
FORMALIZED MATHEMATICS

Volume 9, Number 2, 2001

University of Białystok

Insert Sort on SCMPDS
1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. The goal of this article is to examine the effectiveness of “for-
loop” and “while-loop” statements on SCMPDS by insert sort. In this article,

first of all, we present an approach to compute the execution result of “for-loop”

program by “loop-invariant”, based on Hoare’s axioms for program verification.

Secondly, we extend the fundamental properties of the finite sequence and com-

plex instructions of SCMPDS. Finally, we prove the correctness of the insert sort

program described in the article.

MML Identifier: SCPISORT.

The terminology and notation used in this paper have been introduced in the

following articles: [16], [19], [1], [3], [4], [20], [2], [13], [15], [9], [5], [8], [6], [7],

[12], [10], [11], [17], [21], [18], and [14].

1. Preliminaries

In this paper n, p0 are natural numbers.

Let f be a finite sequence of elements of Z, let s be a state of SCMPDS, and

let m be a natural number. We say that f is FinSequence on s, m if and only if:

(Def. 1) For every natural number i such that 1 ¬ i and i ¬ len f holds f(i) =

s(intposm + i).

We now state four propositions:

(1) Let f be a finite sequence of elements of Z and m, n be natural numbers.

If m ­ n, then f is non decreasing on m, n.

1This research is partially supported by the National Natural Science Foundation of China

Grant No. 69873033.

407
c© 2001 University of Białystok

ISSN 1426–2630



408 jing-chao chen

(2) Let s be a state of SCMPDS and n, m be natural numbers. Then there

exists a finite sequence f of elements of Z such that len f = n and for every

natural number i such that 1 ¬ i and i ¬ len f holds f(i) = s(intposm+i).

(3) Let s be a state of SCMPDS and n, m be natural numbers. Then there

exists a finite sequence f of elements of Z such that len f = n and f is

FinSequence on s, m.

(4) Let f , g be finite sequences of elements of Z andm, n be natural numbers.

Suppose that 1 ¬ n and n ¬ len f and 1 ¬ m and m ¬ len f and len f =

len g and f(m) = g(n) and f(n) = g(m) and for every natural number k

such that k 6= m and k 6= n and 1 ¬ k and k ¬ len f holds f(k) = g(k).

Then f and g are fiberwise equipotent.

The following propositions are true:

(5) For all states s1, s2 of SCMPDS such that for every Int position a holds

s1(a) = s2(a) holds Dstate s1 = Dstate s2.

(6) Let s be a state of SCMPDS, I be a No-StopCode Program-block, and

j be a parahalting shiftable instruction of SCMPDS. Suppose I is closed

on s and halting on s. Then I; j is closed on s and I; j is halting on s.

(7) Let s be a state of SCMPDS, I be a No-StopCode Program-block, J be a

shiftable parahalting Program-block, and a be an Int position. If I is closed

on s and halting on s, then (IExec(I; J, s))(a) = (IExec(J, IExec(I, s)))(a).

(8) Let s be a state of SCMPDS, I be a No-StopCode parahalting Program-

block, J be a shiftable Program-block, and a be an Int position. If J is

closed on IExec(I, s) and halting on IExec(I, s), then (IExec(I; J, s))(a) =

(IExec(J, IExec(I, s)))(a).

(9) Let s be a state of SCMPDS, I be a Program-block, and J be a shiftable

parahalting Program-block. Suppose I is closed on s and halting on s.

Then I; J is closed on s and I; J is halting on s.

(10) Let s be a state of SCMPDS, I be a parahalting Program-block, and

J be a shiftable Program-block. Suppose J is closed on IExec(I, s) and

halting on IExec(I, s). Then I; J is closed on s and I; J is halting on s.

(11) Let s be a state of SCMPDS, I be a Program-block, and j be a para-

halting shiftable instruction of SCMPDS. Suppose I is closed on s and

halting on s. Then I; j is closed on s and I; j is halting on s.

2. Computing the Execution Result of For-Loop Program by

Loop-Invariant

In this article we present several logical schemes. The scheme ForDownHalt

deals with a state A of SCMPDS, a No-StopCode shiftable Program-block B,



insert sort on scmpds 409

an Int position C, an integer D, a natural number E , and a unary predicate P,

and states that:

P[A] or not P[A] but for-down(C,D, E ,B) is closed on A but

for-down(C,D, E ,B) is halting on A

provided the following requirements are met:

• E > 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B; AddTo(C,D,−E), t))(C) =

t(C) and (IExec(B; AddTo(C,D,−E), t))(DataLoc(A(C),D)) =

t(DataLoc(A(C),D)) − E and B is closed on t and B is halting

on t and P[Dstate IExec(B; AddTo(C,D,−E), t)].

The scheme ForDownExec deals with a state A of SCMPDS, a No-StopCode

shiftable Program-block B, an Int position C, an integer D, a natural number

E , and a unary predicate P, and states that:

P[A] or not P[A] but IExec(for-down(C,D, E ,B),A) =

IExec(for-down(C,D, E ,B), IExec(B; AddTo(C,D,−E),A))

provided the parameters meet the following conditions:

• E > 0,

• A(DataLoc(A(C),D)) > 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B; AddTo(C,D,−E), t))(C) =

t(C) and (IExec(B; AddTo(C,D,−E), t))(DataLoc(A(C),D)) =

t(DataLoc(A(C),D)) − E and B is closed on t and B is halting

on t and P[Dstate IExec(B; AddTo(C,D,−E), t)].

The scheme ForDownEnd deals with a state A of SCMPDS, a No-StopCode

shiftable Program-block B, an Int position C, an integer D, a natural number

E , and a unary predicate P, and states that:

P[A] or not P[A] but (IExec(for-down(C,D, E ,B),A))(DataLoc(A(C),D)) ¬

0 but P[Dstate IExec(for-down(C,D, E ,B),A)]

provided the parameters have the following properties:

• E > 0,

• P[DstateA], and

• Let t be a state of SCMPDS. Suppose P[Dstate t] and t(C) = A(C)

and t(DataLoc(A(C),D)) > 0. Then (IExec(B; AddTo(C,D,−E), t))(C) =

t(C) and (IExec(B; AddTo(C,D,−E), t))(DataLoc(A(C),D)) =

t(DataLoc(A(C),D)) − E and B is closed on t and B is halting

on t and P[Dstate IExec(B; AddTo(C,D,−E), t)].

We now state three propositions:

(12) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a, x, y be Int positions, i, c be integers, and n be a natural number.



410 jing-chao chen

Suppose that

(i) n > 0,

(ii) s(x) ­ s(y) + c, and

(iii) for every state t of SCMPDS such that t(x) ­ t(y) + c and t(a) = s(a)

and t(DataLoc(s(a), i)) > 0 holds (IExec(I; AddTo(a, i,−n), t))(a) = t(a)

and (IExec(I; AddTo(a, i,−n), t))(DataLoc(s(a), i)) = t(DataLoc(s(a), i))

−n and I is closed on t and halting on t and (IExec(I; AddTo(a, i,−n), t))

(x) ­ (IExec(I; AddTo(a, i,−n), t))(y) + c.

Then for-down(a, i, n, I) is closed on s and for-down(a, i, n, I) is halting

on s.

(13) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a, x, y be Int positions, i, c be integers, and n be a natural number.

Suppose that

(i) n > 0,

(ii) s(x) ­ s(y) + c,

(iii) s(DataLoc(s(a), i)) > 0, and

(iv) for every state t of SCMPDS such that t(x) ­ t(y) + c and t(a) = s(a)

and t(DataLoc(s(a), i)) > 0 holds (IExec(I; AddTo(a, i,−n), t))(a) = t(a)

and (IExec(I; AddTo(a, i,−n), t))(DataLoc(s(a), i)) = t(DataLoc(s(a), i))

−n and I is closed on t and halting on t and (IExec(I; AddTo(a, i,−n), t))

(x) ­ (IExec(I; AddTo(a, i,−n), t))(y) + c.

Then IExec(for-down(a, i, n, I), s) = IExec(for-down(a, i, n, I),

IExec(I; AddTo(a, i,−n), s)).

(14) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-

block, a be an Int position, i be an integer, and n be a natural number.

Suppose that

(i) s(DataLoc(s(a), i)) > 0,

(ii) n > 0,

(iii) card I > 0,

(iv) a 6= DataLoc(s(a), i), and

(v) for every state t of SCMPDS such that t(a) = s(a)

holds (IExec(I, t))(a) = t(a) and (IExec(I, t))(DataLoc(s(a), i)) =

t(DataLoc(s(a), i)) and I is closed on t and halting on t.

Then for-down(a, i, n, I) is closed on s and for-down(a, i, n, I) is halting

on s.

3. A Program for Insert Sort

Let n, p0 be natural numbers. The functor insert-sort(n, p0) yielding a

Program-block is defined by the condition (Def. 2).



insert sort on scmpds 411

(Def. 2) insert-sort(n, p0) = (GBP :=0); ((GBP)1:=0); ((GBP)2:=n− 1);

((GBP)3:=p0); for-down(GBP, 2, 1,AddTo(GBP, 3, 1);

((GBP, 4) := (GBP, 3)); AddTo(GBP, 1, 1); ((GBP, 6) := (GBP, 1));

while > 0(GBP, 6, ((GBP, 5) := (intpos 4,−1));

SubFrom(GBP, 5, intpos 4, 0); (if GBP > 5 then

((GBP, 5) := (intpos 4,−1)); ((intpos 4,−1) := (intpos 4, 0));

((intpos 4, 0) := (GBP, 5)); AddTo(GBP, 4,−1); AddTo(GBP, 6,−1)

else Load((GBP)6:=0)))).

4. The Property of Insert Sort and Its Correctness

We now state two propositions:

(15) card insert-sort(n, p0) = 23.

(16) If p0 ­ 7, then insert-sort(n, p0) is parahalting.

One can prove the following propositions:

(17) Let s be a state of SCMPDS, f , g be finite sequences of elements of Z, and

k0, k be natural numbers. Suppose that s(a4) ­ 7+s(a6) and s(GBP) = 0

and k = s(a6) and k0 = s(a4) − s(a6) − 1 and f is FinSequence on s, k0

and g is FinSequence on IExec(I2, s), k0 and len f = len g and len f > k

and f is non decreasing on 1, k. Then

(i) f and g are fiberwise equipotent,

(ii) g is non decreasing on 1, k + 1,

(iii) for every natural number i such that i > k + 1 and i ¬ len f holds

f(i) = g(i), and

(iv) for every natural number i such that 1 ¬ i and i ¬ k + 1 there exists a

natural number j such that 1 ¬ j and j ¬ k + 1 and g(i) = f(j),

where a4 = intpos 4, a6 = intpos 6, I2 = W1, W1 = while >

0(GBP, 6, B1), B1 = k1; k2; I1, k1 = (GBP, 5) := (intpos 4,−1), k2 =

SubFrom(GBP, 5, intpos 4, 0), I1 = if GBP > 5 then T1 else F1, T1 =

k3; k4; k5; k6; k7, k3 = (GBP, 5) := (intpos 4,−1), k4 = (intpos 4,−1) :=

(intpos 4, 0), k5 = (intpos 4, 0) := (GBP, 5), k6 = AddTo(GBP, 4,−1),

k7 = AddTo(GBP, 6,−1), and F1 = Load((GBP)6:=0).

(18) Let s be a state of SCMPDS, f , g be finite sequences of elements of Z, and

p0, n be natural numbers. Suppose p0 ­ 6 and len f = n and len g = n and

f is FinSequence on s, p0 and g is FinSequence on IExec(insert-sort(n, p0+

1), s), p0. Then f and g are fiberwise equipotent and g is non decreasing

on 1, n.



412 jing-chao chen

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193–199, 1999.

[6] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-
lized Mathematics, 8(1):211–217, 1999.

[7] Jing-Chao Chen. The construction and computation of conditional statements for
SCMPDS. Formalized Mathematics, 8(1):219–234, 1999.

[8] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[9] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[10] Jing-Chao Chen. The construction and computation of while-loop programs for SCMPDS.
Formalized Mathematics, 9(2):397–405, 2001.

[11] Jing-Chao Chen. Recursive Euclide algorithm. Formalized Mathematics, 9(1):1–4, 2001.
[12] Jing-Chao Chen and Piotr Rudnicki. The construction and computation of for-loop pro-
grams for SCMPDS. Formalized Mathematics, 9(1):209–219, 2001.

[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[14] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics,
6(4):573–577, 1997.

[15] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[16] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[17] Piotr Rudnicki. The for (going up) macro instruction. Formalized Mathematics, 7(1):107–
114, 1998.

[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received June 14, 2000


