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The papers [12], [16], [13], [21], [2], [3], [7], [17], [4], [5], [10], [18], [1], [14], [15],
[22], [23], [19], [6], [20], [8], [11], and [9] provide the notation and terminology
for this paper.

1. PRELIMINARIES

The following four propositions are true:

(1) Let L be an add-associative right zeroed right complementable non
empty loop structure and p be a finite sequence of elements of the carrier
of L. If for every natural number 4 such that i € domp holds p(i) = 0p,
then » p=0r.

(2) Let V be an Abelian add-associative right zeroed non empty loop struc-
ture and p be a finite sequence of elements of the carrier of V. Then
> p=>_Rev(p).

(3) For every finite sequence p of elements of R holds > p = > Rev(p).

(4) For every finite sequence p of elements of N and for every natural number
i such that ¢ € domp holds > p > p(i).

Let D be a non empty set, let ¢ be a natural number, and let p be a finite
sequence of elements of D. Then py; is a finite sequence of elements of D.

Let D be a non empty set and let a, b be elements of D. Then (a,b) is an
element of D?.

Let D be a non empty set, let k£, n be natural numbers, let p be an element
of D*, and let ¢ be an element of D™. Then p " ¢ is an element of D*+".

Let D be a non empty set and let n be a natural number. One can check
that every finite sequence of elements of D" is finite sequence yielding.
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Let D be a non empty set, let k, n be natural numbers, let p be a finite
sequence of elements of DF, and let ¢ be a finite sequence of elements of D™.
Then p ~ ¢ is an element of (D¥7)*.

In this article we present several logical schemes. The scheme NonUnigPiSe-
qFzD deals with a non empty set A, a natural number B, and a binary predicate
P, and states that:

There exists a finite sequence p of elements of A such that domp =
Seg B and for every natural number k£ such that k € Seg B holds
P[k’, Tk p]
provided the following condition is satisfied:
e For every natural number k such that k € Seg B there exists an
element d of A such that P[k,d].

The scheme SeqOfSeqLambdaD deals with a non empty set A, a natural
number B, a unary functor F yielding a natural number, and a binary functor
G yielding an element of A, and states that:

There exists a finite sequence p of elements of A* such that

(i) lenp =B, and

(i)  for every natural number k such that & € SegB holds
lenmp = F(k) and for every natural number n such that n €
dom 7gp holds (mxp)(n) = G(k,n)

for all values of the parameters.

2. THE LEXICOGRAPHIC ORDER OF FINITE SEQUENCES

Let n be a natural number and let p, ¢ be elements of N". The predicate
p < q is defined by the condition (Def. 1).
(Def. 1) There exists a natural number ¢ such that i € Segn and p(i) < ¢(i) and
for every natural number & such that 1 < k and k < ¢ holds p(k) = q(k).
Let us note that the predicate p < ¢ is antisymmetric. We introduce ¢ > p as a
synonym of p < gq.
Let n be a natural number and let p, ¢ be elements of N”. The predicate
p < q is defined by:
(Def. 2) p<qorp=gq.
Let us note that the predicate p < ¢ is reflexive. We introduce ¢ > p as a
synonym of p < q.
We now state three propositions:
(5) Let n be a natural number and p, g, r be elements of N”. Then
(i) ifp<gqandq<r, then p<r, and
(i) ifp<qgandg<rorp<gandg<rorp<gqandq<r then p<r.
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(6) Let n be a natural number and p, g be elements of N™. Suppose p # q.
Then there exists a natural number i such that i € Segn and p(i) # q(i)
and for every natural number k such that 1 < k and k& < ¢ holds p(k) =
q(k).

(7) For every natural number n and for all elements p, ¢ of N holds p < ¢
orp>gq.

Let n be a natural number. The functor TuplesOrdern yielding an order in
N™ is defined by:
(Def. 3) For all elements p, ¢ of N holds (p, ¢) € TuplesOrdern iff p < q.

Let n be a natural number. Note that TuplesOrdern is linear-order.

3. DECOMPOSITION OF NATURAL NUMBERS

Let i be a non empty natural number and let n be a natural number. The
functor Decomp(n, i) yielding a finite sequence of elements of N is defined by:
(Def. 4) There exists a finite subset A of N’ such that Decomp(n,i) =
SgmX(TuplesOrderi, A) and for every element p of N’ holds p € A iff
dYp=n.
Let 7 be a non empty natural number and let n be a natural number. Note
that Decomp(n, i) is non empty one-to-one and finite sequence yielding.
The following propositions are true:
(8) For every natural number n holds len Decomp(n,1) = 1.
(9)
(10) For every natural number n holds Decomp(n, 1) = {(n)).
(11)

For every natural number n holds len Decomp(n,2) =n + 1.

For all natural numbers i, 7, n, ki, ko such that (Decomp(n, 2))(i) = (ki,
n —"k1) and (Decomp(n,2))(j) = (k2,n —" k2) holds i < j iff k1 < ko.
(12) For all natural numbers i, n, k1, ko such that (Decomp(n,2))(i) = (ki,
n —' k1) and (Decomp(n,2))(i + 1) = (k2,n —" ko) holds ko = k1 + 1.
(13) For every natural number n holds (Decomp(n,2))(1) = (0, n).
(14) For all natural numbers n, ¢ such that ¢ € Seg(n + 1) holds
(Decomp(n,2))(i) = (i =" 1,(n+ 1) =" 4).

Let L be a non empty groupoid, let p, g, r be sequences of L, and let ¢ be a
finite sequence of elements of N3. The functor prodTuples(p, ¢, r,t) yielding an
element of (the carrier of L)* is defined by:

(Def. 5) lenprodTuples(p,q,r,t) = lent and for every natural number k& such
that k € Seglent holds (prodTuples(p, q,7,t))(k) = p(mimit) - q(mamyt) -
r(mamit).

One can prove the following propositions:
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(15) Let L be a non empty groupoid, p, ¢,  be sequences of L, ¢t be a finite
sequence of elements of N3, P be a permutation of domt, and ¢; be a
finite sequence of elements of N, If t; = ¢- P, then prodTuples(p, g, 7,t1) =
prodTuples(p, g, r,t) - P.

(16) For every set D and for every finite sequence f of elements of D* and
for every natural number i holds f[i = f |i.

(17) Let p be a finite sequence of elements of R and ¢ be a finite sequence of
elements of N. If p = ¢, then for every natural number ¢ holds p[i = q[i.

(18) For every finite sequence p of elements of N and for all natural numbers
i, j such that i < j holds > (p[i) < > (plJ).

(19) Let p be a finite sequence of elements of R and i be a natural number.
If i <lenp, then p[(i+1) = (pli) ~ (p(i +1)).

(20) Let p be a finite sequence of elements of R and i be a natural number.
If i <lenp, then Y (pl(i+1)) = > (pli) + p(i + 1).

(21) Let p be a finite sequence of elements of N and i, j, k1, ko be natural
numbers. Suppose i < lenp and j < lenp and p(i +1) # 0 and p(j + 1) #
0and 1 < ky and 1 < kg and k1 < p(i + 1) and ko < p(j + 1) and
d2(pli) + k1 = > (plj) + ko. Then i = j and k1 = ko.

(22) Let Dy, Dy be sets, f1 be a finite sequence of elements of D1*, fo be a
finite sequence of elements of Do*, and i1, 42, j1, jo be natural numbers.
Suppose i1 € dom f; and iy € dom fo and j; € dom fi(i1) and jo €
dom fa(iz) and fi = f2 and Y(fil(in —' 1)) + 51 = X (f2(i2 =" 1)) + ja.

Then il = ig and jl = j2.

4. POLYNOMIALS

Let L be a non empty zero structure. A Polynomial of L is an algebraic
sequence of L.
The following proposition is true

(23) Let L be a non empty zero structure, p be a Polynomial of L, and n be
a natural number. Then n > len p if and only if the length of p is at most
n.

Now we present two schemes. The scheme PolynomialLambda deals with a
non empty loop structure A, a natural number BB, and a unary functor F yielding
an element of the carrier of A, and states that:

There exists a Polynomial p of A such that lenp < B and for
every natural number n such that n < B holds p(n) = F(n)
for all values of the parameters.
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The scheme FzDLoopStrSeq deals with a non empty loop structure A and a
unary functor F yielding an element of the carrier of A, and states that:
There exists a sequence S of A such that for every natural number
n holds S(n) = F(n)
for all values of the parameters.
Let L be a non empty loop structure and let p, ¢ be sequences of L. The
functor p + ¢ yielding a sequence of L is defined by:
(Def. 6) For every natural number n holds (p + ¢)(n) = p(n) + q(n).
Let L be a right zeroed non empty loop structure and let p, ¢ be Polynomials
of L. Note that p + ¢ is finite-Support.
One can prove the following two propositions:
(24) Let L be a right zeroed non empty loop structure, p, ¢ be Polynomials
of L, and n be a natural number. Suppose the length of p is at most n and
the length of ¢ is at most n. Then the length of p 4+ ¢ is at most n.
(25) For every right zeroed non empty loop structure L and for all Polyno-
mials p, ¢ of L holds support(p + ¢) C support p U support gq.
Let L be an Abelian non empty loop structure and let p, ¢ be sequences of
L. Let us note that the functor p + ¢ is commutative.
One can prove the following proposition
(26) For every add-associative non empty loop structure L and for all sequ-
ences p, ¢, 7 of L holds (p+q)+r=p+ (¢ + 7).
Let L be a non empty loop structure and let p be a sequence of L. The
functor —p yielding a sequence of L is defined by:
(Def. 7) For every natural number n holds (—p)(n) = —p(n).
Let L be an add-associative right zeroed right complementable non empty
loop structure and let p be a Polynomial of L. Observe that —p is finite-Support.
Let L be a non empty loop structure and let p, ¢ be sequences of L. The
functor p — ¢ yields a sequence of L and is defined as follows:
(Def. 8) p—qg=p+ —¢q.
Let L be an add-associative right zeroed right complementable non empty
loop structure and let p, ¢ be Polynomials of L. Note that p— g is finite-Support.
Next we state the proposition
(27) Let L be a non empty loop structure, p, ¢ be sequences of L, and n be
a natural number. Then (p — ¢)(n) = p(n) — q(n).
Let L be a non empty zero structure. The functor 0. L yielding a sequence
of L is defined as follows:
(Def. 9) 0.L =N+—0y.
Let L be a non empty zero structure. One can check that 0. L is finite-
Support.
We now state three propositions:
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(28) For every non empty zero structure L and for every natural number n
holds (0. L)(n) = 0f.

(29) For every right zeroed non empty loop structure L and for every sequence
pof L holds p+0.L = p.

(30) Let L be an add-associative right zeroed right complementable non
empty loop structure and p be a sequence of L. Then p —p = 0. L.

Let L be a non empty multiplicative loop with zero structure. The functor
1. L yielding a sequence of L is defined by:

(Def. 10) 1.L=0.L+-(0,1p).
Let L be a non empty multiplicative loop with zero structure. Observe that
1. L is finite-Support.
Next we state the proposition

(31) Let L be a non empty multiplicative loop with zero structure. Then
(1.L)(0) = 1, and for every natural number n such that n # 0 holds
(1.L)(n) = 0.

Let L be a non empty double loop structure and let p, g be sequences of L.
The functor p*q yields a sequence of L and is defined by the condition (Def. 11).

(Def. 11) Let ¢ be a natural number. Then there exists a finite sequence r of
elements of the carrier of L such that lenr =i+ 1 and (p*xq)(i) = > r
and for every natural number k such that & € domr holds r(k) = p(k -/
1)-q((i+1) —"k).

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure and let p, ¢ be Polynomials of L. Note that
p * ¢ is finite-Support.

Next we state three propositions:

(32) Let L be an Abelian add-associative right zeroed right complementable
right distributive non empty double loop structure and p, ¢, r be sequences
of L. Then px (q+71r)=p*xq+p*r.

(33) Let L be an Abelian add-associative right zeroed right complementable
left distributive non empty double loop structure and p, ¢, r be sequences
of L. Then (p+q)xr=p*xr+qx*r.

(34) Let L be an Abelian add-associative right zeroed right complementable
unital associative distributive non empty double loop structure and p, g,
r be sequences of L. Then (p*q) *xr =px* (q*r).

Let L be an Abelian add-associative right zeroed commutative non empty
double loop structure and let p, ¢ be sequences of L. Let us observe that the
functor p * ¢ is commutative.

We now state two propositions:

(35) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure and p be a sequence of L.
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Then px0.L =0.L.

(36) Let L be an add-associative right zeroed right unital right complementa-
ble right distributive non empty double loop structure and p be a sequence
of L. Then px1.L = p.

5. THE RING OF POLYNOMIALS

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure. The functor Polynom-Ring L yields a strict
non empty double loop structure and is defined by the conditions (Def. 12).

(Def. 12)(i)  For every set x holds = € the carrier of Polynom-Ring L iff = is a
Polynomial of L,
(ii)  for all elements z, y of the carrier of Polynom-Ring L and for all sequ-
ences p, q of L such that xt =p and y =q holds x +y =p+q,
(ili) for all elements z, y of the carrier of Polynom-Ring L and for all sequ-
ences p, q of L such that z =p and y =q holds -y = p*q,
(IV) OPolynom—RingL =0.L, and

(V) ]-Polynom—RingL =1.1L.

Let L be an Abelian add-associative right zeroed right complementable di-
stributive non empty double loop structure. Observe that Polynom-Ring L is
Abelian.

Let L be an add-associative right zeroed right complementable distributive
non empty double loop structure. One can check the following observations:

* Polynom-Ring L is add-associative,
* Polynom-Ring L is right zeroed, and
* Polynom-Ring L is right complementable.

Let L be an Abelian add-associative right zeroed right complementable com-
mutative distributive non empty double loop structure. Note that Polynom-Ring L
is commutative.

Let L be an Abelian add-associative right zeroed right complementable
unital associative distributive non empty double loop structure. Observe that
Polynom-Ring L is associative.

Let L be an add-associative right zeroed right complementable right unital
distributive non empty double loop structure. Observe that Polynom-Ring L is
right unital.

Let L be an Abelian add-associative right zeroed right complementable di-
stributive non empty double loop structure. Note that Polynom-Ring L is right
distributive and Polynom-Ring L is left distributive.
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