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The notation and terminology used here are introduced in the following papers:
27, [21], [10], [15], [14], [9], [12], [8], [13], [23], [20], [6], [25], [11], [16], [], [24],
17, 18], [19], [28], [29], [26], [22], [1], [3], [4], [5], and [2].

In this paper X, x, z are sets.

Let S be a non empty non void many sorted signature and let A be a non
empty algebra over S. Observe that | J (the sorts of A) is non empty.

Let S be a non empty non void many sorted signature and let A be a non
empty algebra over S.

(Def. 1) An element of | J (the sorts of A) is said to be an element of A.
We now state two propositions:

(1) For every function f such that X C dom f and f is one-to-one holds
fHfeX) = X

(2) Let I be a set, A be a many sorted set indexed by I, and F' be a many
sorted function indexed by I. If F'is “1-1” and A C dom, F(k), then
F~YF°A)=A.

Let S be a non void signature and let X be a many sorted set indexed by the
carrier of S. The functor Freeg(X) yields a strict algebra over S and is defined
by:

(Def. 2) There exists a subset A of Free(X U ((the carrier of S) —— {0})) such
that Freeg(X) = Gen(A) and A = (Reverse(X U ((the carrier of S) —
{0))~H(X).

We now state four propositions:
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(3) Let S be anon void signature, X be a non-empty many sorted set indexed
by the carrier of S, and s be a sort symbol of S. Then (z, s) € the carrier
of DTConMSA(X) if and only if z € X (s).

(4) Let S be anon void signature, Y be a non-empty many sorted set indexed
by the carrier of S, X be a many sorted set indexed by the carrier of S,
and s be a sort symbol of S. Then z € X(s) and = € Y (s) if and only if
the root tree of (x, s) € ((Reverse(Y))™1(X))(s).

(5) Let S be a non void signature, X be a many sorted set indexed by the
carrier of S, and s be a sort symbol of S. If x € X (s), then the root tree
of (x, s) € (the sorts of Freeg(X))(s).

(6) Let S be a non void signature, X be a many sorted set indexed by the
carrier of S, and o be an operation symbol of S. Suppose Arity(o) = 0.
Then the root tree of (o, the carrier of S) € (the sorts of Freeg(X))(the
result sort of o).

Let S be a non void signature and let X be a non empty yielding many
sorted set indexed by the carrier of S. Observe that Freeg(X) is non empty.
One can prove the following three propositions:

(7) Let S be a non void signature and X be a non-empty many sorted set
indexed by the carrier of S. Then z is an element of Free(X) if and only
if x is a term of S over X.

(8) Let S be anon void signature, X be a non-empty many sorted set indexed
by the carrier of S, s be a sort symbol of S, and = be a term of .S over X.
Then x € (the sorts of Free(X))(s) if and only if the sort of z = s.

(9) Let S be a non void signature and X be a non empty yielding many
sorted set indexed by the carrier of S. Then every element of Freeg(X) is
a term of S over X U ((the carrier of S) —— {0}).

Let S be a non empty non void many sorted signature and let X be a non
empty yielding many sorted set indexed by the carrier of S. Note that every
element of Freeg(X) is relation-like and function-like.

Let S be a non empty non void many sorted signature and let X be a non
empty yielding many sorted set indexed by the carrier of S. Note that every
element of Freeg(X) is finite and decorated tree-like.

Let S be a non empty non void many sorted signature and let X be a non
empty yielding many sorted set indexed by the carrier of S. Observe that every
element of Freeg(X) is finite-branching.

One can check that every decorated tree is non empty.

Let S be a many sorted signature and let ¢ be a non empty binary relation.
The functor Vargt yields a many sorted set indexed by the carrier of S and is
defined as follows:

(Def. 3) For every set s such that s € the carrier of S holds (Varst)(s) = {a1;a



YET ANOTHER CONSTRUCTION OF FREE ALGEBRA 781

ranges over elements of rngt : ag = s}.

Let S be a many sorted signature, let X be a many sorted set indexed by
the carrier of S, and let ¢ be a non empty binary relation. The functor Varx ¢
yielding a many sorted subset indexed by X is defined by:

(Def. 4) Varyt= X N Vargt.
We now state several propositions:

(10) Let S be a many sorted signature, X be a many sorted set indexed by
the carrier of S, t be a non empty binary relation, and V' be a many sorted
subset indexed by X. Then V = Varx t if and only if for every set s such
that s € the carrier of S holds V(s) = X (s) N {a1;a ranges over elements
of gt : ag = s}.

(11) Let S be a many sorted signature and s, = be sets. Then

(i) if s € the carrier of S, then (Varg (the root tree of (z, s)))(s) = {=},
and

(i) for every set s’ such that s’ # s or s ¢ the carrier of S holds (Varg (the
root tree of {(z, s)))(s') = 0.

(12) Let S be a many sorted signature and s be a set. Suppose s € the carrier
of S. Let p be a decorated tree yielding finite sequence. Then x € (Varg((z,
the carrier of S)-tree(p)))(s) if and only if there exists a decorated tree ¢
such that ¢ € rngp and = € (Vargt)(s).

(13) Let S be a many sorted signature, X be a many sorted set indexed by
the carrier of S, and s, z be sets. Then

(i) if z € X(s), then (Varx (the root tree of {(z, s)))(s) = {z}, and
(ii) for every set s’ such that s’ # s or z ¢ X (s) holds (Vary (the root tree
of (z, 5)))(s') = 0.

(14) Let S be a many sorted signature, X be a many sorted set indexed by
the carrier of S, and s be a set. Suppose s € the carrier of S. Let p be
a decorated tree yielding finite sequence. Then x € (Varx({z, the carrier
of S)-tree(p)))(s) if and only if there exists a decorated tree ¢ such that
t € rngp and = € (Varx t)(s).

(15) Let S be a non void signature, X be a non-empty many sorted set indexed
by the carrier of S, and ¢ be a term of S over X. Then Vargt C X.

Let S be a non void signature, let X be a non-empty many sorted set indexed
by the carrier of S, and let ¢ be a term of S over X. The functor Var; yielding
a many sorted subset indexed by X is defined by:
(Def. 5)  Var; = Vargt.
The following proposition is true

(16) Let S be anon void signature, X be a non-empty many sorted set indexed
by the carrier of S, and t be a term of S over X. Then Var; = Varx t.
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Let S be a non void signature, let Y be a non-empty many sorted set indexed
by the carrier of S, and let X be a many sorted set indexed by the carrier of S.
The functor S-TermsY (X) yielding a subset of Free(Y) is defined as follows:

(Def. 6)  For every sort symbol s of S holds (S-Terms? (X))(s) = {t;t ranges over
terms of S over Y: the sort of t =s A Var, C X}.

One can prove the following propositions:

(17) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, X be a many sorted set indexed by the carrier of S,
and s be a sort symbol of S. If z € (S-TermsY (X))(s), then z is a term
of S over Y.

(18) Let S be anon void signature, Y be a non-empty many sorted set indexed
by the carrier of S, X be a many sorted set indexed by the carrier of .S, ¢ be
a term of S over Y, and s be a sort symbol of S. If t € (S-Terms” (X))(s),
then the sort of t = s and Var; C X.

(19) Let S be anon void signature, Y be a non-empty many sorted set indexed
by the carrier of .S, X be a many sorted set indexed by the carrier of S, and
s be a sort symbol of S. Then the root tree of (z, s) € (S-Terms (X))(s)
if and only if x € X (s) and x € Y (s).

(20) Let S be anon void signature, Y be a non-empty many sorted set indexed
by the carrier of S, X be a many sorted set indexed by the carrier of S, o
be an operation symbol of S, and p be an argument sequence of Sym(o,Y).
Then Sym(o, Y)-tree(p) € (S-TermsY (X))(the result sort of o) if and only
if rngp C |J(S-Terms" (X)).

(21) Let S be a non void signature, X be a non-empty many sorted set
indexed by the carrier of S, and A be a subset of Free(X). Then A is
operations closed if and only if for every operation symbol o of S and
for every argument sequence p of Sym(o, X) such that rngp C [J A holds
Sym(o, X )-tree(p) € A(the result sort of o).

(22) Let S be anon void signature, Y be a non-empty many sorted set indexed
by the carrier of S, and X be a many sorted set indexed by the carrier of
S. Then S-Terms” (X) is operations closed.

(23) Let S be a non void signature, Y be a non-empty many sorted set indexed
by the carrier of S, and X be a many sorted set indexed by the carrier of
S. Then (Reverse(Y)) 1 (X) C S-Terms" (X).

(24) Let S be a non void signature, X be a many sorted set indexed by the
carrier of S, t be a term of S over X U ((the carrier of S) — {0}), and
s be a sort symbol of S. If ¢ € (S -Terms™V((the carrier of $)—{0}) (X)) (5),
then ¢ € (the sorts of Freeg(X))(s).

(25) Let S be a non void signature and X be a many sorted set
indexed by the carrier of S. Then the sorts of Freeg(X) =
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S _TermSXU((the carrier of S)——{0}) (X) )

(26) Let S be a non void signature and X be a many sorted set in-
dexed by the carrier of S. Then Free(X U ((the carrier of S) —
{0})) [(S _TermSXu((the carrier of S)}—>{O})(X)) — FreeS(X).

(27) Let S be a non void signature, X, Y be non-empty many sorted sets
indexed by the carrier of S, A be a subalgebra of Free(X), and B be a
subalgebra of Free(Y). Suppose the sorts of A = the sorts of B. Then the
algebra of A = the algebra of B.

(28) Let S be a non void signature, X be a non empty yielding many sorted
set indexed by the carrier of S, Y be a many sorted set indexed by the
carrier of S, and ¢ be an element of Freeg(X). Then Vargt C X.

(29) Let S be a non void signature, X be a non-empty many sorted set indexed
by the carrier of S, and ¢t be a term of S over X. Then Var; C X.

(30) Let S be a non void signature, X, Y be non-empty many sorted sets
indexed by the carrier of S, t; be a term of S over X, and ¢3 be a term of
S over Y. If t; = t9, then the sort of t; = the sort of 5.

(31) Let S be a non void signature, X, Y be non-empty many sorted sets
indexed by the carrier of S, and t be a term of S over Y. If Var; C X,
then t is a term of S over X.

(32) Let S be a non void signature and X be a non-empty many sorted set
indexed by the carrier of S. Then Freeg(X) = Free(X).

(33) Let S be anon void signature, Y be a non-empty many sorted set indexed
by the carrier of S, ¢t be a term of S over Y, and p be an element of dom t.
Then Vary, C Var;.

(34) Let S be a non void signature, X be a non empty yielding many sorted
set indexed by the carrier of S, t be an element of Freeg(X), and p be an
element of dom¢. Then ¢[p is an element of Freeg(X).

(35) Let S be anon void signature, X be a non-empty many sorted set indexed
by the carrier of S, t be a term of S over X, and a be an element of rngt.
Then a = (a1, az).

(36) Let S be a non void signature, X be a non empty yielding many sorted
set indexed by the carrier of S, ¢ be an element of Freeg(X), and s be a
sort symbol of S. Then

(i) ifx € (Vargt)(s), then (x, s) € rngt, and
(i) if (z, s) € rngt, then z € (Vargt)(s) and = € X(s).

(37) Let S be a non void signature and X be a many sorted set indexed by the
carrier of S. Suppose that for every sort symbol s of S such that X (s) = ()
there exists an operation symbol o of S such that the result sort of 0o = s
and Arity(o) = (). Then Freeg(X) is non-empty.

(38) Let S be a non void signature, A be an algebra over S, B be a subalgebra
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of A, and o be an operation symbol of S. Then Args(o, B) C Args(o, A).

(39) For every non void signature S and for every feasible algebra A over S
holds every subalgebra of A is feasible.

The following proposition is true

(40) Let S be a non void signature and X be a many sorted set indexed by
the carrier of S. Then Freeg(X) is feasible and free.
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