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Summary. This work is a continuation of formalization of [13]. Theorems
from Chapter III, Section 4, pp. 170–171 are proved.
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The papers [25], [20], [1], [9], [12], [10], [22], [3], [15], [2], [23], [19], [26], [24], [27],

[21], [8], [18], [5], [11], [6], [17], [16], [4], [14], and [7] provide the terminology

and notation for this paper.

In this article we present several logical schemes. The scheme UparrowUnion

deals with a relational structure A and a unary predicate P, and states that:

Let S be a family of subsets of the carrier of A. If S = {X; X

ranges over subsets of A : P[X]}, then ↑
⋃

S =
⋃
{↑X;X ranges

over subsets of A : P[X]}

for all values of the parameters.

The scheme DownarrowUnion deals with a relational structure A and a

unary predicate P, and states that:

Let S be a family of subsets of the carrier of A. If S = {X; X

ranges over subsets of A : P[X]}, then ↓
⋃

S =
⋃
{↓X;X ranges

over subsets of A : P[X]}

for all values of the parameters.

Let L1 be a lower-bounded continuous sup-semilattice and let B1 be a CLba-

sis of L1 with bottom. One can verify that 〈Ids(sub(B1)),⊆〉 is algebraic.

Let L1 be a continuous sup-semilattice. The functor CLweightL1 yields a

cardinal number and is defined as follows:

(Def. 1) CLweightL1 =
⋂
{B1 : B1 ranges over CLbasis of L1 with bottom}.

We now state a number of propositions:
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(1) For every topological structure T and for every basis b of T holds

weightT ⊆ b.

(2) For every topological structure T there exists a basis b of T such that

b = weightT.

(3) For every continuous sup-semilattice L1 and for every CLbasis B1 of L1

with bottom holds CLweightL1 ⊆ B1 .

(4) For every continuous sup-semilattice L1 there exists a CLbasis B1 of L1

with bottom such that B1 = CLweightL1.

(5) For every algebraic lower-bounded lattice L1 holds CLweightL1 =

the carrier of CompactSublatt(L1) .

(6) Let T be a non empty topological space and L1 be a continuous sup-

semilattice. If 〈the topology of T , ⊆〉 = L1, then every CLbasis of L1 with

bottom is a basis of T .

(7) Let T be a non empty topological space and L1 be a continuous lower-

bounded lattice. Suppose 〈the topology of T , ⊆〉 = L1. Let B1 be a basis

of T and B2 be a subset of L1. If B1 = B2, then finsups(B2) is a CLbasis

of L1 with bottom.

(8) Let T be a T0 non empty topological space and L1 be a continuous

lower-bounded sup-semilattice. If 〈the topology of T , ⊆〉 = L1, then if T

is infinite, then weightT = CLweightL1.

(9) Let T be a T0 non empty topological space and L1 be a continuous sup-

semilattice. Suppose 〈the topology of T , ⊆〉 = L1. Then the carrier of T ⊆

the carrier of L1 .

(10) For every T0 non empty topological space T such that T is finite holds

weightT = the carrier of T .

(11) Let T be a topological structure and L1 be a continuous lower-bounded

lattice. Suppose 〈the topology of T , ⊆〉 = L1 and T is finite. Then

CLweightL1 = the carrier of L1 .

(12) Let L1 be a continuous lower-bounded sup-semilattice, T1 be a Scott

topological augmentation of L1, T2 be a Lawson correct topological au-

gmentation of L1, and B2 be a basis of T2. Then {↑V ; V ranges over subsets

of T2: V ∈ B2} is a basis of T1.

(13) For all finite sets X, Y such that X ⊆ Y and X = Y holds X = Y.

(14) For every up-complete non empty poset L1 such that L1 is finite and for

every element x of L1 holds x ∈ compactbelow(x).

(15) Every finite lattice is arithmetic.

One can check that every lattice which is finite is also arithmetic.

One can verify that there exists a relational structure which is trivial, re-
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flexive, transitive, antisymmetric, lower-bounded, non empty, finite, and strict

and has l.u.b.’s and g.l.b.’s.

One can prove the following proposition

(16) Let L1 be a finite lattice and B1 be a CLbasis of L1 with bottom. Then

B1 = CLweightL1 if and only if B1 = the carrier of CompactSublatt(L1).

Let L1 be a non empty reflexive relational structure, let A be a subset of the

carrier of L1, and let a be an element of L1. The functor Way Up(a,A) yields a

subset of L1 and is defined as follows:

(Def. 2) Way Up(a,A) = ↑↑a \ ↑A.

Next we state a number of propositions:

(17) For every non empty reflexive relational structure L1 and for every ele-

ment a of L1 holds Way Up(a, ∅(L1)) = ↑↑a.

(18) For every non empty poset L1 and for every subset A of L1 and for every

element a of L1 such that a ∈ ↑A holds Way Up(a,A) = ∅.

(19) For every non empty finite reflexive transitive relational structure L1

holds Ids(L1) is finite.

(20) For every continuous lower-bounded sup-semilattice L1 such that L1 is

infinite holds every CLbasis of L1 with bottom is infinite.

(21) For every set d and for every finite sequence p and for every natural

number i such that i ∈ dom p holds (〈d〉 a p)(i + 1) = p(i).

(22) For every finite sequence p and for every set x holds (〈x〉 a p)↾1 = p.

(23) For every complete non empty poset L1 and for every element x of L1

such that x is compact holds x = inf ↑↑x.

(24) Let L1 be a continuous lower-bounded sup-semilattice. Suppose

L1 is infinite. Let B1 be a CLbasis of L1 with bottom. Then

{Way Up(a,A); a ranges over elements of L1, A ranges over finite subsets

of L1: a ∈ B1 ∧ A ⊆ B1} ⊆ B1 .

(25) For every Lawson complete top-lattice T and for every finite subset X

of T holds −↑X is open and −↓X is open.

(26) Let L1 be a continuous lower-bounded sup-semilattice, T be a Lawson

correct topological augmentation of L1, and B1 be a CLbasis of L1 with

bottom. Then {Way Up(a,A); a ranges over elements of L1, A ranges over

finite subsets of L1: a ∈ B1 ∧ A ⊆ B1} is a basis of T .

(27) Let L1 be a continuous lower-bounded sup-semilattice, T be a Scott

topological augmentation of L1, and b be a basis of T . Then {↑↑ inf u; u

ranges over subsets of T : u ∈ b} is a basis of T .

(28) Let L1 be a continuous lower-bounded sup-semilattice, T be a Scott

topological augmentation of L1, and B1 be a basis of T . If B1 is infinite,

then {inf u; u ranges over subsets of T : u ∈ B1} is infinite.
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(29) Let L1 be a continuous lower-bounded sup-semilattice and T be a Scott

topological augmentation of L1. Then CLweightL1 = weightT.

(30) Let L1 be a continuous lower-bounded sup-semilattice and T be a Lawson

correct topological augmentation of L1. Then CLweightL1 = weightT.

(31) Let L1, L2 be non empty relational structures. Suppose L1 and L2 are

isomorphic. Then the carrier of L1 = the carrier of L2 .

(32) Let L1 be a continuous lower-bounded sup-semilattice and B1 be a

CLbasis of L1 with bottom. If B1 = CLweightL1, then CLweightL1 =

CLweight〈Ids(sub(B1)),⊆〉.

Let L1 be a continuous lower-bounded sup-semilattice. Note that 〈σ(L1),⊆〉

is continuous and has l.u.b.’s.

Next we state two propositions:

(33) For every continuous lower-bounded sup-semilattice L1 holds CLweightL1

⊆ CLweight〈σ(L1),⊆〉.

(34) For every continuous lower-bounded sup-semilattice L1 such that L1 is

infinite holds CLweightL1 = CLweight〈σ(L1),⊆〉.
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