of Sc.

In the sequel S is a non empty subset of 2X .

Let us consider X, S. One can verify that Sc is non empty.

One can prove the following two propositions:

(8) dualS = {Y : Y c ∈ S}.

(9) dualS = {Y c : Y ∈ S}.

Let us consider X. A non empty subset of 2X is said to be an ideal of X if:

(Def. 2) X /∈ it and for all Y1, Y2 holds if Y1 ∈ it and Y2 ∈ it, then Y1 ∪ Y2 ∈ it

and if Y1 ∈ it and Y2 ⊆ Y1, then Y2 ∈ it.

Let us consider X, F . Then dualF is an ideal of X.

In the sequel I is an ideal of X.

Next we state two propositions:

(10) For every Y holds Y /∈ F or Y /∈ dualF and for every Y holds Y /∈ I or

Y /∈ dual I.

(11) ∅ ∈ I.
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Let us consider X, N , S. We say that S is multiplicative with N if and only

if:

(Def. 3) For every non empty set S1 such that S1 ⊆ S and S1 < N holds
⋂

S1 ∈

S.

Let us consider X, N , S. We say that S is additive with N if and only if:

(Def. 4) For every non empty set S1 such that S1 ⊆ S and S1 < N holds
⋃

S1 ∈

S.

Let us consider X, N , F . We introduce F is complete with N as a synonym

of F is multiplicative with N .

Let us consider X, N , I. We introduce I is complete with N as a synonym

of I is additive with N .

One can prove the following proposition

(12) If S is multiplicative with N , then dualS is additive with N .

Let us consider X, F . We say that F is uniform if and only if:

(Def. 5) For every Y such that Y ∈ F holds Y = X .

We say that F is principal if and only if:

(Def. 6) There exists Y such that Y ∈ F and for every Z such that Z ∈ F holds

Y ⊆ Z.

We say that F is an ultrafilter if and only if:

(Def. 7) For every Y holds Y ∈ F or X \ Y ∈ F.

Let us considerX, F , Z. The functor Extend Filter(F, Z) yields a non empty

subset of 2X and is defined as follows:

(Def. 8) Extend Filter(F,Z) = {Y :
∨

Y2
(Y2 ∈ {Y1 ∩ Z : Y1 ∈ F} ∧ Y2 ⊆ Y )}.

We now state two propositions:

(13) For every Z1 holds Z1 ∈ Extend Filter(F, Z) iff there exists Z2 such that

Z2 ∈ F and Z2 ∩ Z ⊆ Z1.

(14) If for every Y1 such that Y1 ∈ F holds Y1 ∩ Z 6= ∅, then Z ∈

Extend Filter(F, Z) and Extend Filter(F,Z) is a filter of X and F ⊆

Extend Filter(F, Z).

In the sequel S denotes a subset of 2X .

Let us consider X. The functor FiltersX yielding a non empty subset of 22X

is defined by:

(Def. 9) FiltersX = {S : S is a filter of X}.

We now state the proposition

(15) For every set S holds S ∈ FiltersX iff S is a filter of X.

In the sequel F3 is a non empty subset of FiltersX.

One can prove the following propositions:

(16) If for all F1, F2 such that F1 ∈ F3 and F2 ∈ F3 holds F1 ⊆ F2 or F2 ⊆ F1,

then
⋃

F3 is a filter of X.
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(17) For every F there exists U1 such that F ⊆ U1 and U1 is an ultrafilter.

In the sequel X denotes an infinite set, Y denotes a subset of X, and F , U1

denote filters of X.

Let us consider X. The functor Frechet FilterX yielding a filter of X is

defined by:

(Def. 10) Frechet FilterX = {Y : X \ Y < X }.

Let us consider X. The functor Frechet IdealX yields an ideal of X and is

defined as follows:

(Def. 11) Frechet IdealX = dual Frechet FilterX.

One can prove the following propositions:

(18) Y ∈ Frechet FilterX iff X \ Y < X .

(19) Y ∈ Frechet IdealX iff Y < X .

(20) If Frechet FilterX ⊆ F, then F is uniform.

(21) If U1 is uniform and an ultrafilter, then Frechet FilterX ⊆ U1.

Let us consider X. One can check that there exists a filter of X which is non

principal and an ultrafilter.

Let us consider X. One can check that every filter of X which is uniform

and an ultrafilter is also non principal.

Next we state two propositions:

(22) For every an ultrafilter filter F of X and for every Y holds Y ∈ F iff

Y /∈ dualF.

(23) If F is non principal and an ultrafilter and F is complete with X , then

F is uniform.

2. Inaccessible and Measurable Cardinals, Ulam Matrix

We now state the proposition

(24) N+ ¬ 2
N

.

We say that Generalized Continuum Hypothesis holds if and only if:

(Def. 12) For every N holds N+ = 2
N

.

Let I1 be an aleph. We say that I1 is inaccessible if and only if:

(Def. 13) I1 is regular and limit.

We introduce I1 is inaccessible cardinal as a synonym of I1 is inaccessible.

Let us note that every aleph which is inaccessible is also regular and limit.

We now state the proposition

(25) ℵ0 is inaccessible.

Let I1 be an aleph. We say that I1 is strong limit if and only if:
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(Def. 14) For every N such that N < I1 holds 2
N

< I1.

We introduce I1 is strong limit cardinal as a synonym of I1 is strong limit.

Next we state two propositions:

(26) ℵ0 is strong limit.

(27) If M is strong limit, then M is limit.

One can check that every aleph which is strong limit is also limit.

Next we state the proposition

(28) If Generalized Continuum Hypothesis holds, then if M is limit, then M

is strong limit.

Let I1 be an aleph. We say that I1 is strongly inaccessible if and only if:

(Def. 15) I1 is regular and strong limit.

We introduce I1 is strongly inaccessible cardinal as a synonym of I1 is strongly

inaccessible.

Let us observe that every aleph which is strongly inaccessible is also regular

and strong limit.

The following propositions are true:

(29) ℵ0 is strongly inaccessible.

(30) If M is strongly inaccessible, then M is inaccessible.

Let us note that every aleph which is strongly inaccessible is also inaccessible.

Next we state the proposition

(31) If Generalized Continuum Hypothesis holds, then if M is inaccessible,

then M is strongly inaccessible.

Let us consider M . We say that M is measurable if and only if:

(Def. 16) There exists a filter U1 of M such that U1 is complete with M and U1

is non principal and an ultrafilter.

We introduce M is measurable cardinal as a synonym of M is measurable.

We now state two propositions:

(32) For every limit ordinal number A and for every set X such that X ⊆ A

holds if supX = A, then
⋃

X = A.

(33) If M is measurable, then M is regular.

Let us consider M . Note that M+ is non limit.

Let us note that there exists a cardinal number which is non limit and

infinite.

Let us observe that every aleph which is non limit is also regular.

Let M be a non limit cardinal number. The functor predecessorM yields a

cardinal number and is defined as follows:

(Def. 17) M = (predecessorM)+.

Let M be a non limit aleph. One can check that predecessorM is infinite.
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Let X be a set and let N , N1 be cardinal numbers. An Inf Matrix of N , N1,

X is a function from [:N, N1 :] into X.

For simplicity, we follow the rules: X denotes a set, M denotes a non limit

aleph, F denotes a filter of M , N1, N2 denote elements of predecessorM, K1,

K2 denote elements of M , and T denotes an Inf Matrix of predecessorM, M ,

2M .

Let us consider M , T . We say that T is Ulam Matrix of M if and only if the

conditions (Def. 18) are satisfied.

(Def. 18)(i) For all N1, K1, K2 such that K1 6= K2 holds T (N1, K1)∩ T (N1, K2)

is empty,

(ii) for all K1, N1, N2 such that N1 6= N2 holds T (N1, K1) ∩ T (N2, K1) is

empty,

(iii) for every N1 holds M \
⋃
{T (N1, K1) : K1 ∈M} ¬ predecessorM, and

(iv) for every K1 holds M \
⋃
{T (N1, K1) : N1 ∈ predecessorM} ¬

predecessorM.

The following four propositions are true:

(34) There exists T such that T is Ulam Matrix of M .

(35) Let given M and I be an ideal of M . Suppose I is complete with M and

Frechet IdealM ⊆ I. Then there exists a subset S of 2M such that S = M

and for every set X1 such that X1 ∈ S holds X1 /∈ I and for all sets X1,

X2 such that X1 ∈ S and X2 ∈ S and X1 6= X2 holds X1 ∩X2 = ∅.

(36) For every X and for every cardinal number N such that N ¬ X there

exists a set Y such that Y ⊆ X and Y = N.

(37) For every M it is not true that there exists F such that F is uniform

and an ultrafilter and F is complete with M .

In the sequel M is an aleph.

The following four propositions are true:

(38) If M is measurable, then M is limit.

(39) If M is measurable, then M is inaccessible.

(40) If M is measurable, then M is strong limit.

(41) If M is measurable, then M is strongly inaccessible.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–
290, 1990.

[5] Grzegorz Bancerek. On powers of cardinals. Formalized Mathematics, 3(1):89–93, 1992.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.



basic facts about inaccessible and . . . 329

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[13] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received April 14, 2000


