
FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001

University of Białystok

The Construction and Computation of

While-Loop Programs for SCMPDS1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. This article defines two while-loop statements on SCMPDS,
i.e. “while<0” and “while>0”, which resemble the while-statements of the com-

mon high language such as C. We previously presented a number of tricks for

computing while-loop statements on SCMFSA, e.g. step-while. However, after

inspecting a few realistic examples, we found that they are neither very useful

nor of generalization. To cover much more computation cases of while-loop sta-

tements, we generalize the computation model of while-loop statements, based

on the principle of Hoare’s axioms on the verification of programs.

MML Identifier: SCMPDS 8.

The notation and terminology used here are introduced in the following articles:

[14], [15], [19], [16], [1], [3], [17], [4], [5], [20], [2], [12], [13], [22], [23], [10], [6], [9],

[7], [8], [11], [21], and [18].

1. Preliminaries

In this paper x, a denote Int positions and s denotes a state of SCMPDS.

We now state the proposition

(1) For every Int position a there exists a natural number i such that a =

intpos i.

Let t be a state of SCMPDS. The functor Dstate t yielding a state of

SCMPDS is defined by the condition (Def. 1).

1This research is partially supported by the National Natural Science Foundation of China

Grant No. 69873033.

397
c© 2001 University of Białystok

ISSN 1426–2630



398 jing-chao chen

(Def. 1) Let x be a set. Then

(i) if x ∈ Data-LocSCM, then (Dstate t)(x) = t(x),

(ii) if x ∈ the instruction locations of SCMPDS, then (Dstate t)(x) =

goto 0, and

(iii) if x = ICSCMPDS, then (Dstate t)(x) = inspos 0.

One can prove the following four propositions:

(2) For all states t1, t2 of SCMPDS such that t1↾Data-LocSCM =

t2↾Data-LocSCM holds Dstate t1 = Dstate t2.

(3) For every state t of SCMPDS and for every instruction i of SCMPDS

such that InsCode(i) ∈ {0, 4, 5, 6} holds Dstate t = DstateExec(i, t).

(4) (Dstate s)(a) = s(a).

(5) Let a be an Int position. Then there exists a function f from
∏
(the

object kind of SCMPDS) into N such that for every state s of SCMPDS

holds

(i) if s(a) ¬ 0, then f(s) = 0, and

(ii) if s(a) > 0, then f(s) = s(a).

2. The Construction and Several Basic Properties of “while<0”

Program

Let a be an Int position, let i be an integer, and let I be a Program-block.

The functor while < 0(a, i, I) yielding a Program-block is defined by:

(Def. 2) while < 0(a, i, I) = ((a, i) >= 0 goto card I+2); I; goto (−(card I + 1)).

Let I be a shiftable Program-block, let a be an Int position, and let i be an

integer. Observe that while < 0(a, i, I) is shiftable.

Let I be a No-StopCode Program-block, let a be an Int position, and let i

be an integer. Note that while < 0(a, i, I) is No-StopCode.

Next we state several propositions:

(6) For every Int position a and for every integer i and for every Program-

block I holds cardwhile < 0(a, i, I) = card I + 2.

(7) Let a be an Int position, i be an integer, m be a natural number, and

I be a Program-block. Then m < card I + 2 if and only if insposm ∈

domwhile < 0(a, i, I).

(8) Let a be an Int position, i be an integer, and I be a Program-block. Then

(while < 0(a, i, I))(inspos 0) = (a, i) >= 0 goto card I + 2 and (while <

0(a, i, I))(inspos card I + 1) = goto (−(card I + 1)).

(9) Let s be a state of SCMPDS, I be a Program-block, a be an Int position,

and i be an integer. If s(DataLoc(s(a), i)) ­ 0, then while < 0(a, i, I) is

closed on s and while < 0(a, i, I) is halting on s.



the construction and computation of . . . 399

(10) Let s be a state of SCMPDS, I be a Program-block, a, c be Int posi-

tions, and i be an integer. If s(DataLoc(s(a), i)) ­ 0, then IExec(while <

0(a, i, I), s) = s+·Start-At(inspos card I + 2).

(11) Let s be a state of SCMPDS, I be a Program-block, a be an

Int position, and i be an integer. If s(DataLoc(s(a), i)) ­ 0, then

ICIExec(while<0(a,i,I),s) = inspos card I + 2.

(12) Let s be a state of SCMPDS, I be a Program-block, a, b be Int posi-

tions, and i be an integer. If s(DataLoc(s(a), i)) ­ 0, then (IExec(while <

0(a, i, I), s))(b) = s(b).

In this article we present several logical schemes. The scheme WhileLHalt

deals with a unary functor F yielding a natural number, a state A of SCMPDS,

a No-StopCode shiftable Program-block B, an Int position C, an integer D, and

a unary predicate P, and states that:

F(A) = F(A) or P[A] but while < 0(C,D,B) is closed on A but

while < 0(C,D,B) is halting on A

provided the following conditions are met:

• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] and

F(Dstate t) = 0 holds t(DataLoc(A(C),D)) ­ 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) < 0. Then (IExec(B, t))(C) = t(C) and

B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

The scheme WhileLExec deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an

Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but IExec(while < 0(C,D,B),A) =

IExec(while < 0(C,D,B), IExec(B,A))

provided the parameters meet the following conditions:

• cardB > 0,

• A(DataLoc(A(C),D)) < 0,

• For every state t of SCMPDS such that P[Dstate t] and

F(Dstate t) = 0 holds t(DataLoc(A(C),D)) ­ 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) < 0. Then (IExec(B, t))(C) = t(C) and

B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

One can prove the following propositions:



400 jing-chao chen

(13) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i be an integer, X be a set, and f be a function

from
∏
(the object kind of SCMPDS) into N. Suppose that

(i) card I > 0,

(ii) for every state t of SCMPDS such that f(Dstate t) = 0 holds

t(DataLoc(s(a), i)) ­ 0, and

(iii) for every state t of SCMPDS such that for every Int position x such

that x ∈ X holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) < 0

holds (IExec(I, t))(a) = t(a) and f(Dstate IExec(I, t)) < f(Dstate t) and

I is closed on t and halting on t and for every Int position x such that

x ∈ X holds (IExec(I, t))(x) = t(x).

Then while < 0(a, i, I) is closed on s and while < 0(a, i, I) is halting on s.

(14) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i be an integer, X be a set, and f be a function

from
∏
(the object kind of SCMPDS) into N. Suppose that

(i) card I > 0,

(ii) s(DataLoc(s(a), i)) < 0,

(iii) for every state t of SCMPDS such that f(Dstate t) = 0 holds

t(DataLoc(s(a), i)) ­ 0, and

(iv) for every state t of SCMPDS such that for every Int position x such

that x ∈ X holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) < 0

holds (IExec(I, t))(a) = t(a) and I is closed on t and halting on t and

f(Dstate IExec(I, t)) < f(Dstate t) and for every Int position x such that

x ∈ X holds (IExec(I, t))(x) = t(x).

Then IExec(while < 0(a, i, I), s) = IExec(while < 0(a, i, I), IExec(I, s)).

(15) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i be an integer, and X be a set. Suppose

that

(i) card I > 0, and

(ii) for every state t of SCMPDS such that for every Int position x such

that x ∈ X holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) <

0 holds (IExec(I, t))(a) = t(a) and (IExec(I, t))(DataLoc(s(a), i)) >

t(DataLoc(s(a), i)) and I is closed on t and halting on t and for every

Int position x such that x ∈ X holds (IExec(I, t))(x) = t(x).

Then while < 0(a, i, I) is closed on s and while < 0(a, i, I) is halting on s.

(16) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i be an integer, and X be a set. Suppose

that

(i) s(DataLoc(s(a), i)) < 0,

(ii) card I > 0, and

(iii) for every state t of SCMPDS such that for every Int position x such



the construction and computation of . . . 401

that x ∈ X holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) <

0 holds (IExec(I, t))(a) = t(a) and (IExec(I, t))(DataLoc(s(a), i)) >

t(DataLoc(s(a), i)) and I is closed on t and halting on t and for every

Int position x such that x ∈ X holds (IExec(I, t))(x) = t(x).

Then IExec(while < 0(a, i, I), s) = IExec(while < 0(a, i, I), IExec(I, s)).

3. The Construction and Several Basic Properties of “while>0”

Program

Let a be an Int position, let i be an integer, and let I be a Program-block.

The functor while > 0(a, i, I) yields a Program-block and is defined by:

(Def. 3) while > 0(a, i, I) = ((a, i) <= 0 goto card I+2); I; goto (−(card I + 1)).

Let I be a shiftable Program-block, let a be an Int position, and let i be an

integer. One can verify that while > 0(a, i, I) is shiftable.

Let I be a No-StopCode Program-block, let a be an Int position, and let i

be an integer. Note that while > 0(a, i, I) is No-StopCode.

Next we state several propositions:

(17) For every Int position a and for every integer i and for every Program-

block I holds cardwhile > 0(a, i, I) = card I + 2.

(18) Let a be an Int position, i be an integer, m be a natural number, and

I be a Program-block. Then m < card I + 2 if and only if insposm ∈

domwhile > 0(a, i, I).

(19) Let a be an Int position, i be an integer, and I be a Program-block. Then

(while > 0(a, i, I))(inspos 0) = (a, i) <= 0 goto card I + 2 and (while >

0(a, i, I))(inspos card I + 1) = goto (−(card I + 1)).

(20) Let s be a state of SCMPDS, I be a Program-block, a be an Int position,

and i be an integer. If s(DataLoc(s(a), i)) ¬ 0, then while > 0(a, i, I) is

closed on s and while > 0(a, i, I) is halting on s.

(21) Let s be a state of SCMPDS, I be a Program-block, a, c be Int posi-

tions, and i be an integer. If s(DataLoc(s(a), i)) ¬ 0, then IExec(while >

0(a, i, I), s) = s+·Start-At(inspos card I + 2).

(22) Let s be a state of SCMPDS, I be a Program-block, a be an

Int position, and i be an integer. If s(DataLoc(s(a), i)) ¬ 0, then

ICIExec(while>0(a,i,I),s) = inspos card I + 2.

(23) Let s be a state of SCMPDS, I be a Program-block, a, b be Int posi-

tions, and i be an integer. If s(DataLoc(s(a), i)) ¬ 0, then (IExec(while >

0(a, i, I), s))(b) = s(b).

Now we present two schemes. The scheme WhileGHalt deals with a unary

functor F yielding a natural number, a state A of SCMPDS, a No-StopCode



402 jing-chao chen

shiftable Program-block B, an Int position C, an integerD, and a unary predicate

P, and states that:

F(A) = F(A) or P[A] but while > 0(C,D,B) is closed on A but

while > 0(C,D,B) is halting on A

provided the parameters meet the following conditions:

• cardB > 0,

• For every state t of SCMPDS such that P[Dstate t] and

F(Dstate t) = 0 holds t(DataLoc(A(C),D)) ¬ 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B, t))(C) = t(C) and

B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

The scheme WhileGExec deals with a unary functor F yielding a natural

number, a state A of SCMPDS, a No-StopCode shiftable Program-block B, an

Int position C, an integer D, and a unary predicate P, and states that:

F(A) = F(A) or P[A] but IExec(while > 0(C,D,B),A) =

IExec(while > 0(C,D,B), IExec(B,A))

provided the following conditions are satisfied:

• cardB > 0,

• A(DataLoc(A(C),D)) > 0,

• For every state t of SCMPDS such that P[Dstate t] and

F(Dstate t) = 0 holds t(DataLoc(A(C),D)) ¬ 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B, t))(C) = t(C) and

B is closed on t and B is halting on t and F(Dstate IExec(B, t)) <

F(Dstate t) and P[Dstate IExec(B, t)].

One can prove the following propositions:

(24) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i, c be integers, X, Y be sets, and f be a

function from
∏
(the object kind of SCMPDS) into N. Suppose that

(i) card I > 0,

(ii) for every state t of SCMPDS such that f(Dstate t) = 0 holds

t(DataLoc(s(a), i)) ¬ 0,

(iii) for every x such that x ∈ X holds s(x) ­ c + s(DataLoc(s(a), i)), and

(iv) for every state t of SCMPDS such that for every x such that x ∈ X holds

t(x) ­ c+t(DataLoc(s(a), i)) and for every x such that x ∈ Y holds t(x) =

s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds (IExec(I, t))(a) =

t(a) and I is closed on t and halting on t and f(Dstate IExec(I, t)) <

f(Dstate t) and for every x such that x ∈ X holds (IExec(I, t))(x) ­



the construction and computation of . . . 403

c + (IExec(I, t))(DataLoc(s(a), i)) and for every x such that x ∈ Y holds

(IExec(I, t))(x) = t(x).

Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting on s.

(25) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i, c be integers, X, Y be sets, and f be a

function from
∏
(the object kind of SCMPDS) into N. Suppose that

(i) s(DataLoc(s(a), i)) > 0,

(ii) card I > 0,

(iii) for every state t of SCMPDS such that f(Dstate t) = 0 holds

t(DataLoc(s(a), i)) ¬ 0,

(iv) for every x such that x ∈ X holds s(x) ­ c + s(DataLoc(s(a), i)), and

(v) for every state t of SCMPDS such that for every x such that x ∈ X holds

t(x) ­ c+t(DataLoc(s(a), i)) and for every x such that x ∈ Y holds t(x) =

s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds (IExec(I, t))(a) =

t(a) and I is closed on t and halting on t and f(Dstate IExec(I, t)) <

f(Dstate t) and for every x such that x ∈ X holds (IExec(I, t))(x) ­

c + (IExec(I, t))(DataLoc(s(a), i)) and for every x such that x ∈ Y holds

(IExec(I, t))(x) = t(x).

Then IExec(while > 0(a, i, I), s) = IExec(while > 0(a, i, I), IExec(I, s)).

(26) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i be an integer, X be a set, and f be a function

from
∏
(the object kind of SCMPDS) into N. Suppose that

(i) card I > 0,

(ii) for every state t of SCMPDS such that f(Dstate t) = 0 holds

t(DataLoc(s(a), i)) ¬ 0, and

(iii) for every state t of SCMPDS such that for every x such that x ∈ X

holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds

(IExec(I, t))(a) = t(a) and I is closed on t and halting on t and

f(Dstate IExec(I, t)) < f(Dstate t) and for every x such that x ∈ X holds

(IExec(I, t))(x) = t(x).

Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting

on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =

IExec(while > 0(a, i, I), IExec(I, s)).

(27) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i, c be integers, and X, Y be sets. Suppose

that

(i) card I > 0,

(ii) for every x such that x ∈ X holds s(x) ­ c + s(DataLoc(s(a), i)), and

(iii) for every state t of SCMPDS such that for every x such that x ∈ X

holds t(x) ­ c + t(DataLoc(s(a), i)) and for every x such that x ∈ Y

holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds



404 jing-chao chen

(IExec(I, t))(a) = t(a) and I is closed on t and halting on t and

(IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i)) and for every x such

that x ∈ X holds (IExec(I, t))(x) ­ c+(IExec(I, t))(DataLoc(s(a), i)) and

for every x such that x ∈ Y holds (IExec(I, t))(x) = t(x).

Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting

on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =

IExec(while > 0(a, i, I), IExec(I, s)).

(28) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i be an integer, and X be a set. Suppose

that

(i) card I > 0, and

(ii) for every state t of SCMPDS such that for every x such that x ∈ X

holds t(x) = s(x) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0 holds

(IExec(I, t))(a) = t(a) and I is closed on t and halting on t and

(IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i)) and for every x such

that x ∈ X holds (IExec(I, t))(x) = t(x).

Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting

on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =

IExec(while > 0(a, i, I), IExec(I, s)).

(29) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i, c be integers, and X be a set. Suppose

that

(i) card I > 0,

(ii) for every x such that x ∈ X holds s(x) ­ c + s(DataLoc(s(a), i)), and

(iii) for every state t of SCMPDS such that for every x such that x ∈ X holds

t(x) ­ c+ t(DataLoc(s(a), i)) and t(a) = s(a) and t(DataLoc(s(a), i)) > 0

holds (IExec(I, t))(a) = t(a) and I is closed on t and halting on t and

(IExec(I, t))(DataLoc(s(a), i)) < t(DataLoc(s(a), i)) and for every x such

that x ∈ X holds (IExec(I, t))(x) ­ c + (IExec(I, t))(DataLoc(s(a), i)).

Then while > 0(a, i, I) is closed on s and while > 0(a, i, I) is halting

on s and if s(DataLoc(s(a), i)) > 0, then IExec(while > 0(a, i, I), s) =

IExec(while > 0(a, i, I), IExec(I, s)).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[6] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193–199, 1999.



the construction and computation of . . . 405

[7] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-
lized Mathematics, 8(1):211–217, 1999.

[8] Jing-Chao Chen. The construction and computation of conditional statements for
SCMPDS. Formalized Mathematics, 8(1):219–234, 1999.

[9] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[10] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[11] Jing-Chao Chen. Recursive Euclide algorithm. Formalized Mathematics, 9(1):1–4, 2001.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[13] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321–328,
1990.

[14] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[15] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[16] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received June 14, 2000


