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Summary. In this paper we define the algebra of formal power series and
the algebra of polynomials over an arbitrary field and prove some properties of

these structures. We also formulate and prove theorems showing some general

properties of sequences. These preliminaries will be used for defining and consi-

dering linear functionals on the algebra of polynomials.

MML Identifier: POLYALG1.

The notation and terminology used here are introduced in the following papers:

[9], [13], [1], [2], [3], [12], [8], [7], [11], [16], [5], [14], [10], [15], [6], and [4].

1. Preliminaries

Let F be a 1-sorted structure. We introduce algebra structures over F which

are extensions of double loop structure and vector space structure over F and

are systems

〈 a carrier, an addition, a multiplication, a reverse-map, a zero, a unity, a

left multiplication 〉,

where the carrier is a set, the addition and the multiplication are binary ope-

rations on the carrier, the reverse-map is a unary operation on the carrier, the

zero and the unity are elements of the carrier, and the left multiplication is a

function from [: the carrier of F , the carrier :] into the carrier.

Let L be a non empty double loop structure. Note that there exists an

algebra structure over L which is strict and non empty.

Let L be a non empty double loop structure and let A be a non empty

algebra structure over L. We say that A is mix-associative if and only if:

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(Def. 1) For every element a of L and for all elements x, y of A holds a · (x · y) =

(a · x) · y.

Let L be a non empty double loop structure. Note that there exists a non

empty algebra structure over L which is well unital, distributive, vector space-

like, and mix-associative.

Let L be a non empty double loop structure. An algebra of L is a well unital

distributive vector space-like mix-associative non empty algebra structure over

L.

Next we state two propositions:

(1) For all sets X, Y and for every function f from [:X, Y :] into X holds

dom f = [:X, Y :].

(2) For all sets X, Y and for every function f from [:X, Y :] into Y holds

dom f = [:X, Y :].

2. The Algebra of Formal Power Series

Let L be a non empty double loop structure. The functor Formal-SeriesL

yields a strict non empty algebra structure over L and is defined by the condi-

tions (Def. 2).

(Def. 2) For every set x holds x ∈ the carrier of Formal-SeriesL iff x is a sequence

of L and for all elements x, y of the carrier of Formal-SeriesL and for all

sequences p, q of L such that x = p and y = q holds x + y = p + q and for

all elements x, y of the carrier of Formal-SeriesL and for all sequences p,

q of L such that x = p and y = q holds x · y = p ∗ q and for every element

x of the carrier of Formal-SeriesL and for every sequence p of L such that

x = p holds −x = −p and for every element a of L and for every element

x of the carrier of Formal-SeriesL and for every sequence p of L such that

x = p holds a ·x = a ·p and 0Formal-SeriesL = 0. L and 1Formal-SeriesL = 1. L.

Let L be an Abelian non empty double loop structure. Note that

Formal-SeriesL is Abelian.

Let L be an add-associative non empty double loop structure. Note that

Formal-SeriesL is add-associative.

Let L be a right zeroed non empty double loop structure. Note that

Formal-SeriesL is right zeroed.

Let L be an add-associative right zeroed right complementable non empty

double loop structure. Note that Formal-SeriesL is right complementable.

Let L be an Abelian add-associative right zeroed commutative non empty

double loop structure. Observe that Formal-SeriesL is commutative.
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Let L be an Abelian add-associative right zeroed right complementable

unital associative distributive non empty double loop structure. Note that

Formal-SeriesL is associative.

Let L be an add-associative right zeroed right complementable right unital

right distributive non empty double loop structure. Note that Formal-SeriesL

is right unital.

One can verify that there exists a non empty double loop structure which

is add-associative, associative, right zeroed, left zeroed, right unital, left unital,

right complementable, and distributive.

We now state three propositions:

(3) For every non empty set D and for every non empty finite sequence f of

elements of D holds f⇂1 = f↾1.

(4) For every non empty set D and for every non empty finite sequence f of

elements of D holds f = 〈f(1)〉 a (f↾1).

(5) Let L be an add-associative right zeroed left unital right complementable

left distributive non empty double loop structure and p be a sequence of

L. Then 1. L ∗ p = p.

Let L be an add-associative right zeroed right complementable left uni-

tal left distributive non empty double loop structure. One can verify that

Formal-SeriesL is left unital.

Let L be an Abelian add-associative right zeroed right complementable di-

stributive non empty double loop structure. One can check that Formal-SeriesL

is right distributive and Formal-SeriesL is left distributive.

We now state four propositions:

(6) Let L be an Abelian add-associative right zeroed right complementable

distributive non empty double loop structure, a be an element of L, and

p, q be sequences of L. Then a · (p + q) = a · p + a · q.

(7) Let L be an Abelian add-associative right zeroed right complementable

distributive non empty double loop structure, a, b be elements of L, and

p be a sequence of L. Then (a + b) · p = a · p + b · p.

(8) Let L be an associative non empty double loop structure, a, b be elements

of L, and p be a sequence of L. Then (a · b) · p = a · (b · p).

(9) Let L be an associative left unital non empty double loop structure and

p be a sequence of L. Then (the unity of L) · p = p.

Let L be an Abelian add-associative associative right zeroed right comple-

mentable left unital distributive non empty double loop structure. One can check

that Formal-SeriesL is vector space-like.

We now state the proposition

(10) Let L be an Abelian left zeroed add-associative associative right zeroed

right complementable distributive non empty double loop structure, a be
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an element of L, and p, q be sequences of L. Then a · (p ∗ q) = (a · p) ∗ q.

Let L be an Abelian left zeroed add-associative associative right zeroed right

complementable distributive non empty double loop structure. One can verify

that Formal-SeriesL is mix-associative.

Let L be a left zeroed right zeroed add-associative left unital right unital

right complementable distributive non empty double loop structure. Observe

that Formal-SeriesL is well unital.

Let L be a 1-sorted structure and let A be an algebra structure over L.

An algebra structure over L is said to be a subalgebra of A if it satisfies the

conditions (Def. 3).

(Def. 3) The carrier of it ⊆ the carrier of A and 1it = 1A and 0it = 0A and the

addition of it = (the addition of A)↾[: the carrier of it, the carrier of it :]

and the multiplication of it = (the multiplication of A)↾[: the carrier of it,

the carrier of it :] and the reverse-map of it = (the reverse-map of A)↾(the

carrier of it) and the left multiplication of it = (the left multiplication of

A)↾[: the carrier of L, the carrier of it :].

We now state four propositions:

(11) For every 1-sorted structure L holds every algebra structure A over L is

a subalgebra of A.

(12) Let L be a 1-sorted structure and A, B, C be algebra structures over L.

Suppose A is a subalgebra of B and B is a subalgebra of C. Then A is a

subalgebra of C.

(13) Let L be a 1-sorted structure and A, B be algebra structures over L.

Suppose A is a subalgebra of B and B is a subalgebra of A. Then the

algebra structure of A = the algebra structure of B.

(14) Let L be a 1-sorted structure and A, B be algebra structures over L.

Suppose the algebra structure of A = the algebra structure of B. Then A

is a subalgebra of B and B is a subalgebra of A.

Let L be a non empty 1-sorted structure. Observe that there exists an algebra

structure over L which is non empty and strict.

Let L be a 1-sorted structure and let B be an algebra structure over L.

Observe that there exists a subalgebra of B which is strict.

Let L be a non empty 1-sorted structure and let B be a non empty algebra

structure over L. Note that there exists a subalgebra of B which is strict and

non empty.

Let L be a non empty groupoid, let B be a non empty algebra structure over

L, and let A be a subset of B. We say that A is operations closed if and only if

the conditions (Def. 4) are satisfied.

(Def. 4)(i) A is linearly closed,

(ii) for all elements x, y of B such that x ∈ A and y ∈ A holds x · y ∈ A,
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(iii) for every element x of B such that x ∈ A holds −x ∈ A,

(iv) 1B ∈ A, and

(v) 0B ∈ A.

The following propositions are true:

(15) Let L be a non empty groupoid, B be a non empty algebra structure

over L, A be a non empty subalgebra of B, x, y be elements of the carrier

of B, and x′, y′ be elements of the carrier of A. If x = x′ and y = y′, then

x + y = x′ + y′.

(16) Let L be a non empty groupoid, B be a non empty algebra structure

over L, A be a non empty subalgebra of B, x, y be elements of the carrier

of B, and x′, y′ be elements of the carrier of A. If x = x′ and y = y′, then

x · y = x′ · y′.

(17) Let L be a non empty groupoid, B be a non empty algebra structure

over L, A be a non empty subalgebra of B, a be an element of the carrier

of L, x be an element of the carrier of B, and x′ be an element of the

carrier of A. If x = x′, then a · x = a · x′.

(18) Let L be a non empty groupoid, B be a non empty algebra structure

over L, A be a non empty subalgebra of B, x be an element of the carrier

of B, and x′ be an element of the carrier of A. If x = x′, then −x = −x′.

(19) Let L be a non empty groupoid, B be a non empty algebra structure

over L, and A be a non empty subalgebra of B. Then there exists a subset

C of B such that the carrier of A = C and C is operations closed.

(20) Let L be a non empty groupoid, B be a non empty algebra structure

over L, and A be a subset of B. Suppose A is operations closed. Then

there exists a strict subalgebra C of B such that the carrier of C = A.

(21) Let L be a non empty groupoid, B be a non empty algebra structure over

L, A be a non empty subset ofB, andX be a family of subsets of the carrier

of B. Suppose that for every set Y holds Y ∈ X iff Y ∈ 2the carrier of B

and there exists a subalgebra C of B such that Y = the carrier of C and

A ⊆ Y. Then
⋂

X is operations closed.

Let L be a non empty groupoid, let B be a non empty algebra structure

over L, and let A be a non empty subset of B. The functor GenAlgA yielding

a strict non empty subalgebra of B is defined by the conditions (Def. 5).

(Def. 5)(i) A ⊆ the carrier of GenAlgA, and

(ii) for every subalgebra C of B such that A ⊆ the carrier of C holds the

carrier of GenAlgA ⊆ the carrier of C.

We now state the proposition

(22) Let L be a non empty groupoid, B be a non empty algebra structure

over L, and A be a non empty subset of B. If A is operations closed, then

the carrier of GenAlgA = A.
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3. The Algebra of Polynomials

Let L be an add-associative right zeroed right complementable distributive

non empty double loop structure. The functor Polynom-AlgebraL yields a strict

non empty algebra structure over L and is defined as follows:

(Def. 6) There exists a non empty subset A of Formal-SeriesL such that A = the

carrier of Polynom-RingL and Polynom-AlgebraL = GenAlgA.

Let L be an add-associative right zeroed right complementable distributive

non empty double loop structure. One can verify that Polynom-RingL is loop-

like.

The following propositions are true:

(23) Let L be an add-associative right zeroed right complementable distri-

butive non empty double loop structure and A be a non empty subset of

Formal-SeriesL. If A = the carrier of Polynom-RingL, then A is opera-

tions closed.

(24) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure. Then the double loop structure of

Polynom-AlgebraL = Polynom-RingL.
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