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The papers [18], [22], [19], [4], [16], [5], [12], [1], [3], [26], [24], [6], [7], [25], [13],

[2], [20], [15], [14], [21], [9], [29], [27], [8], [10], [23], [28], [11], and [17] provide

the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

(1) For all natural numbers n, m such that n 6= 0 and m 6= 0 holds (n ·m−

n−m) + 1 ­ 0.

(2) For all real numbers x, y such that y > 0 holds min(x,y)
max(x,y) ¬ 1.

(3) For all real numbers x, y such that for every real number c such that

c > 0 and c < 1 holds c · x ­ y holds y ¬ 0.

(4) Let p be a finite sequence of elements of R. Suppose that for every natural

number n such that n ∈ dom p holds p(n) ­ 0. Let i be a natural number.

If i ∈ dom p, then
∑

p ­ p(i).

(5) For all real numbers x, y holds −(x + yiCF) = −x + (−y)iCF .

(6) For all real numbers x1, y1, x2, y2 holds (x1 + y1iCF) − (x2 + y2iCF) =

(x1 − x2) + (y1 − y2)iCF .

(7) Let L be a commutative associative left unital distributive field-like non

empty double loop structure and f , g, h be elements of the carrier of L.

If h 6= 0L, then if h · g = h · f or g · h = f · h, then g = f.
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In this article we present several logical schemes. The scheme ExDHGrStrSeq

deals with a non empty groupoid A and a unary functor F yielding an element

of the carrier of A, and states that:

There exists a sequence S of A such that for every natural number

n holds S(n) = F(n)

for all values of the parameters.

The scheme ExDdoubleLoopStrSeq deals with a non empty double loop struc-

ture A and a unary functor F yielding an element of the carrier of A, and states

that:

There exists a sequence S of A such that for every natural number

n holds S(n) = F(n)

for all values of the parameters.

Next we state the proposition

(8) For every element z of the carrier of CF such that z 6= 0CF
and for every

natural number n holds |powerCF(z, n)| = |z|n.

Let p be a finite sequence of elements of the carrier of CF. The functor |p|

yields a finite sequence of elements of R and is defined by:

(Def. 1) len |p| = len p and for every natural number n such that n ∈ dom p holds

|p|n = |pn|.

We now state several propositions:

(9) |ε(the carrier of CF)| = εR.

(10) For every element x of the carrier of CF holds |〈x〉| = 〈|x|〉.

(11) For all elements x, y of the carrier of CF holds |〈x, y〉| = 〈|x|, |y|〉.

(12) For all elements x, y, z of the carrier of CF holds |〈x, y, z〉| = 〈|x|, |y|,

|z|〉.

(13) For all finite sequences p, q of elements of the carrier of CF holds |p
aq| =

|p| a |q|.

(14) Let p be a finite sequence of elements of the carrier of CF and x be an

element of the carrier of CF. Then |p
a 〈x〉| = |p| a 〈|x|〉 and |〈x〉 a p| =

〈|x|〉 a |p|.

(15) For every finite sequence p of elements of the carrier of CF holds |
∑

p| ¬
∑
|p|.

2. Operations on Polynomials

Let L be an Abelian add-associative right zeroed right complementable right

unital commutative distributive non empty double loop structure, let p be a

Polynomial of L, and let n be a natural number. The functor pn yields a sequence

of L and is defined by:
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(Def. 2) pn = powerPolynom-RingL(p, n).

Let L be an Abelian add-associative right zeroed right complementable right

unital commutative distributive non empty double loop structure, let p be a

Polynomial of L, and let n be a natural number. One can verify that pn is

finite-Support.

One can prove the following propositions:

(16) Let L be an Abelian add-associative right zeroed right complementable

right unital commutative distributive non empty double loop structure

and p be a Polynomial of L. Then p0 = 1. L.

(17) Let L be an Abelian add-associative right zeroed right complementable

right unital commutative distributive non empty double loop structure

and p be a Polynomial of L. Then p1 = p.

(18) Let L be an Abelian add-associative right zeroed right complementable

right unital commutative distributive non empty double loop structure

and p be a Polynomial of L. Then p2 = p ∗ p.

(19) Let L be an Abelian add-associative right zeroed right complementable

right unital commutative distributive non empty double loop structure

and p be a Polynomial of L. Then p3 = p ∗ p ∗ p.

(20) Let L be an Abelian add-associative right zeroed right complementable

right unital commutative distributive non empty double loop structure, p

be a Polynomial of L, and n be a natural number. Then pn+1 = pn ∗ p.

(21) Let L be an Abelian add-associative right zeroed right complementable

right unital commutative distributive non empty double loop structure

and n be a natural number. Then (0. L)n+1 = 0. L.

(22) Let L be an Abelian add-associative right zeroed right complementable

right unital commutative distributive non empty double loop structure

and n be a natural number. Then (1. L)n = 1. L.

(23) Let L be a field, p be a Polynomial of L, x be an element of the carrier

of L, and n be a natural number. Then eval(pn, x) = powerL(eval(p, x),

n).

(24) Let L be a field and p be a Polynomial of L. If len p 6= 0, then for every

natural number n holds len(pn) = (n · len p− n) + 1.

Let L be a non empty groupoid, let p be a sequence of L, and let v be an

element of the carrier of L. The functor v ·p yields a sequence of L and is defined

by:

(Def. 3) For every natural number n holds (v · p)(n) = v · p(n).

Let L be an add-associative right zeroed right complementable right distri-

butive non empty double loop structure, let p be a Polynomial of L, and let v

be an element of the carrier of L. Observe that v · p is finite-Support.

We now state several propositions:
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(25) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure and p be a Polynomial of L. Then

len(0L · p) = 0.

(26) Let L be an add-associative right zeroed right complementable left uni-

tal commutative associative distributive field-like non empty double loop

structure, p be a Polynomial of L, and v be an element of the carrier of

L. If v 6= 0L, then len(v · p) = len p.

(27) Let L be an add-associative right zeroed right complementable left di-

stributive non empty double loop structure and p be a sequence of L. Then

0L · p = 0. L.

(28) For every left unital non empty multiplicative loop structure L and for

every sequence p of L holds 1L · p = p.

(29) Let L be an add-associative right zeroed right complementable right

distributive non empty double loop structure and v be an element of the

carrier of L. Then v · 0. L = 0. L.

(30) Let L be an add-associative right zeroed right complementable right

unital right distributive non empty double loop structure and v be an

element of the carrier of L. Then v · 1. L = 〈v〉.

(31) Let L be an add-associative right zeroed right complementable left uni-

tal distributive commutative associative field-like non empty double loop

structure, p be a Polynomial of L, and v, x be elements of the carrier of

L. Then eval(v · p, x) = v · eval(p, x).

(32) Let L be an add-associative right zeroed right complementable right

distributive unital non empty double loop structure and p be a Polynomial

of L. Then eval(p, 0L) = p(0).

Let L be a non empty zero structure and let z0, z1 be elements of the carrier

of L. The functor 〈z0, z1〉 yields a sequence of L and is defined by:

(Def. 4) 〈z0, z1〉 = 0. L +· (0, z0) +· (1, z1).

The following propositions are true:

(33) Let L be a non empty zero structure and z0 be an element of the carrier

of L. Then 〈z0〉(0) = z0 and for every natural number n such that n ­ 1

holds 〈z0〉(n) = 0L.

(34) For every non empty zero structure L and for every element z0 of the

carrier of L such that z0 6= 0L holds len〈z0〉 = 1.

(35) For every non empty zero structure L holds 〈0L〉 = 0. L.

(36) Let L be an add-associative right zeroed right complementable distribu-

tive commutative associative left unital field-like non empty double loop

structure and x, y be elements of the carrier of L. Then 〈x〉 ∗ 〈y〉 = 〈x · y〉.

(37) Let L be an Abelian add-associative right zeroed right complementable

right unital associative commutative distributive field-like non empty do-



fundamental theorem of algebra 465

uble loop structure, x be an element of the carrier of L, and n be a natural

number. Then 〈x〉n = 〈powerL(x, n)〉.

(38) Let L be an add-associative right zeroed right complementable unital

non empty double loop structure and z0, x be elements of the carrier of

L. Then eval(〈z0〉, x) = z0.

(39) Let L be a non empty zero structure and z0, z1 be elements of the carrier

of L. Then 〈z0, z1〉(0) = z0 and 〈z0, z1〉(1) = z1 and for every natural

number n such that n ­ 2 holds 〈z0, z1〉(n) = 0L.

Let L be a non empty zero structure and let z0, z1 be elements of the carrier

of L. One can verify that 〈z0, z1〉 is finite-Support.

The following propositions are true:

(40) For every non empty zero structure L and for all elements z0, z1 of the

carrier of L holds len〈z0, z1〉 ¬ 2.

(41) For every non empty zero structure L and for all elements z0, z1 of the

carrier of L such that z1 6= 0L holds len〈z0, z1〉 = 2.

(42) For every non empty zero structure L and for every element z0 of the

carrier of L such that z0 6= 0L holds len〈z0, 0L〉 = 1.

(43) For every non empty zero structure L holds 〈0L, 0L〉 = 0. L.

(44) For every non empty zero structure L and for every element z0 of the

carrier of L holds 〈z0, 0L〉 = 〈z0〉.

(45) Let L be an add-associative right zeroed right complementable left di-

stributive unital non empty double loop structure and z0, z1, x be elements

of the carrier of L. Then eval(〈z0, z1〉, x) = z0 + z1 · x.

(46) Let L be an add-associative right zeroed right complementable left di-

stributive unital non empty double loop structure and z0, z1, x be elements

of the carrier of L. Then eval(〈z0, 0L〉, x) = z0.

(47) Let L be an add-associative right zeroed right complementable left di-

stributive unital non empty double loop structure and z0, z1, x be elements

of the carrier of L. Then eval(〈0L, z1〉, x) = z1 · x.

(48) Let L be an add-associative right zeroed right complementable left di-

stributive well unital non empty double loop structure and z0, z1, x be

elements of the carrier of L. Then eval(〈z0,1L〉, x) = z0 + x.

(49) Let L be an add-associative right zeroed right complementable left di-

stributive well unital non empty double loop structure and z0, z1, x be

elements of the carrier of L. Then eval(〈0L,1L〉, x) = x.
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3. Substitution in Polynomials

Let L be an Abelian add-associative right zeroed right complementable right

unital commutative distributive non empty double loop structure and let p, q

be Polynomials of L. The functor p[q] yielding a Polynomial of L is defined by

the condition (Def. 5).

(Def. 5) There exists a finite sequence F of elements of the carrier of

Polynom-RingL such that p[q] =
∑

F and lenF = len p and for every

natural number n such that n ∈ domF holds F (n) = p(n−′ 1) · qn−′1.

One can prove the following propositions:

(50) Let L be an Abelian add-associative right zeroed right complementable

right unital commutative distributive non empty double loop structure

and p be a Polynomial of L. Then (0. L)[p] = 0. L.

(51) Let L be an Abelian add-associative right zeroed right complementable

right unital commutative distributive non empty double loop structure

and p be a Polynomial of L. Then p[0. L] = 〈p(0)〉.

(52) Let L be an Abelian add-associative right zeroed right complementable

right unital associative commutative distributive field-like non empty do-

uble loop structure, p be a Polynomial of L, and x be an element of the

carrier of L. Then len(p[〈x〉]) ¬ 1.

(53) For every field L and for all Polynomials p, q of L such that len p 6= 0

and len q > 1 holds len(p[q]) = (len p · len q − len p− len q) + 2.

(54) Let L be a field, p, q be Polynomials of L, and x be an element of the

carrier of L. Then eval(p[q], x) = eval(p, eval(q, x)).

4. Fundamental Theorem of Algebra

Let L be a unital non empty double loop structure, let p be a Polynomial

of L, and let x be an element of the carrier of L. We say that x is a root of p if

and only if:

(Def. 6) eval(p, x) = 0L.

Let L be a unital non empty double loop structure and let p be a Polynomial

of L. We say that p has roots if and only if:

(Def. 7) There exists an element x of the carrier of L such that x is a root of p.

The following proposition is true

(55) For every unital non empty double loop structure L holds 0. L has roots.
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Let L be a unital non empty double loop structure. One can verify that 0. L

has roots.

The following proposition is true

(56) Let L be a unital non empty double loop structure and x be an element

of the carrier of L. Then x is a root of 0. L.

Let L be a unital non empty double loop structure. One can verify that there

exists a Polynomial of L which has roots.

Let L be a unital non empty double loop structure. We say that L is

algebraic-closed if and only if:

(Def. 8) For every Polynomial p of L such that len p > 1 holds p has roots.

Let L be a unital non empty double loop structure and let p be a Polynomial

of L. The functor Roots p yields a subset of L and is defined by:

(Def. 9) For every element x of the carrier of L holds x ∈ Roots p iff x is a root

of p.

Let L be a commutative associative left unital distributive field-like non

empty double loop structure and let p be a Polynomial of L. The functor

NormPolynomial p yielding a sequence of L is defined as follows:

(Def. 10) For every natural number n holds (NormPolynomial p)(n) = p(n)
p(len p−′1) .

Let L be an add-associative right zeroed right complementable commutative

associative left unital distributive field-like non empty double loop structure and

let p be a Polynomial of L. Note that NormPolynomial p is finite-Support.

The following propositions are true:

(57) Let L be a commutative associative left unital distributive field-like non

empty double loop structure and p be a Polynomial of L. If len p 6= 0, then

(NormPolynomial p)(len p−′ 1) = 1L.

(58) For every field L and for every Polynomial p of L such that len p 6= 0

holds lenNormPolynomial p = len p.

(59) Let L be a field and p be a Polynomial of L. Suppose len p 6= 0. Let

x be an element of the carrier of L. Then eval(NormPolynomial p, x) =
eval(p,x)

p(len p−′1) .

(60) Let L be a field and p be a Polynomial of L. Suppose len p 6= 0. Let x

be an element of the carrier of L. Then x is a root of p if and only if x is

a root of NormPolynomial p.

(61) For every field L and for every Polynomial p of L such that len p 6= 0

holds p has roots iff NormPolynomial p has roots.

(62) For every field L and for every Polynomial p of L such that len p 6= 0

holds Roots p = RootsNormPolynomial p.

(63) idC is continuous on C.

(64) For every element x of C holds C 7−→ x is continuous on C.
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Let L be a unital non empty groupoid, let x be an element of the carrier of

L, and let n be a natural number. The functor FPower(x, n) yields a map from

L into L and is defined as follows:

(Def. 11) For every element y of the carrier of L holds (FPower(x, n))(y) = x ·

powerL(y, n).

The following propositions are true:

(65) For every unital non empty groupoid L holds FPower(1L, 1) =

idthe carrier of L.

(66) FPower(1CF
, 2) = idC idC.

(67) For every unital non empty groupoid L and for every element x of the

carrier of L holds FPower(x, 0) = (the carrier of L) 7−→ x.

(68) For every element x of the carrier of CF there exists an element x1 of C

such that x = x1 and FPower(x, 1) = x1 idC.

(69) For every element x of the carrier of CF there exists an element x1 of C

such that x = x1 and FPower(x, 2) = x1 (idC idC).

(70) Let x be an element of the carrier of CF and n be a natural number.

Then there exists a function f from C into C such that f = FPower(x, n)

and FPower(x, n + 1) = f idC.

(71) Let x be an element of the carrier of CF and n be a natural number.

Then there exists a function f from C into C such that f = FPower(x, n)

and f is continuous on C.

Let L be a unital non empty double loop structure and let p be a Polynomial

of L. The functor Polynomial-Function(L, p) yields a map from L into L and is

defined as follows:

(Def. 12) For every element x of the carrier of L holds

(Polynomial-Function(L, p))(x) = eval(p, x).

The following propositions are true:

(72) For every Polynomial p of CF there exists a function f from C into C

such that f = Polynomial-Function(CF, p) and f is continuous on C.

(73) Let p be a Polynomial of CF. Suppose len p > 2 and |p(len p−′1)| = 1. Let

F be a finite sequence of elements of R. Suppose lenF = len p and for every

natural number n such that n ∈ domF holds F (n) = |p(n−′ 1)|. Let z be

an element of the carrier of CF. If |z| >
∑

F, then | eval(p, z)| > |p(0)|+1.

(74) Let p be a Polynomial of CF. Suppose len p > 2. Then there exists an

element z0 of the carrier of CF such that for every element z of the carrier

of CF holds | eval(p, z)| ­ | eval(p, z0)|.

(75) For every Polynomial p of CF such that len p > 1 holds p has roots.

Let us note that CF is algebraic-closed.
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Let us mention that there exists a left unital right unital non empty double

loop structure which is algebraic-closed, add-associative, right zeroed, right com-

plementable, Abelian, commutative, associative, distributive, field-like, and non

degenerated.
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