Weights of Continuous Lattices¹

Robert Milewski University of Białystok

Summary. This work is a continuation of formalization of [13]. Theorems from Chapter III, Section 4, pp. 170–171 are proved.

 $\mathrm{MML}\ \mathrm{Identifier:}\ \mathtt{WAYBEL31}.$

The papers [25], [20], [1], [9], [12], [10], [22], [3], [15], [2], [23], [19], [26], [24], [27], [21], [8], [18], [5], [11], [6], [17], [16], [4], [14], and [7] provide the terminology and notation for this paper.

In this article we present several logical schemes. The scheme UparrowUnion deals with a relational structure \mathcal{A} and a unary predicate \mathcal{P} , and states that:

Let S be a family of subsets of the carrier of \mathcal{A} . If $S = \{X; X \text{ ranges over subsets of } \mathcal{A} : \mathcal{P}[X]\}$, then $\uparrow \bigcup S = \bigcup \{\uparrow X; X \text{ ranges over subsets of } \mathcal{A} : \mathcal{P}[X]\}$

for all values of the parameters.

The scheme DownarrowUnion deals with a relational structure \mathcal{A} and a unary predicate \mathcal{P} , and states that:

Let S be a family of subsets of the carrier of \mathcal{A} . If $S = \{X; X \text{ ranges over subsets of } \mathcal{A} : \mathcal{P}[X]\}$, then $\bigcup S = \bigcup \{\bigcup X; X \text{ ranges over subsets of } \mathcal{A} : \mathcal{P}[X]\}$

for all values of the parameters.

Let L_1 be a lower-bounded continuous sup-semilattice and let B_1 be a CLbasis of L_1 with bottom. One can verify that $(\operatorname{Ids}(\operatorname{sub}(B_1)), \subseteq)$ is algebraic.

Let L_1 be a continuous sup-semilattice. The functor CLweight L_1 yields a cardinal number and is defined as follows:

(Def. 1) CLweight $L_1 = \bigcap \{ \overline{B_1} : B_1 \text{ ranges over CLbasis of } L_1 \text{ with bottom} \}$. We now state a number of propositions:

C 2001 University of Białystok ISSN 1426-2630

 $^{^1\}mathrm{This}$ work has been supported by KBN Grant 8 T11C 018 12.

ROBERT MILEWSKI

- (1) For every topological structure T and for every basis b of T holds weight $T \subseteq \overline{\overline{b}}$.
- (2) For every topological structure T there exists a basis b of T such that $\overline{\overline{b}} = \text{weight } T.$
- (3) For every continuous sup-semilattice L_1 and for every CLbasis B_1 of L_1 with bottom holds CLweight $L_1 \subseteq \overline{\overline{B_1}}$.
- (4) For every continuous sup-semilattice L_1 there exists a CL basis B_1 of L_1 with bottom such that $\overline{\overline{B_1}} = \text{CL weight } L_1$.
- (5) For every algebraic lower-bounded lattice L_1 holds CLweight $L_1 = \overline{\text{the carrier of CompactSublatt}(L_1)}$.
- (6) Let T be a non empty topological space and L_1 be a continuous supsemilattice. If (the topology of $T, \subseteq \rangle = L_1$, then every CL basis of L_1 with bottom is a basis of T.
- (7) Let T be a non empty topological space and L_1 be a continuous lowerbounded lattice. Suppose (the topology of $T, \subseteq \rangle = L_1$. Let B_1 be a basis of T and B_2 be a subset of L_1 . If $B_1 = B_2$, then finsups (B_2) is a CL basis of L_1 with bottom.
- (8) Let T be a T_0 non empty topological space and L_1 be a continuous lower-bounded sup-semilattice. If (the topology of $T, \subseteq \rangle = L_1$, then if T is infinite, then weight $T = \text{CLweight } L_1$.
- (9) Let T be a T_0 non empty topological space and L_1 be a continuous supsemilattice. Suppose (the topology of $T, \subseteq \rangle = L_1$. Then the carrier of $\overline{T} \subseteq \overline{\overline{\text{the carrier of } L_1}}$.
- (10) For every T_0 non empty topological space T such that T is finite holds weight $T = \overline{\text{the carrier of } T}$.
- (11) Let T be a topological structure and L_1 be a continuous lower-bounded lattice. Suppose $\langle \text{the topology of } T, \subseteq \rangle = L_1$ and T is finite. Then CLweight $L_1 = \overline{\text{the carrier of } L_1}$.
- (12) Let L_1 be a continuous lower-bounded sup-semilattice, T_1 be a Scott topological augmentation of L_1 , T_2 be a Lawson correct topological augmentation of L_1 , and B_2 be a basis of T_2 . Then $\{\uparrow V; V \text{ ranges over subsets of } T_2: V \in B_2\}$ is a basis of T_1 .
- (13) For all finite sets X, Y such that $X \subseteq Y$ and $\overline{\overline{X}} = \overline{\overline{Y}}$ holds X = Y.
- (14) For every up-complete non empty poset L_1 such that L_1 is finite and for every element x of L_1 holds $x \in \text{compactbelow}(x)$.
- (15) Every finite lattice is arithmetic.

One can check that every lattice which is finite is also arithmetic.

One can verify that there exists a relational structure which is trivial, re-

256

flexive, transitive, antisymmetric, lower-bounded, non empty, finite, and strict and has l.u.b.'s and g.l.b.'s.

One can prove the following proposition

(16) Let L_1 be a finite lattice and B_1 be a CL basis of L_1 with bottom. Then $\overline{\overline{B_1}} = \text{CL weight } L_1$ if and only if $B_1 = \text{the carrier of CompactSublatt}(L_1)$.

Let L_1 be a non empty reflexive relational structure, let A be a subset of the carrier of L_1 , and let a be an element of L_1 . The functor Way_Up(a, A) yields a subset of L_1 and is defined as follows:

(Def. 2) Way_Up $(a, A) = \uparrow a \setminus \uparrow A$.

Next we state a number of propositions:

- (17) For every non empty reflexive relational structure L_1 and for every element a of L_1 holds Way_Up $(a, \emptyset_{(L_1)}) = \uparrow a$.
- (18) For every non empty poset L_1 and for every subset A of L_1 and for every element a of L_1 such that $a \in \uparrow A$ holds Way_Up $(a, A) = \emptyset$.
- (19) For every non empty finite reflexive transitive relational structure L_1 holds $Ids(L_1)$ is finite.
- (20) For every continuous lower-bounded sup-semilattice L_1 such that L_1 is infinite holds every CL basis of L_1 with bottom is infinite.
- (21) For every set d and for every finite sequence p and for every natural number i such that $i \in \text{dom } p$ holds $(\langle d \rangle \cap p)(i+1) = p(i)$.
- (22) For every finite sequence p and for every set x holds $(\langle x \rangle \cap p)_{\uparrow 1} = p$.
- (23) For every complete non empty poset L_1 and for every element x of L_1 such that x is compact holds $x = \inf \uparrow x$.
- (24) Let L_1 be a continuous lower-bounded sup-semilattice. Suppose $\underbrace{L_1 \text{ is infinite. Let } B_1 \text{ be a CLbasis of } L_1 \text{ with bottom. Then}}_{\overline{\{Way_Up(a, A); a \text{ ranges over elements of } L_1, A \text{ ranges over finite subsets} }}_{\overline{\text{of } L_1: a \in B_1 \land A \subseteq B_1\}} \subseteq \overline{B_1}.$
- (25) For every Lawson complete top-lattice T and for every finite subset X of T holds $-\uparrow X$ is open and $-\downarrow X$ is open.
- (26) Let L_1 be a continuous lower-bounded sup-semilattice, T be a Lawson correct topological augmentation of L_1 , and B_1 be a CLbasis of L_1 with bottom. Then {Way_Up(a, A); a ranges over elements of L_1 , A ranges over finite subsets of L_1 : $a \in B_1 \land A \subseteq B_1$ } is a basis of T.
- (27) Let L_1 be a continuous lower-bounded sup-semilattice, T be a Scott topological augmentation of L_1 , and b be a basis of T. Then $\{\uparrow \inf u; u \text{ ranges over subsets of } T: u \in b\}$ is a basis of T.
- (28) Let L_1 be a continuous lower-bounded sup-semilattice, T be a Scott topological augmentation of L_1 , and B_1 be a basis of T. If B_1 is infinite, then {inf u; u ranges over subsets of $T: u \in B_1$ } is infinite.

ROBERT MILEWSKI

- (29) Let L_1 be a continuous lower-bounded sup-semilattice and T be a Scott topological augmentation of L_1 . Then CLweight L_1 = weight T.
- (30) Let L_1 be a continuous lower-bounded sup-semilattice and T be a Lawson correct topological augmentation of L_1 . Then CLweight L_1 = weight T.
- (31) Let L_1 , L_2 be non empty relational structures. Suppose L_1 and L_2 are isomorphic. Then the carrier of $L_1 =$ the carrier of L_2 .
- (32) Let L_1 be a continuous lower-bounded sup-semilattice and B_1 be a CLbasis of L_1 with bottom. If $\overline{\overline{B_1}} = \text{CLweight} L_1$, then CLweight $L_1 = \text{CLweight} \langle \text{Ids}(\text{sub}(B_1)), \subseteq \rangle$.

Let L_1 be a continuous lower-bounded sup-semilattice. Note that $\langle \sigma(L_1), \subseteq \rangle$ is continuous and has l.u.b.'s.

Next we state two propositions:

- (33) For every continuous lower-bounded sup-semilattice L_1 holds CLweight $L_1 \subseteq CL$ weight $\langle \sigma(L_1), \subseteq \rangle$.
- (34) For every continuous lower-bounded sup-semilattice L_1 such that L_1 is infinite holds CLweight $L_1 = \text{CLweight}\langle \sigma(L_1), \subseteq \rangle$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [4] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81–91, 1997.
- [5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
- [6] Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169–176, 1997.
- [7] Grzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics, 7(1):35–43, 1998.
- [8] Grzegorz Bancerek. The Lawson topology. Formalized Mathematics, 7(2):163–168, 1998.
- [9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [11] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [14] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Formalized Mathematics*, 6(1):117–121, 1997.
- [15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711–717, 1991.
- [16] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Formalized Mathematics, 6(2):269–277, 1997.
- [17] Robert Milewski. Algebraic lattices. Formalized Mathematics, 6(2):249-254, 1997.
- [18] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285–294, 1998.
- [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.

258

- [20] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(**2**):233-236, 1996.
- [21] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311-319, 1997.
- [22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [23] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
 [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [25] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
- [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [27] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Formalized Mathematics, 5(**1**):75–77, 1996.

Received January 6, 2000