The Jónsson Theorem about the Representation of Modular Lattices

Mariusz Łapiński University of Białystok

Summary. Formalization of [14, pp. 192–199], chapter IV. Partition Lattices, theorem 8.

MML Identifier: LATTICE8.

The articles [8], [18], [6], [9], [10], [3], [15], [20], [1], [21], [13], [2], [17], [7], [23], [24], [22], [19], [5], [12], [16], [4], [25], and [11] provide the terminology and notation for this paper.

1. Preliminaries

Let A be a non empty set and let P, R be binary relations on A. Let us observe that $P \subseteq R$ if and only if:

(Def. 1) For all elements a, b of A such that $\langle a, b \rangle \in P$ holds $\langle a, b \rangle \in R$.

Let L be a relational structure. We say that L is finitely typed if and only if the condition (Def. 2) is satisfied.

- (Def. 2) There exists a non empty set A such that
 - (i) for every set e such that $e \in$ the carrier of L holds e is an equivalence relation of A, and
 - (ii) there exists a natural number o such that for all equivalence relations e_1, e_2 of A and for all sets x, y such that $e_1 \in$ the carrier of L and $e_2 \in$ the carrier of L and $\langle x, y \rangle \in e_1 \sqcup e_2$ there exists a non empty finite sequence F of elements of A such that len F = o and x and y are joint by F, e_1 and e_2 .

C 2001 University of Białystok ISSN 1426-2630

Let L be a lower-bounded lattice and let n be a natural number. We say that L has a representation of type $\leq n$ if and only if the condition (Def. 3) is satisfied.

(Def. 3) There exists a non trivial set
$$A$$
 and there exists a homomorphism f from L to EqRelPoset (A) such that

- (i) f is one-to-one,
- (ii) $\operatorname{Im} f$ is finitely typed,
- (iii) there exists an equivalence relation e of A such that $e \in$ the carrier of Im f and $e \neq id_A$, and
- (iv) the type of $\operatorname{Im} f \leq n$.

Let us mention that there exists a lattice which is lower-bounded, distributive, and finite.

Let A be a non trivial set. Observe that there exists a non empty sublattice of EqRelPoset(A) which is non trivial, finitely typed, and full.

One can prove the following propositions:

- (1) For every non empty set A and for every lower-bounded lattice L and for every distance function d of A, L holds succ $\emptyset \subseteq \text{DistEsti}(d)$.
- (2) Every trivial semilattice is modular.
- (3) Let A be a non empty set and L be a non empty sublattice of EqRelPoset(A). Then L is trivial or there exists an equivalence relation e of A such that $e \in$ the carrier of L and $e \neq id_A$.
- (4) Let L_1 , L_2 be lower-bounded lattices and f be a map from L_1 into L_2 . Suppose f is infs-preserving and sups-preserving. Then f is meet-preserving and join-preserving.
- (5) For all lower-bounded lattices L_1 , L_2 such that L_1 and L_2 are isomorphic and L_1 is modular holds L_2 is modular.
- (6) Let S be a lower-bounded non empty poset, T be a non empty poset, and f be a monotone map from S into T. Then Im f is lower-bounded.
- (7) Let L be a lower-bounded lattice, x, y be elements of L, A be a non empty set, and f be a homomorphism from L to EqRelPoset(A). If f is one-to-one, then if $f^{\circ}(x) \leq f^{\circ}(y)$, then $x \leq y$.

2. The Jónsson Theorem

We now state two propositions:

(8) Let A be a non trivial set, L be a finitely typed full non empty sublattice of EqRelPoset(A), and e be an equivalence relation of A. Suppose $e \in$ the carrier of L and $e \neq id_A$. If the type of $L \leq 2$, then L is modular.

(9) For every lower-bounded lattice L such that L has a representation of type ≤ 2 holds L is modular.

Let A be a set. The functor new_set 2A is defined by:

(Def. 4) new_set2 $A = A \cup \{\{A\}, \{\{A\}\}\}$.

Let A be a set. One can verify that new_set 2A is non empty.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a bifunction from A into L, and let q be an element of [A, A, A] the carrier of L, the carrier of L]. The functor new_bi_fun2(d,q) yielding a bifunction from new_set2 A into L is defined by the conditions (Def. 5).

(Def. 5)(i) For all elements u, v of A holds $(\text{new_bi_fun2}(d,q))(u, v) = d(u, v),$

- (ii) (new_bi_fun2(d,q))({A}, {A}) = \perp_L ,
- (iii) $(\text{new_bi_fun2}(d,q))(\{\{A\}\},\{\{A\}\}) = \bot_L,$
- (iv) $(\text{new}_{bi}(d,q))(\{A\}, \{\{A\}\}) = (d(q_1, q_2) \sqcup q_3) \sqcap q_4,$
- (v) $(\text{new}_{bi}(q,q))(\{\{A\}\}, \{A\}) = (d(q_1, q_2) \sqcup q_3) \sqcap q_4, \text{ and}$
- (vi) for every element u of A holds $(\text{new}_\text{bi}_\text{fun}2(d,q))(u, \{A\}) = d(u, q_1) \sqcup q_3$ and $(\text{new}_\text{bi}_\text{fun}2(d,q))(\{A\}, u) = d(u, q_1) \sqcup q_3$ and $(\text{new}_\text{bi}_\text{fun}2(d,q))(u, \{\{A\}\}) = d(u, q_2) \sqcup q_3$ and $(\text{new}_\text{bi}_\text{fun}2(d,q))(\{\{A\}\}) = d(u, q_2) \sqcup q_3$.

Next we state several propositions:

- (10) Let A be a non empty set, L be a lower-bounded lattice, and d be a bifunction from A into L. Suppose d is zeroed. Let q be an element of [:A, A, the carrier of L, the carrier of L]. Then new_bi_fun2(d,q) is zeroed.
- (11) Let A be a non empty set, L be a lower-bounded lattice, and d be a bifunction from A into L. Suppose d is symmetric. Let q be an element of [A, A, the carrier of L, the carrier of L]. Then new_bi_fun2(d,q) is symmetric.
- (12) Let A be a non empty set and L be a lower-bounded lattice. Suppose L is modular. Let d be a bifunction from A into L. Suppose d is symmetric and satisfies triangle inequality. Let q be an element of [:A, A, the carrier of L, the carrier of L]. If $d(q_1, q_2) \leq q_3 \sqcup q_4$, then new_bi_fun2(d,q) satisfies triangle inequality.
- (13) For every set A holds $A \subseteq \text{new_set2} A$.
- (14) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction from A into L, and q be an element of [A, A, A] the carrier of L, the carrier of L]. Then $d \subseteq \text{new_bi_fun2}(d, q)$.

Let A be a non empty set and let O be an ordinal number. The functor ConsecutiveSet2(A, O) is defined by the condition (Def. 6).

(Def. 6) There exists a transfinite sequence L_0 such that

- (i) ConsecutiveSet2(A, O) = last L_0 ,
- (ii) $\operatorname{dom} L_0 = \operatorname{succ} O$,

- (iii) $L_0(\emptyset) = A$,
- (iv) for every ordinal number C and for every set z such that succ $C \in \text{succ } O$ and $z = L_0(C)$ holds $L_0(\text{succ } C) = \text{new_set2} z$, and
- (v) for every ordinal number C and for every transfinite sequence L_1 such that $C \in \text{succ } O$ and $C \neq \emptyset$ and C is a limit ordinal number and $L_1 = L_0 \upharpoonright C$ holds $L_0(C) = \bigcup \operatorname{rng} L_1$.

One can prove the following three propositions:

- (15) For every non empty set A holds $ConsecutiveSet2(A, \emptyset) = A$.
- (16) For every non empty set A and for every ordinal number O holds $ConsecutiveSet2(A, succ O) = new_set2 ConsecutiveSet2(A, O).$
- (17) Let A be a non empty set, O be an ordinal number, and T be a transfinite sequence. Suppose $O \neq \emptyset$ and O is a limit ordinal number and dom T = O and for every ordinal number O_1 such that $O_1 \in O$ holds $T(O_1) =$ ConsecutiveSet2 (A, O_1) . Then ConsecutiveSet2 $(A, O) = \bigcup \operatorname{rng} T$.

Let A be a non empty set and let O be an ordinal number. Note that ConsecutiveSet2(A, O) is non empty.

We now state the proposition

(18) For every non empty set A and for every ordinal number O holds $A \subseteq$ ConsecutiveSet2(A, O).

Let A be a non empty set, let L be a lower-bounded lattice, let d be a bifunction from A into L, let q be a sequence of quadruples of d, and let O be an ordinal number. Let us assume that $O \in \text{dom } q$. The functor Quadr2(q, O) yielding an element of [: ConsecutiveSet2(A, O), ConsecutiveSet2(A, O), the carrier of L, the carrier of L] is defined by:

(Def. 7) Quadr2(q, O) = q(O).

Let A be a non empty set, let L be a lower-bounded lattice, let d be a bifunction from A into L, let q be a sequence of quadruples of d, and let O be an ordinal number. The functor ConsecutiveDelta2(q, O) is defined by the condition (Def. 8).

(Def. 8) There exists a transfinite sequence L_0 such that

- (i) ConsecutiveDelta2 $(q, O) = \text{last } L_0$,
- (ii) $\operatorname{dom} L_0 = \operatorname{succ} O$,
- (iii) $L_0(\emptyset) = d$,
- (iv) for every ordinal number C and for every set z such that succ $C \in$ succ O and $z = L_0(C)$ holds $L_0(\operatorname{succ} C) =$ new_bi_fun2(BiFun(z, ConsecutiveSet2(A, C), L), Quadr2(q, C)), and
- (v) for every ordinal number C and for every transfinite sequence L_1 such that $C \in \text{succ } O$ and $C \neq \emptyset$ and C is a limit ordinal number and $L_1 = L_0 \upharpoonright C$ holds $L_0(C) = \bigcup \operatorname{rng} L_1$.

Next we state several propositions:

434

- (19) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction from A into L, and q be a sequence of quadruples of d. Then ConsecutiveDelta2 $(q, \emptyset) = d$.
- (20) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction from A into L, q be a sequence of quadruples of d, and O be an ordinal number. Then ConsecutiveDelta2(q, succ O) = $new_bi_fun2(BiFun(ConsecutiveDelta2(q, O), ConsecutiveSet2(A, O), L),$ Quadr2(q, O)).
- (21) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction from A into L, q be a sequence of quadruples of d, T be a transfinite sequence, and O be an ordinal number. Suppose $O \neq \emptyset$ and O is a limit ordinal number and dom T = O and for every ordinal number O_1 such that $O_1 \in O$ holds $T(O_1) = \text{ConsecutiveDelta2}(q, O_1)$. Then ConsecutiveDelta2 $(q, O) = \bigcup \operatorname{rng} T$.
- (22) For every non empty set A and for all ordinal numbers O, O_1, O_2 such that $O_1 \subseteq O_2$ holds ConsecutiveSet2 $(A, O_1) \subseteq$ ConsecutiveSet2 (A, O_2) .
- (23) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction from A into L, q be a sequence of quadruples of d, and O be an ordinal number. Then ConsecutiveDelta2(q, O) is a bifunction from ConsecutiveSet2(A, O) into L.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a bifunction from A into L, let q be a sequence of quadruples of d, and let O be an ordinal number. Then ConsecutiveDelta2(q, O) is a bifunction from ConsecutiveSet2(A, O) into L.

The following propositions are true:

- (24) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction from A into L, q be a sequence of quadruples of d, and O be an ordinal number. Then $d \subseteq \text{ConsecutiveDelta2}(q, O)$.
- (25) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunction from A into L, O_1 , O_2 be ordinal numbers, and q be a sequence of quadruples of d. If $O_1 \subseteq O_2$, then ConsecutiveDelta2 $(q, O_1) \subseteq$ ConsecutiveDelta2 (q, O_2) .
- (26) Let A be a non empty set, L be a lower-bounded lattice, and d be a bifunction from A into L. Suppose d is zeroed. Let q be a sequence of quadruples of d and O be an ordinal number. Then ConsecutiveDelta2(q, O) is zeroed.
- (27) Let A be a non empty set, L be a lower-bounded lattice, and d be a bifunction from A into L. Suppose d is symmetric. Let q be a sequence of quadruples of d and O be an ordinal number. Then ConsecutiveDelta2(q, O)is symmetric.

- (28) Let A be a non empty set and L be a lower-bounded lattice. Suppose L is modular. Let d be a bifunction from A into L. Suppose d is symmetric and satisfies triangle inequality. Let O be an ordinal number and q be a sequence of quadruples of d. If $O \subseteq \text{DistEsti}(d)$, then ConsecutiveDelta2(q, O) satisfies triangle inequality.
- (29) Let A be a non empty set, L be a lower-bounded modular lattice, d be a distance function of A, L, O be an ordinal number, and q be a sequence of quadruples of d. If $O \subseteq \text{DistEsti}(d)$, then ConsecutiveDelta2(q, O) is a distance function of ConsecutiveSet2(A, O), L.

Let A be a non empty set, let L be a lower-bounded lattice, and let d be a bifunction from A into L. The functor NextSet2 d is defined by:

(Def. 9) NextSet2 d = ConsecutiveSet2(A, DistEsti(d)).

Let A be a non empty set, let L be a lower-bounded lattice, and let d be a bifunction from A into L. Note that NextSet2 d is non empty.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a bifunction from A into L, and let q be a sequence of quadruples of d. The functor NextDelta2 q is defined as follows:

(Def. 10) NextDelta2 q = ConsecutiveDelta2(q, DistEsti(d)).

Let A be a non empty set, let L be a lower-bounded modular lattice, let d be a distance function of A, L, and let q be a sequence of quadruples of d. Then NextDelta2 q is a distance function of NextSet2 d, L.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a distance function of A, L, let A_1 be a non empty set, and let d_1 be a distance function of A_1 , L. We say that A_1 , d_1 is extension of A, d if and only if:

(Def. 11) There exists a sequence q of quadruples of d such that $A_1 = \text{NextSet2} d$ and $d_1 = \text{NextDelta2} q$.

Next we state the proposition

(30) Let A be a non empty set, L be a lower-bounded lattice, d be a distance function of A, L, A₁ be a non empty set, and d₁ be a distance function of A₁, L. Suppose A₁, d₁ is extension2 of A, d. Let x, y be elements of A and a, b be elements of L. Suppose $d(x, y) \leq a \sqcup b$. Then there exist elements z_1, z_2 of A₁ such that $d_1(x, z_1) = a$ and $d_1(z_1, z_2) = (d(x, y) \sqcup a) \sqcap b$ and $d_1(z_2, y) = a$.

Let A be a non empty set, let L be a lower-bounded modular lattice, and let d be a distance function of A, L. A function is called a ExtensionSeq2 of A, d if it satisfies the conditions (Def. 12).

(Def. 12)(i) dom it = \mathbb{N} ,

- (ii) $it(0) = \langle A, d \rangle$, and
- (iii) for every natural number n there exists a non empty set A' and there exists a distance function d' of A', L and there exists a non empty set

436

 A_1 and there exists a distance function d_1 of A_1 , L such that A_1 , d_1 is extension 2 of A', d' and $it(n) = \langle A', d' \rangle$ and $it(n+1) = \langle A_1, d_1 \rangle$. We now state several propositions:

(31) Let A be a non empty set, L be a lower-bounded modular lattice, d be a distance function of A, L, S be a ExtensionSeq2 of A, d, and k, l be natural numbers. If $k \leq l$, then $S(k)_1 \subseteq S(l)_1$.

- (32) Let A be a non empty set, L be a lower-bounded modular lattice, d be a distance function of A, L, S be a ExtensionSeq2 of A, d, and k, l be natural numbers. If $k \leq l$, then $S(k)_2 \subseteq S(l)_2$.
- (33) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the carrier of L, $\delta_0(L)$, and F_1 be a non empty set. Suppose $F_1 = \bigcup \{S(i)_1 : i \text{ ranges over natural numbers}\}$. Then $\bigcup \{S(i)_2 : i \text{ ranges over natural numbers}\}$ is a distance function of F_1 , L.
- (34) Let *L* be a lower-bounded modular lattice, *S* be a ExtensionSeq2 of the carrier of *L*, $\delta_0(L)$, F_1 be a non empty set, F_2 be a distance function of F_1 , *L*, *x*, *y* be elements of F_1 , and *a*, *b* be elements of *L*. Suppose $F_1 = \bigcup \{S(i)_1 : i \text{ ranges over natural numbers}\}$ and $F_2 = \bigcup \{S(i)_2 : i \text{ ranges over natural numbers}\}$ and $F_2(x, y) \leq a \sqcup b$. Then there exist elements z_1 , z_2 of F_1 such that $F_2(x, z_1) = a$ and $F_2(z_1, z_2) = (F_2(x, y) \sqcup a) \sqcap b$ and $F_2(z_2, y) = a$.
- (35) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the carrier of L, $\delta_0(L)$, F_1 be a non empty set, F_2 be a distance function of F_1 , L, f be a homomorphism from L to EqRelPoset (F_1) , e_1 , e_2 be equivalence relations of F_1 , and x, y be sets. Suppose that
 - (i) $f = \alpha(F_2),$
 - (ii) $F_1 = \bigcup \{ S(i)_1 : i \text{ ranges over natural numbers} \},$
- (iii) $F_2 = \bigcup \{ S(i)_2 : i \text{ ranges over natural numbers} \},$
- (iv) $e_1 \in \text{the carrier of Im } f$,
- (v) $e_2 \in$ the carrier of Im f, and
- (vi) $\langle x, y \rangle \in e_1 \sqcup e_2$. Then there exists a non empty finite sequence F of elements of F_1 such that len F = 2 + 2 and x and y are joint by F, e_1 and e_2 .
- (36) For every lower-bounded modular lattice L holds L has a representation of type ≤ 2 .
- (37) For every lower-bounded lattice L holds L has a representation of type ≤ 2 iff L is modular.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.

- Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-[4]matrics, 6(1):81-91, 1997.
- [5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(**1**):93–107, 1997.
- [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990. [8] [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-
- 65, 1990.
- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990. [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
- 1990.[12]
- Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997. Adam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501-505, [13]
- 1996.[14] George Grätzer. General Lattice Theory. Academic Press, New York, 1978.
- [15]Jarosław Gryko. The Jónson's theorem. Formalized Mathematics, 6(4):515-524, 1997. [16] Adam Naumowicz. On the characterization of modular and distributive lattices. Formalized Mathematics, 7(1):53-55, 1998.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [18] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. *Formalized Mathematics*, 1(**3**):441–444, 1990.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [20] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
- [21] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990. Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [22]
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [25] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. Formalized Mathematics, 6(1):123-130, 1997.

Received June 29, 2000