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Summary. In this article, we show properties of calculating type state
machines. In the first section, we have defined calculating type state machines of
which the state transition only depends on the first input. We have also proved
theorems of the state machines. In the second section, we defined Moore machines
with final states. We also introduced the concept of result of the Moore machines.
In the last section, we proved the correctness of several calculating type of Moore
machines.

MML Identifier: FSM 2.

The terminology and notation used in this paper have been introduced in the

following articles: [10], [3], [16], [11], [2], [14], [9], [4], [5], [1], [8], [17], [7], [13],

[15], [12], and [6].

1. Calculating Type

For simplicity, we use the following convention:m denotes a natural number,

x, y denote real numbers, i, j denote non empty natural numbers, I, O denote

non empty sets, s, s1, s2, s3 denote elements of I, w, w1, w2 denote finite

sequences of elements of I, t denotes an element of O, S denotes a non empty

FSM over I, and q, q1 denote states of S.

Let us consider I, S, q, w. We introduce GEN(w, q) as a synonym of

(q, w)-admissible.
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Let us consider I, S, q, w. Note that GEN(w, q) is non empty.

The following propositions are true:

(1) GEN(〈s〉, q) = 〈q, (the transition of S)(〈〈q, s〉〉)〉.

(2) GEN(〈s1, s2〉, q) = 〈q, (the transition of S)(〈〈q, s1〉〉), (the transition of

S)(〈〈(the transition of S)(〈〈q, s1〉〉), s2〉〉)〉.

(3) GEN(〈s1, s2, s3〉, q) = 〈q, (the transition of S)(〈〈q, s1〉〉), (the transition of

S)(〈〈(the transition of S)(〈〈q, s1〉〉), s2〉〉), (the transition of S)(〈〈(the transi-

tion of S)(〈〈(the transition of S)(〈〈q, s1〉〉), s2〉〉), s3〉〉)〉.

Let us consider I, S. We say that S is calculating type if and only if the

condition (Def. 1) is satisfied.

(Def. 1) Let given j and given w1, w2. Suppose w1(1) = w2(1) and j ¬

lenw1 + 1 and j ¬ lenw2 + 1. Then (GEN(w1, the initial state of

S))(j) = (GEN(w2, the initial state of S))(j).

The following propositions are true:

(4) Suppose S is calculating type. Let given w1, w2. Suppose w1(1) = w2(1).

Then GEN(w1, the initial state of S) and GEN(w2, the initial state of S)

are c=-comparable.

(5) Suppose that for all w1, w2 such that w1(1) = w2(1) holds GEN(w1, the

initial state of S) and GEN(w2, the initial state of S) are c=-comparable.

Then S is calculating type.

(6) Suppose S is calculating type. Let given w1, w2. Suppose w1(1) = w2(1)

and lenw1 = lenw2. Then GEN(w1, the initial state of S) = GEN(w2, the

initial state of S).

(7) Suppose that for all w1, w2 such that w1(1) = w2(1) and lenw1 = lenw2

holds GEN(w1, the initial state of S) = GEN(w2, the initial state of S).

Then S is calculating type.

Let us consider I, S, q, s. We say that q is accessible via s if and only if:

(Def. 2) There exists a finite sequence w of elements of I such that the initial

state of S
〈s〉aw

−→ q.

Let us consider I, S, q. We say that q is accessible if and only if:

(Def. 3) There exists a finite sequence w of elements of I such that the initial

state of S
w
−→ q.

We now state four propositions:

(8) If q is accessible via s, then q is accessible.

(9) If q is accessible and q 6= the initial state of S, then there exists s such

that q is accessible via s.

(10) The initial state of S is accessible.

(11) Suppose S is calculating type and q is accessible via s. Then there exists

a non empty natural number m such that for every w if lenw + 1 ­ m
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and w(1) = s, then q = (GEN(w, the initial state of S))(m) and for every

i such that i < m holds (GEN(w, the initial state of S))(i) 6= q.

Let us consider I, S. We say that S is regular if and only if:

(Def. 4) Every state of S is accessible.

We now state several propositions:

(12) If for all s1, s2, q holds (the transition of S)(〈〈q, s1〉〉) = (the transition of

S)(〈〈q, s2〉〉), then S is calculating type.

(13) Let given S. Suppose that

(i) for all s1, s2, q such that q 6= the initial state of S holds (the transition

of S)(〈〈q, s1〉〉) = (the transition of S)(〈〈q, s2〉〉), and

(ii) for all s, q1 holds (the transition of S)(〈〈q1, s〉〉) 6= the initial state of S.

Then S is calculating type.

(14) Suppose S is regular and calculating type. Let given s1, s2, q. If q 6= the

initial state of S, then (GEN(〈s1〉, q))(2) = (GEN(〈s2〉, q))(2).

(15) Suppose S is regular and calculating type. Let given s1, s2, q. Suppose

q 6= the initial state of S. Then (the transition of S)(〈〈q, s1〉〉) = (the

transition of S)(〈〈q, s2〉〉).

(16) Suppose S is regular and calculating type. Let given s, s1, s2, q. Suppose

(the transition of S)(〈〈the initial state of S, s1〉〉) 6= (the transition of

S)(〈〈the initial state of S, s2〉〉). Then (the transition of S)(〈〈q, s〉〉) 6= the

initial state of S.

2. State Machine with Final States

Let I be a set. We introduce state machines over I with final states which

are extensions of FSM over I and are systems

〈 a carrier, a transition, an initial state, final states 〉,

where the carrier is a set, the transition is a function from [: the carrier, I :] into

the carrier, the initial state is an element of the carrier, and the final states

constitute a subset of the carrier.

Let I be a set. One can check that there exists a state machine over I with

final states which is non empty.

Let us consider I, s and let S be a non empty state machine over I with

final states. We say that s leads to final state of S if and only if:

(Def. 5) There exists a state q of S such that q is accessible via s and q ∈ the

final states of S.

Let us consider I and let S be a non empty state machine over I with final

states. We say that S is halting if and only if:

(Def. 6) s leads to final state of S.
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Let I be a set and let O be a non empty set. We consider Moore state

machines over I and O with final states as extensions of state machine over I

with final states and Moore-FSM over I, O as systems

〈 a carrier, a transition, an output function, an initial state, final states 〉,

where the carrier is a set, the transition is a function from [: the carrier, I :] into

the carrier, the output function is a function from the carrier into O, the initial

state is an element of the carrier, and the final states constitute a subset of the

carrier.

Let I be a set and let O be a non empty set. Observe that there exists a

Moore state machine over I and O with final states which is non empty and

strict.

Let us consider I, O, let i, f be sets, and let o be a function from {i, f}

into O. The functor I -TwoStatesMooreSM(i, f, o) yielding a non empty strict

Moore state machine over I and O with final states is defined by the conditions

(Def. 7).

(Def. 7)(i) The carrier of I -TwoStatesMooreSM(i, f, o) = {i, f},

(ii) the transition of I -TwoStatesMooreSM(i, f, o) = [: {i, f}, I :] 7−→ f,

(iii) the output function of I -TwoStatesMooreSM(i, f, o) = o,

(iv) the initial state of I -TwoStatesMooreSM(i, f, o) = i, and

(v) the final states of I -TwoStatesMooreSM(i, f, o) = {f}.

One can prove the following proposition

(17) Let i, f be sets, o be a function from {i, f} into O, and given

j. If 1 < j and j ¬ lenw + 1, then (GEN(w, the initial state of

I -TwoStatesMooreSM(i, f, o)))(j) = f.

Let us consider I, O, let i, f be sets, and let o be a function from {i, f} into

O. Observe that I -TwoStatesMooreSM(i, f, o) is calculating type.

Let us consider I, O, let i, f be sets, and let o be a function from {i, f} into

O. One can check that I -TwoStatesMooreSM(i, f, o) is halting.

In the sequel n, m are non empty natural numbers and M is a non empty

Moore state machine over I and O with final states.

Next we state the proposition

(18) Suppose that

(i) M is calculating type,

(ii) s leads to final state of M , and

(iii) the initial state of M /∈ the final states of M .

Then there exists a non empty natural number m such that

(iv) for every w such that lenw + 1 ­ m and w(1) = s holds (GEN(w, the

initial state of M))(m) ∈ the final states of M , and

(v) for all w, j such that j ¬ lenw + 1 and w(1) = s and j < m holds

(GEN(w, the initial state of M))(j) /∈ the final states of M .
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3. Correctness of a Result of State Machine

Let us consider I, O, M , s and let t be a set. We say that t is a result of s

in M if and only if the condition (Def. 8) is satisfied.

(Def. 8) There exists m such that for every w if w(1) = s, then if m ¬ lenw + 1,

then t = (the output function ofM)((GEN(w, the initial state ofM))(m))

and (GEN(w, the initial state of M))(m) ∈ the final states of M and for

every n such that n < m and n ¬ lenw+1 holds (GEN(w, the initial state

of M))(n) /∈ the final states of M .

We now state several propositions:

(19) Suppose the initial state ofM ∈ the final states of M . Then (the output

function of M)(the initial state of M) is a result of s in M .

(20) Suppose that

(i) M is calculating type,

(ii) s leads to final state of M , and

(iii) the initial state of M /∈ the final states of M .

Then there exists t which is a result of s in M .

(21) Suppose M is calculating type and s leads to final state of M . Let t1, t2
be elements of O. If t1 is a result of s in M and t2 is a result of s in M ,

then t1 = t2.

(22) Let X be a non empty set, f be a binary operation on X, and M be

a non empty Moore state machine over [:X, X :] and X ∪ {X} with final

states. Suppose that

(i) M is calculating type,

(ii) the carrier of M = X ∪ {X},

(iii) the final states of M = X,

(iv) the initial state of M = X,

(v) the output function of M = idthe carrier of M , and

(vi) for all elements x, y of X holds (the transition of M)(〈〈the initial state

of M , 〈〈x, y〉〉〉〉) = f(x, y).

Then M is halting and for all elements x, y of X holds f(x, y) is a result

of 〈〈x, y〉〉 in M .

(23) Let M be a non empty Moore state machine over [: R, R :] and R ∪ {R}

with final states. Suppose that M is calculating type and the carrier of

M = R∪{R} and the final states ofM = R and the initial state ofM = R

and the output function of M = idthe carrier of M and for all x, y such that

x ­ y holds (the transition of M)(〈〈the initial state of M , 〈〈x, y〉〉〉〉) = x

and for all x, y such that x < y holds (the transition of M)(〈〈the initial

state of M , 〈〈x, y〉〉〉〉) = y. Let x, y be elements of R. Then max(x, y) is a

result of 〈〈x, y〉〉 in M .



862 hisayoshi kunimune et al.

(24) Let M be a non empty Moore state machine over [: R, R :] and R ∪ {R}

with final states. Suppose that M is calculating type and the carrier of

M = R∪{R} and the final states ofM = R and the initial state ofM = R

and the output function of M = idthe carrier of M and for all x, y such that

x < y holds (the transition of M)(〈〈the initial state of M , 〈〈x, y〉〉〉〉) = x

and for all x, y such that x ­ y holds (the transition of M)(〈〈the initial

state of M , 〈〈x, y〉〉〉〉) = y. Let x, y be elements of R. Then min(x, y) is a

result of 〈〈x, y〉〉 in M .

(25) Let M be a non empty Moore state machine over [: R, R :] and R ∪ {R}

with final states. Suppose that

(i) M is calculating type,

(ii) the carrier of M = R ∪ {R},

(iii) the final states of M = R,

(iv) the initial state of M = R,

(v) the output function of M = idthe carrier of M , and

(vi) for all x, y holds (the transition of M)(〈〈the initial state of M , 〈〈x,

y〉〉〉〉) = x + y.

Let x, y be elements of R. Then x + y is a result of 〈〈x, y〉〉 in M .

(26) Let M be a non empty Moore state machine over [: R, R :] and R ∪ {R}

with final states. Suppose that M is calculating type and the carrier of

M = R∪{R} and the final states ofM = R and the initial state ofM = R

and the output function of M = idthe carrier of M and for all x, y such that

x > 0 or y > 0 holds (the transition of M)(〈〈the initial state of M , 〈〈x,

y〉〉〉〉) = 1 and for all x, y such that x = 0 or y = 0 but x ¬ 0 but y ¬ 0 holds

(the transition of M)(〈〈the initial state of M , 〈〈x, y〉〉〉〉) = 0 and for all x, y

such that x < 0 and y < 0 holds (the transition of M)(〈〈the initial state of

M , 〈〈x, y〉〉〉〉) = −1. Let x, y be elements of R. Then max(sgnx, sgn y) is a

result of 〈〈x, y〉〉 in M .

Let us consider I, O. Note that there exists a non empty Moore state machine

over I and O with final states which is calculating type and halting.

Let us consider I. Observe that there exists a non empty state machine over

I with final states which is calculating type and halting.

Let us consider I, O, let M be a calculating type halting non empty Moore

state machine over I and O with final states, and let us consider s. The functor

Result(s,M) yields an element of O and is defined as follows:

(Def. 9) Result(s, M) is a result of s in M .

Next we state several propositions:

(27) For every function f from {0, 1} into O holds

Result(s, I -TwoStatesMooreSM(0, 1, f)) = f(1).

(28) Let M be a calculating type halting non empty Moore state machine

over [: R, R :] and R ∪ {R} with final states. Suppose that
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(i) the carrier of M = R ∪ {R},

(ii) the final states of M = R,

(iii) the initial state of M = R,

(iv) the output function of M = idthe carrier of M ,

(v) for all x, y such that x ­ y holds (the transition of M)(〈〈the initial

state of M , 〈〈x, y〉〉〉〉) = x, and

(vi) for all x, y such that x < y holds (the transition of M)(〈〈the initial

state of M , 〈〈x, y〉〉〉〉) = y.

Let x, y be elements of R. Then Result(〈〈x, y〉〉,M) = max(x, y).

(29) Let M be a calculating type halting non empty Moore state machine

over [: R, R :] and R ∪ {R} with final states. Suppose that

(i) the carrier of M = R ∪ {R},

(ii) the final states of M = R,

(iii) the initial state of M = R,

(iv) the output function of M = idthe carrier of M ,

(v) for all x, y such that x < y holds (the transition of M)(〈〈the initial

state of M , 〈〈x, y〉〉〉〉) = x, and

(vi) for all x, y such that x ­ y holds (the transition of M)(〈〈the initial

state of M , 〈〈x, y〉〉〉〉) = y.

Let x, y be elements of R. Then Result(〈〈x, y〉〉,M) = min(x, y).

(30) Let M be a calculating type halting non empty Moore state machine

over [: R, R :] and R ∪ {R} with final states. Suppose that

(i) the carrier of M = R ∪ {R},

(ii) the final states of M = R,

(iii) the initial state of M = R,

(iv) the output function of M = idthe carrier of M , and

(v) for all x, y holds (the transition of M)(〈〈the initial state of M , 〈〈x,

y〉〉〉〉) = x + y.

Let x, y be elements of R. Then Result(〈〈x, y〉〉,M) = x + y.

(31) Let M be a calculating type halting non empty Moore state machine

over [: R, R :] and R ∪ {R} with final states. Suppose that the carrier of

M = R∪{R} and the final states ofM = R and the initial state ofM = R

and the output function of M = idthe carrier of M and for all x, y such that

x > 0 or y > 0 holds (the transition of M)(〈〈the initial state of M , 〈〈x,

y〉〉〉〉) = 1 and for all x, y such that x = 0 or y = 0 but x ¬ 0 but y ¬ 0

holds (the transition of M)(〈〈the initial state of M , 〈〈x, y〉〉〉〉) = 0 and for

all x, y such that x < 0 and y < 0 holds (the transition of M)(〈〈the initial

state of M , 〈〈x, y〉〉〉〉) = −1. Let x, y be elements of R. Then Result(〈〈x,

y〉〉, M) = max(sgnx, sgn y).
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