The Tichonov Theorem

Bartłomiej Skorulski University of Białystok

MML Identifier: YELLOW17.

The terminology and notation used here are introduced in the following articles: [15], [11], [1], [5], [7], [4], [3], [13], [8], [10], [16], [14], [12], [6], [9], and [2].

1. Some Properties of Products

One can prove the following propositions:

- (1) For every function F and for all sets i, x_1 and for every subset A_1 of F(i) such that $(\operatorname{proj}(F,i))^{-1}(\{x_1\}) \cap (\operatorname{proj}(F,i))^{-1}(A_1) \neq \emptyset$ holds $x_1 \in A_1$.
- (2) For all functions F, f and for all sets i, x_1 such that $x_1 \in F(i)$ and $f \in \prod F$ holds $f + (i, x_1) \in \prod F$.
- (3) For every function F and for every set i such that $i \in \text{dom } F$ and $\prod F \neq \emptyset$ holds rng proj(F, i) = F(i).
- (4) For every function F and for every set i such that $i \in \text{dom } F$ holds $(\text{proj}(F, i))^{-1}(F(i)) = \prod F$.
- (5) For all functions F, f and for all sets i, x_1 such that $x_1 \in F(i)$ and $i \in \text{dom } F$ and $f \in \prod F$ holds $f + (i, x_1) \in (\text{proj}(F, i))^{-1}(\{x_1\}).$
- (6) Let F, f be functions, i_1 , i_2 , x_2 be sets, and A_2 be a subset of $F(i_2)$. Suppose $x_2 \in F(i_1)$ and $i_1 \in \text{dom } F$ and $f \in \prod F$. If $i_1 \neq i_2$, then $f \in (\text{proj}(F, i_2))^{-1}(A_2)$ iff $f + (i_1, x_2) \in (\text{proj}(F, i_2))^{-1}(A_2)$.
- (7) Let F be a function, i_1 , i_2 , x_2 be sets, and A_2 be a subset of $F(i_2)$. Suppose $\prod F \neq \emptyset$ and $x_2 \in F(i_1)$ and $i_1 \in \text{dom } F$ and $i_2 \in \text{dom } F$ and $A_2 \neq F(i_2)$. Then $(\text{proj}(F, i_1))^{-1}(\{x_2\}) \subseteq (\text{proj}(F, i_2))^{-1}(A_2)$ if and only if $i_1 = i_2$ and $x_2 \in A_2$.

C 2001 University of Białystok ISSN 1426-2630 The scheme *ElProductEx* deals with a non empty set \mathcal{A} , a topological space yielding nonempty many sorted set \mathcal{B} indexed by \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

There exists an element f of $\prod \mathcal{B}$ such that for every element i of \mathcal{A} holds $\mathcal{P}[f(i), i]$

provided the parameters have the following property:

• For every element i of \mathcal{A} there exists an element x of $\mathcal{B}(i)$ such that $\mathcal{P}[x, i]$.

One can prove the following propositions:

- (8) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, i be an element of I, and f be an element of $\prod J$. Then $(\operatorname{proj}(J, i))(f) = f(i)$.
- (9) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, i be an element of I, x_1 be an element of J(i), and A_1 be a subset of J(i). If $(\operatorname{proj}(J,i))^{-1}(\{x_1\}) \cap (\operatorname{proj}(J,i))^{-1}(A_1) \neq \emptyset$, then $x_1 \in A_1$.
- (10) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, and i be an element of I. Then $(\operatorname{proj}(J,i))^{-1}(\Omega_{J(i)}) = \Omega_{\prod J}.$
- (11) Let *I* be a non empty set, *J* be a topological space yielding nonempty many sorted set indexed by *I*, *i* be an element of *I*, x_1 be an element of J(i), and *f* be an element of $\prod J$. Then $f + (i, x_1) \in (\operatorname{proj}(J, i))^{-1}(\{x_1\})$.
- (12) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, i_1 , i_2 be elements of I, x_2 be an element of $J(i_1)$, and A_2 be a subset of $J(i_2)$. If $A_2 \neq \Omega_{J(i_2)}$, then $(\operatorname{proj}(J, i_1))^{-1}(\{x_2\}) \subseteq (\operatorname{proj}(J, i_2))^{-1}(A_2)$ iff $i_1 = i_2$ and $x_2 \in A_2$.
- (13) Let *I* be a non empty set, *J* be a topological space yielding nonempty many sorted set indexed by *I*, i_1 , i_2 be elements of *I*, x_2 be an element of $J(i_1)$, A_2 be a subset of $J(i_2)$, and *f* be an element of $\prod J$. If $i_1 \neq i_2$, then $f \in (\operatorname{proj}(J, i_2))^{-1}(A_2)$ iff $f + (i_1, x_2) \in (\operatorname{proj}(J, i_2))^{-1}(A_2)$.

2. Some Properties of Compact Spaces

One can prove the following three propositions:

- (14) Let T be a topological structure and F be a family of subsets of T. Then F is a cover of T if and only if the carrier of $T \subseteq \bigcup F$.
- (15) Let T be a non empty topological structure. Then T is compact if and only if for every family F of subsets of T such that F is open and $\Omega_T \subseteq \bigcup F$ there exists a family G of subsets of T such that $G \subseteq F$ and $\Omega_T \subseteq \bigcup G$ and G is finite.

(16) Let T be a non empty topological space and B be a prebasis of T. Then T is compact if and only if for every subset F of B such that $\Omega_T \subseteq \bigcup F$ there exists a finite subset G of F such that $\Omega_T \subseteq \bigcup G$.

3. The Tichonov Theorem

The following propositions are true:

- (17) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, and A be a set. Suppose $A \in$ the product prebasis for J. Then there exists an element i of I and there exists a subset A_1 of J(i) such that A_1 is open and $(\operatorname{proj}(J,i))^{-1}(A_1) = A$.
- (18) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, i be an element of I, x_1 be an element of J(i), and A be a set. Suppose $A \in$ the product prebasis for J and $(\operatorname{proj}(J,i))^{-1}(\{x_1\}) \subseteq A$. Then $A = \Omega_{\prod J}$ or there exists a subset A_1 of J(i) such that $A_1 \neq \Omega_{J(i)}$ and $x_1 \in A_1$ and A_1 is open and A = $(\operatorname{proj}(J,i))^{-1}(A_1)$.
- (19) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, i be an element of I, and F_1 be a non empty family of subsets of J(i). If $\Omega_{J(i)} \subseteq \bigcup F_1$, then $\Omega_{\prod J} \subseteq \bigcup \{(\operatorname{proj}(J,i))^{-1}(A_1) : A_1 \text{ ranges over elements of } F_1\}$.
- (20) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, i be an element of I, x_1 be an element of J(i), and G be a subset of the product prebasis for J. Suppose $(\operatorname{proj}(J,i))^{-1}(\{x_1\}) \subseteq \bigcup G$ and for every set A such that $A \in$ the product prebasis for J and $A \in G$ holds $(\operatorname{proj}(J,i))^{-1}(\{x_1\}) \not\subseteq A$. Then $\Omega_{\prod J} \subseteq \bigcup G$.
- (21) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, i be an element of I, and F be a subset of the product prebasis for J. Suppose that for every finite subset G of F holds $\Omega_{\prod J} \not\subseteq \bigcup G$. Let x_1 be an element of J(i) and G be a finite subset of F. Suppose $(\operatorname{proj}(J,i))^{-1}(\{x_1\}) \subseteq \bigcup G$. Then there exists a set A such that $A \in$ the product prebasis for J and $A \in G$ and $(\operatorname{proj}(J,i))^{-1}(\{x_1\}) \subseteq A$.
- (22) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, i be an element of I, and F be a subset of the product prebasis for J. Suppose that for every finite subset G of Fholds $\Omega_{\prod J} \not\subseteq \bigcup G$. Let x_1 be an element of J(i) and G be a finite subset of F. Suppose $(\operatorname{proj}(J,i))^{-1}(\{x_1\}) \subseteq \bigcup G$. Then there exists a subset A_1 of J(i) such that $A_1 \neq \Omega_{J(i)}$ and $x_1 \in A_1$ and $(\operatorname{proj}(J,i))^{-1}(A_1) \in G$ and A_1 is open.

BARTŁOMIEJ SKORULSKI

- (23) Let I be a non empty set, J be a topological space yielding nonempty many sorted set indexed by I, i be an element of I, and F be a subset of the product prebasis for J. Suppose for every element i of I holds J(i) is compact and for every finite subset G of F holds $\Omega_{\prod J} \not\subseteq \bigcup G$. Then there exists an element x_1 of J(i) such that for every finite subset G of F holds $(\operatorname{proj}(J,i))^{-1}(\{x_1\}) \not\subseteq \bigcup G$.
- (24) Let I be a non empty set and J be a topological space yielding nonempty many sorted set indexed by I. If for every element i of I holds J(i) is compact, then $\prod J$ is compact.

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169–176, 1997.
- [3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
- [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [8] Mariusz Giero. More on products of many sorted algebras. Formalized Mathematics, 5(4):621–626, 1996.
- [9] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57–62, 1998.
- [10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [11] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233–236, 1996.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [13] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [15] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received May 23, 2000

376