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Summary. In the paper we investigate the dependence between the struc-
ture of circuits and sets of terms. Circuits in our terminology (see [19]) are tre-
ated as locally-finite many sorted algebras over special signatures. Such approach
enables to formalize every real circuit. The goal of this investigation is to specify
circuits by terms and, enentualy, to have methods of formal verification of real
circuits. The following notation is introduced in this paper:

• structural equivalence of circuits, i.e. equivalence of many sorted signatures,

• embedding of a circuit into another one,

• similarity of circuits (a concept narrower than isomorphism of many sorted
algebras over equivalent signatures),

• calculation of terms by a circuit according to an algebra,

• specification of circuits by terms and an algebra.

MML Identifier: CIRCTRM1.

The articles [27], [3], [18], [19], [20], [11], [10], [17], [12], [13], [14], [22], [21], [9],

[25], [1], [15], [24], [7], [28], [26], [23], [2], [5], [6], [8], [16], and [4] provide the

terminology and notation for this paper.

1. Circuit Structure Generated by Terms

One can prove the following proposition

(1) Let S be a non empty non void many sorted signature, A be a non-empty

algebra over S, V be a variables family of A, t be a term of S over V , and

T be a term of A over V . If T = t, then the sort of T = the sort of t.
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Let D be a non empty set and let X be a subset of D. Then idX is a function

from X into D.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, and let X be a non empty subset of

S -Terms(V ). The functor X-CircuitStr yields a non empty strict many sorted

signature and is defined by the condition (Def. 1).

(Def. 1) X-CircuitStr = 〈Subtrees(X), [: the operation symbols of S, {the car-

rier of S} :] -Subtrees(X), [: the operation symbols of S, {the carrier of

S} :] -ImmediateSubtrees(X),

id[: the operation symbols of S, {the carrier of S} :] -Subtrees(X)〉.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, and let X be a non empty subset

of S -Terms(V ). Observe that X-CircuitStr is unsplit.

In the sequel S denotes a non empty non void many sorted signature, V

denotes a non-empty many sorted set indexed by the carrier of S, A denotes a

non-empty algebra over S, and X denotes a non empty subset of S -Terms(V ).

The following propositions are true:

(2) X-CircuitStr is void if and only if for every element t of X holds t is

root and t(∅) /∈ [: the operation symbols of S, {the carrier of S} :].

(3) X is a set with a compound term of S over V iff X-CircuitStr is non

void.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, and let X be a set with a compound

term of S over V . One can check that X-CircuitStr is non void.

The following three propositions are true:

(4)(i) Every vertex of X-CircuitStr is a term of S over V , and

(ii) for every set s such that s ∈ the operation symbols of X-CircuitStr

holds s is a compound term of S over V .

(5) Let t be a vertex of X-CircuitStr. Then t ∈ the operation symbols of

X-CircuitStr if and only if t is a compound term of S over V .

(6) Let X be a set with a compound term of S over V and g be a gate of

X-CircuitStr. Then (the result sort of X-CircuitStr)(g) = g and the result

sort of g = g.

Let us consider S, V , let X be a set with a compound term of S over V , and

let g be a gate of X-CircuitStr. Note that Arity(g) is decorated tree yielding.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, and let X be a non empty subset

of S -Terms(V ). Note that every vertex of X-CircuitStr is finite, function-like,

and relation-like.

Let S be a non empty non void many sorted signature, let V be a non-empty
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many sorted set indexed by the carrier of S, and let X be a non empty subset

of S -Terms(V ). One can verify that every vertex of X-CircuitStr is decorated

tree-like.

Let S be a non empty non void many sorted signature, let V be a non-

empty many sorted set indexed by the carrier of S, and let X be a set with a

compound term of S over V . One can check that every gate of X-CircuitStr is

finite, function-like, and relation-like.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, and let X be a set with a compound

term of S over V . Note that every gate of X-CircuitStr is decorated tree-like.

Next we state the proposition

(7) Let X1, X2 be non empty subsets of S -Terms(V ). Then the arity

of X1-CircuitStr ≈ the arity of X2-CircuitStr and the result sort of

X1-CircuitStr ≈ the result sort of X2-CircuitStr.

Let X, Y be constituted of decorated trees sets. Note that X ∪ Y is consti-

tuted of decorated trees.

One can prove the following propositions:

(8) For all constituted of decorated trees non empty sets X1, X2 holds

Subtrees(X1 ∪X2) = Subtrees(X1) ∪ Subtrees(X2).

(9) For all constituted of decorated trees non empty setsX1,X2 and for every

set C holds C -Subtrees(X1∪X2) = (C -Subtrees(X1))∪(C -Subtrees(X2)).

(10) Let X1, X2 be constituted of decorated trees non empty sets.

If every element of X1 is finite and every element of X2 is fi-

nite, then for every set C holds C -ImmediateSubtrees(X1 ∪ X2) =

(C -ImmediateSubtrees(X1))+·(C -ImmediateSubtrees(X2)).

(11) For all non empty subsets X1, X2 of S -Terms(V ) holds (X1 ∪

X2)-CircuitStr = (X1-CircuitStr)+·(X2-CircuitStr).

(12) Let x be a set. Then x ∈ InputVertices(X-CircuitStr) if and only if the

following conditions are satisfied:

(i) x ∈ Subtrees(X), and

(ii) there exists a sort symbol s of S and there exists an element v of V (s)

such that x = the root tree of 〈〈v, s〉〉.

(13) For every set X with a compound term of S over V and for every gate

g of X-CircuitStr holds g = g(∅)-tree(Arity(g)).

2. Circuit Generated by Terms

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, let X be a non empty subset of
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S -Terms(V ), let v be a vertex of X-CircuitStr, and let A be an algebra over S.

The sort of v w.r.t. A is defined as follows:

(Def. 2) For every term u of S over V such that u = v holds the sort of v w.r.t.

A = (the sorts of A)(the sort of u).

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, let X be a non empty subset of

S -Terms(V ), let v be a vertex ofX-CircuitStr, and let A be a non-empty algebra

over S. Note that the sort of v w.r.t. A is non empty.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, and let X be a non empty subset

of S -Terms(V ). Let us assume that X is a set with a compound term of S over

V . Let o be a gate of X-CircuitStr and let A be an algebra over S. The action

of o w.r.t A is a function and is defined by the condition (Def. 3).

(Def. 3) Let X ′ be a set with a compound term of S over V . Suppose X ′ = X.

Let o′ be a gate of X ′-CircuitStr. Suppose o′ = o. Then the action of o

w.r.t A = (the characteristics of A)(o′(∅)1).

The scheme MSFuncEx deals with a non empty set A, non-empty many

sorted sets B, C indexed by A, and a ternary predicate P, and states that:

There exists a many sorted function f from B into C such that

for every element i of A and for every element a of B(i) holds

P[i, a, f(i)(a)]

provided the following requirement is met:

• For every element i of A and for every element a of B(i) there

exists an element b of C(i) such that P[i, a, b].

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, let X be a non empty subset of

S -Terms(V ), and let A be an algebra over S. The functor X-CircuitSorts(A)

yielding a many sorted set indexed by the carrier of X-CircuitStr is defined by:

(Def. 4) For every vertex v of X-CircuitStr holds (X-CircuitSorts(A))(v) = the

sort of v w.r.t. A.

Let S be a non empty non void many sorted signature, let V be a non-

empty many sorted set indexed by the carrier of S, let X be a non empty

subset of S -Terms(V ), and let A be a non-empty algebra over S. Note that

X-CircuitSorts(A) is non-empty.

We now state the proposition

(14) Let X be a set with a compound term of S over V , g be a gate of

X-CircuitStr, and o be an operation symbol of S. If g(∅) = 〈〈o, the carrier

of S〉〉, then (X-CircuitSorts(A)) ·Arity(g) = (the sorts of A) ·Arity(o).

Let S be a non empty non void many sorted signature, let V be a

non-empty many sorted set indexed by the carrier of S, let X be a non

empty subset of S -Terms(V ), and let A be a non-empty algebra over
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S. The functor X-CircuitCharact(A) yields a many sorted function from

(X-CircuitSorts(A))# · the arity of X-CircuitStr into (X-CircuitSorts(A)) · the

result sort of X-CircuitStr and is defined by:

(Def. 5) For every gate g of X-CircuitStr such that g ∈ the operation symbols of

X-CircuitStr holds (X-CircuitCharact(A))(g) = the action of g w.r.t A.

Let S be a non empty non void many sorted signature, let V be a non-

empty many sorted set indexed by the carrier of S, let X be a non empty

subset of S -Terms(V ), and let A be a non-empty algebra over S. The functor

X-Circuit(A) yielding a non-empty strict algebra over X-CircuitStr is defined

by:

(Def. 6) X-Circuit(A) = 〈X-CircuitSorts(A), X-CircuitCharact(A)〉.

Next we state four propositions:

(15) For every vertex v ofX-CircuitStr holds (the sorts ofX-Circuit(A))(v) =

the sort of v w.r.t. A.

(16) Let A be a locally-finite non-empty algebra over S, X be a set with a

compound term of S over V , and g be an operation symbol ofX-CircuitStr.

Then Den(g,X-Circuit(A)) = the action of g w.r.t A.

(17) Let A be a locally-finite non-empty algebra over S, X be a set with a

compound term of S over V , g be an operation symbol of X-CircuitStr,

and o be an operation symbol of S. If g(∅) = 〈〈o, the carrier of S〉〉, then

Den(g, X-Circuit(A)) = Den(o,A).

(18) Let A be a locally-finite non-empty algebra over S andX be a non empty

subset of S -Terms(V ). Then X-Circuit(A) is locally-finite.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, let X be a set with a compound

term of S over V , and let A be a locally-finite non-empty algebra over S. Note

that X-Circuit(A) is locally-finite.

The following two propositions are true:

(19) Let S be a non empty non void many sorted signature, V be a non-

empty many sorted set indexed by the carrier of S, X1, X2 be sets with

compound terms of S over V , and A be a non-empty algebra over S. Then

X1-Circuit(A) ≈ X2-Circuit(A).

(20) Let S be a non empty non void many sorted signature, V be a non-

empty many sorted set indexed by the carrier of S, X1, X2 be sets with

compound terms of S over V , and A be a non-empty algebra over S. Then

(X1 ∪X2)-Circuit(A) = (X1-Circuit(A))+·(X2-Circuit(A)).
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3. Correctness of a Term Circuit

In the sequel S is a non empty non void many sorted signature, A is a non-

empty locally-finite algebra over S, V is a variables family of A, and X is a set

with a compound term of S over V .

Let S be a non empty non void many sorted signature, let A be a non-empty

algebra over S, let V be a variables family of A, and let t be a decorated tree.

Let us assume that t is a term of S over V . Let f be a many sorted function

from V into the sorts of A. The functor [[t]]A(f) is defined by:

(Def. 7) There exists a term t′ of A over V such that t′ = t and [[t]]A(f) = t′ @ f.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, let X be a set with a compound

term of S over V , let A be a non-empty locally-finite algebra over S, and let s

be a state of X-Circuit(A). A many sorted function from V into the sorts of A

is said to be a valuation compatible with s if it satisfies the condition (Def. 8).

(Def. 8) Let x be a vertex of S and v be an element of V (x). If the root tree of

〈〈v, x〉〉 ∈ Subtrees(X), then it(x)(v) = s(the root tree of 〈〈v, x〉〉).

Next we state the proposition

(21) Let s be a state of X-Circuit(A), f be a valuation compatible with

s, and n be a natural number. Then f is a valuation compatible with

Following(s, n).

Let x be a set, let S be a non empty non void many sorted signature, let V

be a non-empty many sorted set indexed by the carrier of S, and let p be a finite

sequence of elements of S -Terms(V ). One can verify that x-tree(p) is finite.

The following propositions are true:

(22) Let s be a state of X-Circuit(A), f be a valuation compatible with s,

and t be a term of S over V . If t ∈ Subtrees(X), then Following(s, 1 +

height dom t) is stable at t and (Following(s, 1 + height dom t))(t) =

[[t]]A(f).

(23) Suppose that it is not true that there exists a term t of S over V

and there exists an operation symbol o of S such that t ∈ Subtrees(X)

and t(∅) = 〈〈o, the carrier of S〉〉 and Arity(o) = ∅. Let s be a state of

X-Circuit(A), f be a valuation compatible with s, and t be a term of S

over V . If t ∈ Subtrees(X), then Following(s,height dom t) is stable at t

and (Following(s,height dom t))(t) = [[t]]A(f).
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4. Circuit Similarity

Let X be a set. One can verify that idX is one-to-one.

Let f be an one-to-one function. One can verify that f−1 is one-to-one. Let

g be an one-to-one function. Note that g · f is one-to-one.

Let S1, S2 be non empty many sorted signatures and let f , g be functions.

We say that S1 and S2 are equivalent w.r.t. f and g if and only if the conditions

(Def. 9) are satisfied.

(Def. 9)(i) f is one-to-one,

(ii) g is one-to-one,

(iii) f and g form morphism between S1 and S2, and

(iv) f−1 and g−1 form morphism between S2 and S1.

One can prove the following propositions:

(24) Let S1, S2 be non empty many sorted signatures and f , g be functions.

Suppose S1 and S2 are equivalent w.r.t. f and g. Then the carrier of

S2 = f◦(the carrier of S1) and the operation symbols of S2 = g◦(the

operation symbols of S1).

(25) Let S1, S2 be non empty many sorted signatures and f , g be functions.

Suppose S1 and S2 are equivalent w.r.t. f and g. Then rng f = the carrier

of S2 and rng g = the operation symbols of S2.

(26) Let S be a non empty many sorted signature. Then S and S are equiva-

lent w.r.t. idthe carrier of S and idthe operation symbols of S .

(27) Let S1, S2 be non empty many sorted signatures and f , g be functions.

Suppose S1 and S2 are equivalent w.r.t. f and g. Then S2 and S1 are

equivalent w.r.t. f−1 and g−1.

(28) Let S1, S2, S3 be non empty many sorted signatures and f1, g1, f2, g2 be

functions. Suppose S1 and S2 are equivalent w.r.t. f1 and g1 and S2 and

S3 are equivalent w.r.t. f2 and g2. Then S1 and S3 are equivalent w.r.t.

f2 · f1 and g2 · g1.

(29) Let S1, S2 be non empty many sorted signatures and f , g be

functions. Suppose S1 and S2 are equivalent w.r.t. f and g. Then

f◦ InputVertices(S1) = InputVertices(S2) and f◦ InnerVertices(S1) =

InnerVertices(S2).

Let S1, S2 be non empty many sorted signatures. We say that S1 and S2 are

equivalent if and only if:

(Def. 10) There exist one-to-one functions f , g such that S1 and S2 are equivalent

w.r.t. f and g.

Let us notice that the predicate S1 and S2 are equivalent is reflexive and sym-

metric.
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One can prove the following proposition

(30) Let S1, S2, S3 be non empty many sorted signatures. Suppose S1 and S2

are equivalent and S2 and S3 are equivalent. Then S1 and S3 are equivalent.

Let S1, S2 be non empty many sorted signatures and let f be a function.

We say that f preserves inputs of S1 in S2 if and only if:

(Def. 11) f◦ InputVertices(S1) ⊆ InputVertices(S2).

Next we state four propositions:

(31) Let S1, S2 be non empty many sorted signatures and f , g be functions.

Suppose f and g form morphism between S1 and S2. Let v be a vertex of

S1. Then f(v) is a vertex of S2.

(32) Let S1, S2 be non empty non void many sorted signatures and f , g be

functions. Suppose f and g form morphism between S1 and S2. Let v be

a gate of S1. Then g(v) is a gate of S2.

(33) Let S1, S2 be non empty many sorted signatures and f , g be functions.

If f and g form morphism between S1 and S2, then f◦ InnerVertices(S1) ⊆

InnerVertices(S2).

(34) Let S1, S2 be circuit-like non void non empty many sorted signatures

and f , g be functions. Suppose f and g form morphism between S1 and

S2. Let v1 be a vertex of S1. Suppose v1 ∈ InnerVertices(S1). Let v2 be a

vertex of S2. If v2 = f(v1), then the action at v2 = g(the action at v1).

Let S1, S2 be non empty many sorted signatures, let f , g be functions, let

C1 be a non-empty algebra over S1, and let C2 be a non-empty algebra over S2.

We say that f and g form embedding of C1 into C2 if and only if the conditions

(Def. 12) are satisfied.

(Def. 12)(i) f is one-to-one,

(ii) g is one-to-one,

(iii) f and g form morphism between S1 and S2,

(iv) the sorts of C1 = (the sorts of C2) · f, and

(v) the characteristics of C1 = (the characteristics of C2) · g.

The following propositions are true:

(35) Let S be a non empty many sorted signature and C be a non-empty al-

gebra over S. Then idthe carrier of S and idthe operation symbols of S form em-

bedding of C into C.

(36) Let S1, S2, S3 be non empty many sorted signatures, f1, g1, f2, g2 be

functions, C1 be a non-empty algebra over S1, C2 be a non-empty algebra

over S2, and C3 be a non-empty algebra over S3. Suppose f1 and g1 form

embedding of C1 into C2 and f2 and g2 form embedding of C2 into C3.

Then f2 · f1 and g2 · g1 form embedding of C1 into C3.

Let S1, S2 be non empty many sorted signatures, let f , g be functions, let

C1 be a non-empty algebra over S1, and let C2 be a non-empty algebra over S2.
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We say that C1 and C2 are similar w.r.t. f and g if and only if:

(Def. 13) f and g form embedding of C1 into C2 and f−1 and g−1 form embedding

of C2 into C1.

The following propositions are true:

(37) Let S1, S2 be non empty many sorted signatures, f , g be functions, C1

be a non-empty algebra over S1, and C2 be a non-empty algebra over

S2. Suppose C1 and C2 are similar w.r.t. f and g. Then S1 and S2 are

equivalent w.r.t. f and g.

(38) Let S1, S2 be non empty many sorted signatures, f , g be functions, C1

be a non-empty algebra over S1, and C2 be a non-empty algebra over S2.

Then C1 and C2 are similar w.r.t. f and g if and only if the following

conditions are satisfied:

(i) S1 and S2 are equivalent w.r.t. f and g,

(ii) the sorts of C1 = (the sorts of C2) · f, and

(iii) the characteristics of C1 = (the characteristics of C2) · g.

(39) Let S be a non empty many sorted signature and C be a non-empty

algebra over S. Then C and C are similar w.r.t. idthe carrier of S and

idthe operation symbols of S .

(40) Let S1, S2 be non empty many sorted signatures, f , g be functions, C1

be a non-empty algebra over S1, and C2 be a non-empty algebra over S2.

Suppose C1 and C2 are similar w.r.t. f and g. Then C2 and C1 are similar

w.r.t. f−1 and g−1.

(41) Let S1, S2, S3 be non empty many sorted signatures, f1, g1, f2, g2 be

functions, C1 be a non-empty algebra over S1, C2 be a non-empty algebra

over S2, and C3 be a non-empty algebra over S3. Suppose C1 and C2 are

similar w.r.t. f1 and g1 and C2 and C3 are similar w.r.t. f2 and g2. Then

C1 and C3 are similar w.r.t. f2 · f1 and g2 · g1.

Let S1, S2 be non empty many sorted signatures, let C1 be a non-empty

algebra over S1, and let C2 be a non-empty algebra over S2. We say that C1

and C2 are similar if and only if:

(Def. 14) There exist functions f , g such that C1 and C2 are similar w.r.t. f and

g.

For simplicity, we use the following convention: G1, G2 denote circuit-like

non void non empty many sorted signatures, f , g denote functions, C1 denotes

a non-empty circuit of G1, and C2 denotes a non-empty circuit of G2.

Next we state a number of propositions:

(42) Suppose f and g form embedding of C1 into C2. Then

(i) dom f = the carrier of G1,

(ii) rng f ⊆ the carrier of G2,

(iii) dom g = the operation symbols of G1, and
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(iv) rng g ⊆ the operation symbols of G2.

(43) Suppose f and g form embedding of C1 into C2. Let o1 be a gate of G1

and o2 be a gate of G2. If o2 = g(o1), then Den(o2, C2) = Den(o1, C1).

(44) Suppose f and g form embedding of C1 into C2. Let o1 be a gate of

G1 and o2 be a gate of G2. Suppose o2 = g(o1). Let s1 be a state of

C1 and s2 be a state of C2. If s1 = s2 · f, then o2 depends-on-in s2 =

o1 depends-on-in s1.

(45) If f and g form embedding of C1 into C2, then for every state s of C2

holds s · f is a state of C1.

(46) Suppose f and g form embedding of C1 into C2. Let s2 be a state of

C2 and s1 be a state of C1. Suppose s1 = s2 · f and for every vertex v

of G1 such that v ∈ InputVertices(G1) holds s2 is stable at f(v). Then

Following(s1) = Following(s2) · f.

(47) Suppose f and g form embedding of C1 into C2 and f preserves inputs

of G1 in G2. Let s2 be a state of C2 and s1 be a state of C1. If s1 = s2 · f,

then Following(s1) = Following(s2) · f.

(48) Suppose f and g form embedding of C1 into C2 and f preserves inputs of

G1 in G2. Let s2 be a state of C2 and s1 be a state of C1. If s1 = s2 ·f, then

for every natural number n holds Following(s1, n) = Following(s2, n) · f.

(49) Suppose f and g form embedding of C1 into C2 and f preserves inputs

of G1 in G2. Let s2 be a state of C2 and s1 be a state of C1. If s1 = s2 · f,

then if s2 is stable, then s1 is stable.

(50) Suppose f and g form embedding of C1 into C2 and f preserves inputs

of G1 in G2. Let s2 be a state of C2 and s1 be a state of C1. Suppose

s1 = s2 · f. Let v1 be a vertex of G1. Then s1 is stable at v1 if and only if

s2 is stable at f(v1).

(51) If C1 and C2 are similar w.r.t. f and g, then for every state s of C2 holds

s · f is a state of C1.

(52) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1

and s2 be a state of C2. Then s1 = s2 · f if and only if s2 = s1 · f
−1.

(53) If C1 and C2 are similar w.r.t. f and g, then f◦ InputVertices(G1) =

InputVertices(G2) and f◦ InnerVertices(G1) = InnerVertices(G2).

(54) If C1 and C2 are similar w.r.t. f and g, then f preserves inputs of G1 in

G2.

(55) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1 and

s2 be a state of C2. If s1 = s2 · f, then Following(s1) = Following(s2) · f.

(56) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1

and s2 be a state of C2. If s1 = s2 · f, then for every natural number n

holds Following(s1, n) = Following(s2, n) · f.
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(57) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1

and s2 be a state of C2. If s1 = s2 · f, then s1 is stable iff s2 is stable.

(58) Suppose C1 and C2 are similar w.r.t. f and g. Let s1 be a state of C1

and s2 be a state of C2. Suppose s1 = s2 · f. Let v1 be a vertex of G1.

Then s1 is stable at v1 if and only if s2 is stable at f(v1).

5. Term Specification

Let S be a non empty non void many sorted signature, let A be a non-empty

algebra over S, let V be a non-empty many sorted set indexed by the carrier of

S, let X be a non empty subset of S -Terms(V ), let G be a circuit-like non void

non empty many sorted signature, and let C be a non-empty circuit of G. We

say that C calculates X in A if and only if:

(Def. 15) There exist f , g such that f and g form embedding of X-Circuit(A) into

C and f preserves inputs of X-CircuitStr in G.

We say that X and A specify C if and only if:

(Def. 16) C and X-Circuit(A) are similar.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, let A be a non-empty algebra over

S, let X be a non empty subset of S -Terms(V ), let G be a circuit-like non void

non empty many sorted signature, and let C be a non-empty circuit of G. Let

us assume that C calculates X in A. An one-to-one function is said to be a sort

map from X and A into C if:

(Def. 17) It preserves inputs of X-CircuitStr in G and there exists g such that it

and g form embedding of X-Circuit(A) into C.

Let S be a non empty non void many sorted signature, let V be a non-empty

many sorted set indexed by the carrier of S, let A be a non-empty algebra over

S, let X be a non empty subset of S -Terms(V ), let G be a circuit-like non void

non empty many sorted signature, and let C be a non-empty circuit of G. Let

us assume that C calculates X in A. Let f be a sort map from X and A into

C. An one-to-one function is said to be an operation map from X and A into

C obeying f if:

(Def. 18) f and it form embedding of X-Circuit(A) into C.

The following propositions are true:

(59) Let G be a circuit-like non void non empty many sorted signature and

C be a non-empty circuit of G. If X and A specify C, then C calculates

X in A.

(60) Let G be a circuit-like non void non empty many sorted signature and

C be a non-empty circuit of G. Suppose C calculates X in A. Let f be
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a sort map from X and A into C and t be a term of S over V . Suppose

t ∈ Subtrees(X). Let s be a state of C. Then

(i) Following(s, 1 + height dom t) is stable at f(t), and

(ii) for every state s′ of X-Circuit(A) such that s′ = s · f and for every va-

luation h compatible with s′ holds (Following(s, 1+height dom t))(f(t)) =

[[t]]A(h).

(61) Let G be a circuit-like non void non empty many sorted signature and

C be a non-empty circuit of G. Suppose C calculates X in A. Let t be a

term of S over V . Suppose t ∈ Subtrees(X). Then there exists a vertex v

of G such that for every state s of C holds

(i) Following(s, 1 + height dom t) is stable at v, and

(ii) there exists a sort map f from X and A into C such that for every

state s′ of X-Circuit(A) such that s′ = s · f and for every valuation h

compatible with s′ holds (Following(s, 1 + height dom t))(v) = [[t]]A(h).

(62) Let G be a circuit-like non void non empty many sorted signature and

C be a non-empty circuit of G. Suppose X and A specify C. Let f be a

sort map from X and A into C, s be a state of C, and t be a term of S

over V . Suppose t ∈ Subtrees(X). Then

(i) Following(s, 1 + height dom t) is stable at f(t), and

(ii) for every state s′ of X-Circuit(A) such that s′ = s · f and for every va-

luation h compatible with s′ holds (Following(s, 1+height dom t))(f(t)) =

[[t]]A(h).

(63) Let G be a circuit-like non void non empty many sorted signature and

C be a non-empty circuit of G. Suppose X and A specify C. Let t be a

term of S over V . Suppose t ∈ Subtrees(X). Then there exists a vertex v

of G such that for every state s of C holds

(i) Following(s, 1 + height dom t) is stable at v, and

(ii) there exists a sort map f from X and A into C such that for every

state s′ of X-Circuit(A) such that s′ = s · f and for every valuation h

compatible with s′ holds (Following(s, 1 + height dom t))(v) = [[t]]A(h).
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