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The articles [8], [18], [6], [9], [10], [3], [15], [20], [1], [21], [13], [2], [17], [7], [23],
[24], [22], [19], [5], [12], [16], [4], [25], and [11] provide the terminology and
notation for this paper.

1. PRELIMINARIES

Let A be a non empty set and let P, R be binary relations on A. Let us
observe that P C R if and only if:

(Def. 1) For all elements a, b of A such that {a, b) € P holds {a, b) € R.

Let L be a relational structure. We say that L is finitely typed if and only
if the condition (Def. 2) is satisfied.

(Def. 2) There exists a non empty set A such that

(i) for every set e such that e € the carrier of L holds e is an equivalence
relation of A, and

(ii)  there exists a natural number o such that for all equivalence relations
e1, eo of A and for all sets x, y such that e; € the carrier of L and es € the
carrier of L and (z, y) € e; U eg there exists a non empty finite sequence
F of elements of A such that len ' = 0 and x and y are joint by F', e; and
€9.

@ 2001 University of Bialystok
431 ISSN 1426-2630



432 MARIUSZ L APINSKI

Let L be a lower-bounded lattice and let n be a natural number. We say
that L has a representation of type < n if and only if the condition (Def. 3) is
satisfied.

(Def. 3) There exists a non trivial set A and there exists a homomorphism f from
L to EqRelPoset(A) such that

(i)  f is one-to-one,

(i)  Im f is finitely typed,

(iii)  there exists an equivalence relation e of A such that e € the carrier of
Im f and e # id4, and
(iv)  the type of Im f < n.

Let us mention that there exists a lattice which is lower-bounded, distribu-
tive, and finite.

Let A be a non trivial set. Observe that there exists a non empty sublattice
of EqRelPoset(A) which is non trivial, finitely typed, and full.

One can prove the following propositions:

(1) For every non empty set A and for every lower-bounded lattice L and
for every distance function d of A, L holds succ () C DistEsti(d).

(2) Every trivial semilattice is modular.
(3) Let A be a non empty set and L be a non empty sublattice of

EqRelPoset(A). Then L is trivial or there exists an equivalence relation e
of A such that e € the carrier of L and e # id4.

(4) Let Ly, Lo be lower-bounded lattices and f be a map from L; into
Lo. Suppose f is infs-preserving and sups-preserving. Then f is meet-
preserving and join-preserving.

(5) For all lower-bounded lattices L1, Lo such that L; and Ly are isomorphic
and L; is modular holds L9 is modular.

(6) Let S be a lower-bounded non empty poset, 7' be a non empty poset,
and f be a monotone map from S into 7. Then Im f is lower-bounded.
(7) Let L be a lower-bounded lattice, z, y be elements of L, A be a non
empty set, and f be a homomorphism from L to EqRelPoset(A). If f is

one-to-one, then if f°(z) < f°(y), then x < y.

2. THE JONSSON THEOREM

We now state two propositions:
(8) Let A be a non trivial set, L be a finitely typed full non empty sublattice
of EqRelPoset(A), and e be an equivalence relation of A. Suppose e € the
carrier of L and e # id 4. If the type of L < 2, then L is modular.
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(9) For every lower-bounded lattice L such that L has a representation of
type < 2 holds L is modular.

Let A be a set. The functor new_set2 A is defined by:
(Def. 4) newset2 A= AU{{A},{{A}}}.

Let A be a set. One can verify that new_set2 A is non empty.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a
bifunction from A into L, and let ¢ be an element of | A, A, the carrier of
L, the carrier of L]. The functor new_bi_fun2(d, q) yielding a bifunction from
new_set2 A into L is defined by the conditions (Def. 5).

(Def. 5)(i)  For all elements u, v of A holds (new_bi_fun2(d, q))(u, v) = d(u, v),
(i) (new bifan2(d, ))({A}, {A}) = L,
(i) (new._bifun2(d,q))({{A}}, {{A}}) = Lz,
(iv)  (new.bifun2(d,q))({A}, {{A}}) = (d(q1, ¢2) Ugs) Mqa,
)
)

—

(v)  (new.bifun2(d, q))({{A}}, {A}) = (d(q1, g2) U g3) M qa, and
(vi for every element u of A holds (new_bi_fun2(d,q))(u, {A}) =
d(u, g1) U g3 and (new_bi_fun2(d,q))({4}, u) = d(u, q1) U g3 and
(new_bi_fun2(d, q))(u, {{A}}) = d(u, ¢2)Ugs and (new_bi_fun2(d, q))({{A}},
u) = d(u, g2) U qs.
Next we state several propositions:

(10) Let A be a non empty set, L be a lower-bounded lattice, and d be a
bifunction from A into L. Suppose d is zeroed. Let ¢ be an element of | A,
A, the carrier of L, the carrier of L]. Then new_bi_fun2(d, q) is zeroed.

(11) Let A be a non empty set, L be a lower-bounded lattice, and d be a
bifunction from A into L. Suppose d is symmetric. Let ¢ be an element
of [ A, A, the carrier of L, the carrier of LJ. Then new_bi_fun2(d, q) is
symmetric.

(12) Let A be a non empty set and L be a lower-bounded lattice. Suppose L is
modular. Let d be a bifunction from A into L. Suppose d is symmetric and
satisfies triangle inequality. Let ¢ be an element of [ A, A, the carrier of
L, the carrier of L. If d(q1, q2) < g3 U g, then new_bi_fun2(d, q) satisfies
triangle inequality.

(13) For every set A holds A C new_set2 A.

(14) Let A be anon empty set, L be a lower-bounded lattice, d be a bifunction
from A into L, and ¢ be an element of [ A, A, the carrier of L, the carrier
of L]. Then d C new_bi_fun2(d, q).

Let A be a non empty set and let O be an ordinal number. The functor
ConsecutiveSet2(A, O) is defined by the condition (Def. 6).
(Def. 6) There exists a transfinite sequence Lg such that
(i)  ConsecutiveSet2(A, O) = last Ly,
(i) dom Ly = succO,
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(i) Lo(0) = A,
(iv)  for every ordinal number C' and for every set z such that succ C' € succ O
and z = Lo(C) holds Ly(succ C) = new_set2 z, and
(v)  for every ordinal number C' and for every transfinite sequence L; such
that C' € succ O and C' # () and C is a limit ordinal number and L1 = Ly|C
holds Lo(C) = Jrng L;.
One can prove the following three propositions:
(15) For every non empty set A holds ConsecutiveSet2(A, ) = A.

(16) For every non empty set A and for every ordinal number O holds
ConsecutiveSet2( A, succ O) = new_set2 ConsecutiveSet2(A, O).

(17) Let A be a non empty set, O be an ordinal number, and T be a transfinite
sequence. Suppose O # () and O is a limit ordinal number and domT =
O and for every ordinal number O; such that O; € O holds T(0O;) =
ConsecutiveSet2(A, O1). Then ConsecutiveSet2(A,O0) = |JrngT.

Let A be a non empty set and let O be an ordinal number. Note that
ConsecutiveSet2(A4, O) is non empty.
We now state the proposition

(18) For every non empty set A and for every ordinal number O holds A C
ConsecutiveSet2(A, O).

Let A be a non empty set, let L be a lower-bounded lattice, let d be a bi-
function from A into L, let g be a sequence of quadruples of d, and let O be an
ordinal number. Let us assume that O € dom ¢q. The functor Quadr2(q, O) yiel-
ding an element of [ ConsecutiveSet2(A, O), ConsecutiveSet2(A, O), the carrier
of L, the carrier of L] is defined by:

(Def. 7)  Quadr2(q, O) = q(0).

Let A be a non empty set, let L be a lower-bounded lattice, let d be a

bifunction from A into L, let ¢ be a sequence of quadruples of d, and let O

be an ordinal number. The functor ConsecutiveDelta2(q, O) is defined by the
condition (Def. 8).

(Def. 8) There exists a transfinite sequence Lg such that
(i)  ConsecutiveDelta2(q, O) = last Ly,

(ii) dom Lo = succO,

i) Lo(0) = d.

(iv) for every ordinal number C and for every set z such
that succC € succO and z = Lo(C) holds Lg(succC) =
new_bi_fun2(BiFun(z, ConsecutiveSet2(A, C), L), Quadr2(q, C')), and

(v)  for every ordinal number C' and for every transfinite sequence L; such
that C' € succ O and C' # () and C is a limit ordinal number and L1 = Ly[C
holds Lo(C) = Jrng L;.

Next we state several propositions:
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(19) Let A be a non empty set, L be a lower-bounded lattice, d be a bi-
function from A into L, and ¢ be a sequence of quadruples of d. Then
ConsecutiveDelta2(q, () = d.

(20) Let A be a non empty set, L be a lower-bounded lattice, d be
a bifunction from A into L, g be a sequence of quadruples of d,
and O be an ordinal number. Then ConsecutiveDelta2(q,succO) =
new_bi_fun2(BiFun(ConsecutiveDelta2(q, O), ConsecutiveSet2(A4, O), L),

Quadr2(q, O)).

(21) Let A be a non empty set, L be a lower-bounded lattice, d be a bifunc-
tion from A into L, ¢ be a sequence of quadruples of d, T be a trans-
finite sequence, and O be an ordinal number. Suppose O # () and O is
a limit ordinal number and domT" = O and for every ordinal number
O1 such that O; € O holds T'(O;) = ConsecutiveDelta2(q, O1). Then
ConsecutiveDelta2(q, O) = |JrngT.

(22) For every non empty set A and for all ordinal numbers O, O, O2 such
that O1 C O holds ConsecutiveSet2(A, O1) C ConsecutiveSet2(A, O3).

(23) Let A be a non empty set, L be a lower-bounded lattice, d be a bi-
function from A into L, ¢ be a sequence of quadruples of d, and O be
an ordinal number. Then ConsecutiveDelta2(g, O) is a bifunction from
ConsecutiveSet2(A4, O) into L.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a
bifunction from A into L, let ¢ be a sequence of quadruples of d, and let
O be an ordinal number. Then ConsecutiveDelta2(q,O) is a bifunction from
ConsecutiveSet2(A4, O) into L.

The following propositions are true:

(24) Let A be anon empty set, L be a lower-bounded lattice, d be a bifunction
from A into L, g be a sequence of quadruples of d, and O be an ordinal
number. Then d C ConsecutiveDelta2(gq, O).

(25) Let A be a non empty set, L be a lower-bounded lattice, d be a bi-
function from A into L, O1, Oy be ordinal numbers, and ¢ be a sequ-
ence of quadruples of d. If O; C Oq, then ConsecutiveDelta2(q, O1) C
ConsecutiveDelta2(q, O2).

(26) Let A be a non empty set, L be a lower-bounded lattice, and d be a
bifunction from A into L. Suppose d is zeroed. Let ¢ be a sequence of qu-
adruples of d and O be an ordinal number. Then ConsecutiveDelta2(q, O)
is zeroed.

(27) Let A be a non empty set, L be a lower-bounded lattice, and d be a bi-
function from A into L. Suppose d is symmetric. Let ¢ be a sequence of qu-
adruples of d and O be an ordinal number. Then ConsecutiveDelta2(q, O)
is symmetric.
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(28) Let A be a non empty set and L be a lower-bounded lattice. Suppose L is
modular. Let d be a bifunction from A into L. Suppose d is symmetric and
satisfies triangle inequality. Let O be an ordinal number and ¢ be a sequ-
ence of quadruples of d. If O C DistEsti(d), then ConsecutiveDelta2(q, O)
satisfies triangle inequality.

(29) Let A be a non empty set, L be a lower-bounded modular lattice, d be
a distance function of A, L, O be an ordinal number, and ¢ be a sequence
of quadruples of d. If O C DistEsti(d), then ConsecutiveDelta2(q, O) is a
distance function of ConsecutiveSet2(A, O), L.

Let A be a non empty set, let L be a lower-bounded lattice, and let d be a
bifunction from A into L. The functor NextSet2 d is defined by:

(Def. 9) NextSet2d = ConsecutiveSet2(A, DistEsti(d)).

Let A be a non empty set, let L be a lower-bounded lattice, and let d be a
bifunction from A into L. Note that NextSet2d is non empty.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a
bifunction from A into L, and let ¢ be a sequence of quadruples of d. The
functor NextDelta2 q is defined as follows:

(Def. 10) NextDelta2 ¢ = ConsecutiveDelta2(q, DistEsti(d)).

Let A be a non empty set, let L be a lower-bounded modular lattice, let d
be a distance function of A, L, and let ¢ be a sequence of quadruples of d. Then
NextDelta2 ¢ is a distance function of NextSet2d, L.

Let A be a non empty set, let L be a lower-bounded lattice, let d be a
distance function of A, L, let A; be a non empty set, and let d; be a distance
function of Ay, L. We say that Ay, d; is extension2 of A, d if and only if:

(Def. 11) There exists a sequence ¢ of quadruples of d such that 4; = NextSet2d
and d; = NextDelta2 q.
Next we state the proposition
(30) Let A be a non empty set, L be a lower-bounded lattice, d be a distance
function of A, L, A; be a non empty set, and d; be a distance function of
Ajq, L. Suppose Aj, d; is extension2 of A, d. Let x, y be elements of A and
a, b be elements of L. Suppose d(z, y) < allb. Then there exist elements
z1, 22 of Ay such that di(z, z1) = a and d;(z1, 22) = (d(z, y) Ua) M b and
di(z2, y) = a.
Let A be a non empty set, let L be a lower-bounded modular lattice, and
let d be a distance function of A, L. A function is called a ExtensionSeq2 of A,
d if it satisfies the conditions (Def. 12).
(Def. 12)(i) domit =N,
(i) it(0) = (A, d), and
(iii)  for every natural number n there exists a non empty set A’ and there
exists a distance function d’ of A’, L and there exists a non empty set
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Ap and there exists a distance function d; of Ay, L such that Ai, d; is
extension2 of A’ d’ and it(n) = (A, d') and it(n + 1) = (A4, d1).

We now state several propositions:

(31) Let A be a non empty set, L be a lower-bounded modular lattice, d be
a distance function of A, L, S be a ExtensionSeq2 of A, d, and k, [ be
natural numbers. If k£ <, then S(k)1 C S(I)1.

(32) Let A be a non empty set, L be a lower-bounded modular lattice, d be
a distance function of A, L, S be a ExtensionSeq2 of A, d, and k, [ be
natural numbers. If £ <[, then S(k)2 C S(I)2.

(33) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the
carrier of L, dp(L), and F; be a non empty set. Suppose F; = [J{S5(i)1 :
i ranges over natural numbers}. Then (J{S(i)2 : ¢ ranges over natural
numbers} is a distance function of Fy, L.

(34) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the
carrier of L, dp(L), F1 be a non empty set, F» be a distance function
of F1, L, x, y be elements of Fy, and a, b be elements of L. Suppose
Fy = U{S(i)1 : i ranges over natural numbers} and F» = [J{S(i)2 : i
ranges over natural numbers} and Fy(x, y) < a U b. Then there exist
elements z1, z9 of F} such that Fy(z, z1) = a and Fy(z1, 20) = (Fa(x,
y)Ua)Mband Fa(ze, y) = a.

(35) Let L be a lower-bounded modular lattice, S be a ExtensionSeq2 of the

carrier of L, dp(L), F} be a non empty set, F» be a distance function of Fi,

L, f be a homomorphism from L to EqRelPoset(F1), e1, e2 be equivalence

relations of FY, and z, y be sets. Suppose that

) f=a(F),

) Fy =|J{S(9)1 : i ranges over natural numbers},

) F»=J{S(4)2 : i ranges over natural numbers},

(iv) e € the carrier of Im f,

) ez € the carrier of Im f, and

) Az, y) €e1Uen.

Then there exists a non empty finite sequence F' of elements of F; such

that len FF = 2 4+ 2 and x and y are joint by F', e; and es.

(36) For every lower-bounded modular lattice L holds L has a representation
of type < 2.

(37) For every lower-bounded lattice L holds L has a representation of type
< 2 iff L is modular.
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