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The articles [8], [18], [6], [9], [10], [3], [15], [20], [1], [21], [13], [2], [17], [7], [23],

[24], [22], [19], [5], [12], [16], [4], [25], and [11] provide the terminology and

notation for this paper.

1. Preliminaries

Let A be a non empty set and let P , R be binary relations on A. Let us

observe that P ⊆ R if and only if:

(Def. 1) For all elements a, b of A such that 〈〈a, b〉〉 ∈ P holds 〈〈a, b〉〉 ∈ R.

Let L be a relational structure. We say that L is finitely typed if and only

if the condition (Def. 2) is satisfied.

(Def. 2) There exists a non empty set A such that

(i) for every set e such that e ∈ the carrier of L holds e is an equivalence

relation of A, and

(ii) there exists a natural number o such that for all equivalence relations

e1, e2 of A and for all sets x, y such that e1 ∈ the carrier of L and e2 ∈ the

carrier of L and 〈〈x, y〉〉 ∈ e1 ⊔ e2 there exists a non empty finite sequence

F of elements of A such that lenF = o and x and y are joint by F , e1 and

e2.
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Let L be a lower-bounded lattice and let n be a natural number. We say

that L has a representation of type ¬ n if and only if the condition (Def. 3) is

satisfied.

(Def. 3) There exists a non trivial set A and there exists a homomorphism f from

L to EqRelPoset(A) such that

(i) f is one-to-one,

(ii) Im f is finitely typed,

(iii) there exists an equivalence relation e of A such that e ∈ the carrier of

Im f and e 6= idA, and

(iv) the type of Im f ¬ n.

Let us mention that there exists a lattice which is lower-bounded, distribu-

tive, and finite.

Let A be a non trivial set. Observe that there exists a non empty sublattice

of EqRelPoset(A) which is non trivial, finitely typed, and full.

One can prove the following propositions:

(1) For every non empty set A and for every lower-bounded lattice L and

for every distance function d of A, L holds succ ∅ ⊆ DistEsti(d).

(2) Every trivial semilattice is modular.

(3) Let A be a non empty set and L be a non empty sublattice of

EqRelPoset(A). Then L is trivial or there exists an equivalence relation e

of A such that e ∈ the carrier of L and e 6= idA.

(4) Let L1, L2 be lower-bounded lattices and f be a map from L1 into

L2. Suppose f is infs-preserving and sups-preserving. Then f is meet-

preserving and join-preserving.

(5) For all lower-bounded lattices L1, L2 such that L1 and L2 are isomorphic

and L1 is modular holds L2 is modular.

(6) Let S be a lower-bounded non empty poset, T be a non empty poset,

and f be a monotone map from S into T . Then Im f is lower-bounded.

(7) Let L be a lower-bounded lattice, x, y be elements of L, A be a non

empty set, and f be a homomorphism from L to EqRelPoset(A). If f is

one-to-one, then if f◦(x) ¬ f◦(y), then x ¬ y.

2. The Jónsson Theorem

We now state two propositions:

(8) Let A be a non trivial set, L be a finitely typed full non empty sublattice

of EqRelPoset(A), and e be an equivalence relation of A. Suppose e ∈ the

carrier of L and e 6= idA. If the type of L ¬ 2, then L is modular.
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(9) For every lower-bounded lattice L such that L has a representation of

type ¬ 2 holds L is modular.

Let A be a set. The functor new set2A is defined by:

(Def. 4) new set2A = A ∪ {{A}, {{A}}}.

Let A be a set. One can verify that new set2A is non empty.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a

bifunction from A into L, and let q be an element of [:A, A, the carrier of

L, the carrier of L :]. The functor new bi fun2(d, q) yielding a bifunction from

new set2A into L is defined by the conditions (Def. 5).

(Def. 5)(i) For all elements u, v of A holds (new bi fun2(d, q))(u, v) = d(u, v),

(ii) (new bi fun2(d, q))({A}, {A}) = ⊥L,

(iii) (new bi fun2(d, q))({{A}}, {{A}}) = ⊥L,

(iv) (new bi fun2(d, q))({A}, {{A}}) = (d(q1, q2) ⊔ q3) ⊓ q4,

(v) (new bi fun2(d, q))({{A}}, {A}) = (d(q1, q2) ⊔ q3) ⊓ q4, and

(vi) for every element u of A holds (new bi fun2(d, q))(u, {A}) =

d(u, q1) ⊔ q3 and (new bi fun2(d, q))({A}, u) = d(u, q1) ⊔ q3 and

(new bi fun2(d, q))(u, {{A}}) = d(u, q2)⊔q3 and (new bi fun2(d, q))({{A}},

u) = d(u, q2) ⊔ q3.

Next we state several propositions:

(10) Let A be a non empty set, L be a lower-bounded lattice, and d be a

bifunction from A into L. Suppose d is zeroed. Let q be an element of [:A,

A, the carrier of L, the carrier of L :]. Then new bi fun2(d, q) is zeroed.

(11) Let A be a non empty set, L be a lower-bounded lattice, and d be a

bifunction from A into L. Suppose d is symmetric. Let q be an element

of [:A, A, the carrier of L, the carrier of L :]. Then new bi fun2(d, q) is

symmetric.

(12) Let A be a non empty set and L be a lower-bounded lattice. Suppose L is

modular. Let d be a bifunction from A into L. Suppose d is symmetric and

satisfies triangle inequality. Let q be an element of [:A, A, the carrier of

L, the carrier of L :]. If d(q1, q2) ¬ q3 ⊔ q4, then new bi fun2(d, q) satisfies

triangle inequality.

(13) For every set A holds A ⊆ new set2A.

(14) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction

from A into L, and q be an element of [:A, A, the carrier of L, the carrier

of L :]. Then d ⊆ new bi fun2(d, q).

Let A be a non empty set and let O be an ordinal number. The functor

ConsecutiveSet2(A,O) is defined by the condition (Def. 6).

(Def. 6) There exists a transfinite sequence L0 such that

(i) ConsecutiveSet2(A, O) = lastL0,

(ii) domL0 = succO,
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(iii) L0(∅) = A,

(iv) for every ordinal number C and for every set z such that succC ∈ succO

and z = L0(C) holds L0(succC) = new set2 z, and

(v) for every ordinal number C and for every transfinite sequence L1 such

that C ∈ succO and C 6= ∅ and C is a limit ordinal number and L1 = L0↾C

holds L0(C) =
⋃
rngL1.

One can prove the following three propositions:

(15) For every non empty set A holds ConsecutiveSet2(A, ∅) = A.

(16) For every non empty set A and for every ordinal number O holds

ConsecutiveSet2(A, succO) = new set2ConsecutiveSet2(A,O).

(17) Let A be a non empty set, O be an ordinal number, and T be a transfinite

sequence. Suppose O 6= ∅ and O is a limit ordinal number and domT =

O and for every ordinal number O1 such that O1 ∈ O holds T (O1) =

ConsecutiveSet2(A, O1). Then ConsecutiveSet2(A,O) =
⋃
rng T.

Let A be a non empty set and let O be an ordinal number. Note that

ConsecutiveSet2(A,O) is non empty.

We now state the proposition

(18) For every non empty set A and for every ordinal number O holds A ⊆

ConsecutiveSet2(A, O).

Let A be a non empty set, let L be a lower-bounded lattice, let d be a bi-

function from A into L, let q be a sequence of quadruples of d, and let O be an

ordinal number. Let us assume that O ∈ dom q. The functor Quadr2(q, O) yiel-

ding an element of [:ConsecutiveSet2(A,O), ConsecutiveSet2(A,O), the carrier

of L, the carrier of L :] is defined by:

(Def. 7) Quadr2(q, O) = q(O).

Let A be a non empty set, let L be a lower-bounded lattice, let d be a

bifunction from A into L, let q be a sequence of quadruples of d, and let O

be an ordinal number. The functor ConsecutiveDelta2(q, O) is defined by the

condition (Def. 8).

(Def. 8) There exists a transfinite sequence L0 such that

(i) ConsecutiveDelta2(q, O) = lastL0,

(ii) domL0 = succO,

(iii) L0(∅) = d,

(iv) for every ordinal number C and for every set z such

that succC ∈ succO and z = L0(C) holds L0(succC) =

new bi fun2(BiFun(z,ConsecutiveSet2(A,C), L),Quadr2(q, C)), and

(v) for every ordinal number C and for every transfinite sequence L1 such

that C ∈ succO and C 6= ∅ and C is a limit ordinal number and L1 = L0↾C

holds L0(C) =
⋃
rngL1.

Next we state several propositions:



the jónsson theorem about the . . . 435

(19) Let A be a non empty set, L be a lower-bounded lattice, d be a bi-

function from A into L, and q be a sequence of quadruples of d. Then

ConsecutiveDelta2(q, ∅) = d.

(20) Let A be a non empty set, L be a lower-bounded lattice, d be

a bifunction from A into L, q be a sequence of quadruples of d,

and O be an ordinal number. Then ConsecutiveDelta2(q, succO) =

new bi fun2(BiFun(ConsecutiveDelta2(q,O),ConsecutiveSet2(A, O), L),

Quadr2(q, O)).

(21) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunc-

tion from A into L, q be a sequence of quadruples of d, T be a trans-

finite sequence, and O be an ordinal number. Suppose O 6= ∅ and O is

a limit ordinal number and domT = O and for every ordinal number

O1 such that O1 ∈ O holds T (O1) = ConsecutiveDelta2(q, O1). Then

ConsecutiveDelta2(q, O) =
⋃
rng T.

(22) For every non empty set A and for all ordinal numbers O, O1, O2 such

that O1 ⊆ O2 holds ConsecutiveSet2(A,O1) ⊆ ConsecutiveSet2(A,O2).

(23) Let A be a non empty set, L be a lower-bounded lattice, d be a bi-

function from A into L, q be a sequence of quadruples of d, and O be

an ordinal number. Then ConsecutiveDelta2(q, O) is a bifunction from

ConsecutiveSet2(A,O) into L.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a

bifunction from A into L, let q be a sequence of quadruples of d, and let

O be an ordinal number. Then ConsecutiveDelta2(q,O) is a bifunction from

ConsecutiveSet2(A,O) into L.

The following propositions are true:

(24) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction

from A into L, q be a sequence of quadruples of d, and O be an ordinal

number. Then d ⊆ ConsecutiveDelta2(q, O).

(25) Let A be a non empty set, L be a lower-bounded lattice, d be a bi-

function from A into L, O1, O2 be ordinal numbers, and q be a sequ-

ence of quadruples of d. If O1 ⊆ O2, then ConsecutiveDelta2(q, O1) ⊆

ConsecutiveDelta2(q, O2).

(26) Let A be a non empty set, L be a lower-bounded lattice, and d be a

bifunction from A into L. Suppose d is zeroed. Let q be a sequence of qu-

adruples of d and O be an ordinal number. Then ConsecutiveDelta2(q, O)

is zeroed.

(27) Let A be a non empty set, L be a lower-bounded lattice, and d be a bi-

function from A into L. Suppose d is symmetric. Let q be a sequence of qu-

adruples of d and O be an ordinal number. Then ConsecutiveDelta2(q, O)

is symmetric.
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(28) Let A be a non empty set and L be a lower-bounded lattice. Suppose L is

modular. Let d be a bifunction from A into L. Suppose d is symmetric and

satisfies triangle inequality. Let O be an ordinal number and q be a sequ-

ence of quadruples of d. If O ⊆ DistEsti(d), then ConsecutiveDelta2(q, O)

satisfies triangle inequality.

(29) Let A be a non empty set, L be a lower-bounded modular lattice, d be

a distance function of A, L, O be an ordinal number, and q be a sequence

of quadruples of d. If O ⊆ DistEsti(d), then ConsecutiveDelta2(q, O) is a

distance function of ConsecutiveSet2(A, O), L.

Let A be a non empty set, let L be a lower-bounded lattice, and let d be a

bifunction from A into L. The functor NextSet2 d is defined by:

(Def. 9) NextSet2 d = ConsecutiveSet2(A,DistEsti(d)).

Let A be a non empty set, let L be a lower-bounded lattice, and let d be a

bifunction from A into L. Note that NextSet2 d is non empty.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a

bifunction from A into L, and let q be a sequence of quadruples of d. The

functor NextDelta2 q is defined as follows:

(Def. 10) NextDelta2 q = ConsecutiveDelta2(q,DistEsti(d)).

Let A be a non empty set, let L be a lower-bounded modular lattice, let d

be a distance function of A, L, and let q be a sequence of quadruples of d. Then

NextDelta2 q is a distance function of NextSet2 d, L.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a

distance function of A, L, let A1 be a non empty set, and let d1 be a distance

function of A1, L. We say that A1, d1 is extension2 of A, d if and only if:

(Def. 11) There exists a sequence q of quadruples of d such that A1 = NextSet2 d

and d1 = NextDelta2 q.

Next we state the proposition

(30) Let A be a non empty set, L be a lower-bounded lattice, d be a distance

function of A, L, A1 be a non empty set, and d1 be a distance function of

A1, L. Suppose A1, d1 is extension2 of A, d. Let x, y be elements of A and

a, b be elements of L. Suppose d(x, y) ¬ a ⊔ b. Then there exist elements

z1, z2 of A1 such that d1(x, z1) = a and d1(z1, z2) = (d(x, y) ⊔ a) ⊓ b and

d1(z2, y) = a.

Let A be a non empty set, let L be a lower-bounded modular lattice, and

let d be a distance function of A, L. A function is called a ExtensionSeq2 of A,

d if it satisfies the conditions (Def. 12).

(Def. 12)(i) dom it = N,

(ii) it(0) = 〈〈A, d〉〉, and

(iii) for every natural number n there exists a non empty set A′ and there

exists a distance function d′ of A′, L and there exists a non empty set
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A1 and there exists a distance function d1 of A1, L such that A1, d1 is

extension2 of A′, d′ and it(n) = 〈〈A′, d′〉〉 and it(n + 1) = 〈〈A1, d1〉〉.

We now state several propositions:

(31) Let A be a non empty set, L be a lower-bounded modular lattice, d be

a distance function of A, L, S be a ExtensionSeq2 of A, d, and k, l be

natural numbers. If k ¬ l, then S(k)1 ⊆ S(l)1.

(32) Let A be a non empty set, L be a lower-bounded modular lattice, d be

a distance function of A, L, S be a ExtensionSeq2 of A, d, and k, l be

natural numbers. If k ¬ l, then S(k)2 ⊆ S(l)2.

(33) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the

carrier of L, δ0(L), and F1 be a non empty set. Suppose F1 =
⋃
{S(i)1 :

i ranges over natural numbers}. Then
⋃
{S(i)2 : i ranges over natural

numbers} is a distance function of F1, L.

(34) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the

carrier of L, δ0(L), F1 be a non empty set, F2 be a distance function

of F1, L, x, y be elements of F1, and a, b be elements of L. Suppose

F1 =
⋃
{S(i)1 : i ranges over natural numbers} and F2 =

⋃
{S(i)2 : i

ranges over natural numbers} and F2(x, y) ¬ a ⊔ b. Then there exist

elements z1, z2 of F1 such that F2(x, z1) = a and F2(z1, z2) = (F2(x,

y) ⊔ a) ⊓ b and F2(z2, y) = a.

(35) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the

carrier of L, δ0(L), F1 be a non empty set, F2 be a distance function of F1,

L, f be a homomorphism from L to EqRelPoset(F1), e1, e2 be equivalence

relations of F1, and x, y be sets. Suppose that

(i) f = α(F2),

(ii) F1 =
⋃
{S(i)1 : i ranges over natural numbers},

(iii) F2 =
⋃
{S(i)2 : i ranges over natural numbers},

(iv) e1 ∈ the carrier of Im f,

(v) e2 ∈ the carrier of Im f, and

(vi) 〈〈x, y〉〉 ∈ e1 ⊔ e2.

Then there exists a non empty finite sequence F of elements of F1 such

that lenF = 2 + 2 and x and y are joint by F , e1 and e2.

(36) For every lower-bounded modular lattice L holds L has a representation

of type ¬ 2.

(37) For every lower-bounded lattice L holds L has a representation of type

¬ 2 iff L is modular.
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