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More on the Finite Sequences on the Plane!
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Summary. We continue proving lemmas needed for the proof of the Jordan
curve theorem. The main goal was to prove the last theorem being a mutation
of the first theorem in [13].

MML Identifier: TOPREALS.

The articles [16], [7], [2], [4], [19], [6], [18], [5], [12], [15], [14], [9], [1], [3], [21],
[22], [11], [10], [20], [17], and [8] provide the terminology and notation for this

paper.

1. PRELIMINARIES

The following proposition is true
(1) For all sets A, x, y such that A C {x,y} and x € A and y ¢ A holds
A= {z}.

Let us note that there exists a function which is trivial.

2. FINITE SEQUENCES

We adopt the following convention: G denotes a Go-board and i, j, k, m, n

denote natural numbers.
Let us note that there exists a finite sequence which is non constant.

Next we state a number of propositions:

!This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

@ 2001 University of Bialystok
843 ISSN 1426-2630



844 ANDRZEJ TRYBULEC

(2) For every non trivial finite sequence f holds 1 < len f.

(3) For every non trivial set D and for every non constant circular finite
sequence f of elements of D holds len f > 2.

(4) For every finite sequence f and for every set = holds = € rng f or = <P
f=0.

(5) Let p be aset, D be a non empty set, f be a non empty finite sequence of
elements of D, and g be a finite sequence of elements of D. If p <P f = len f,
then f ~g —>p=g.

(6) For every non empty set D and for every non empty one-to-one finite
sequence f of elements of D holds fien p <P f = len f.

(7) For all finite sequences f, g holds len f <len(f ~ g).

(8) For all finite sequences f, g and for every set x such that 2 € rng f holds
xP f=x P (f ~g).

(9) For every non empty finite sequence f and for every finite sequence g
holds len g < len(f ~ g).

(10) For all finite sequences f, g holds rng f C rng(f ~ g).

(11) Let D be a non empty set, f be a non empty finite sequence of elements
of D, and g be a non trivial finite sequence of elements of D. If gien 4 = f1,
then f ~ g is circular.

(12) Let D be a non empty set, M be a matrix over D, f be a finite sequence
of elements of D, and g be a non empty finite sequence of elements of D.
Suppose fien f = g1 and f is a sequence which elements belong to M and
g is a sequence which elements belong to M. Then f ~ g is a sequence
which elements belong to M.

(13) For every set D and for every finite sequence f of elements of D such
that 1 < k holds (f(k+1),..., f(len f)) = fix.

(14) For every set D and for every finite sequence f of elements of D such
that k£ <len f holds (f(1),..., f(k)) = flk.

(15) Let p be a set, D be a non empty set, f be a non empty finite sequence of
elements of D, and g be a finite sequence of elements of D. If p <P f = len f,
then f ~g«—p={(f(1),...,f(len f —"1)).

(16) Let D be a non empty set and f, g be non empty finite sequences of
elements of D. If g1 <P f =len f, then (f ~~g):—g1 = g.

(17) Let D be a non empty set and f, g be non empty finite sequences of
elements of D. If g1 <P f =len f, then (f ~~g) —:g1 = f.

(18) Let D be a non trivial set, f be a non empty finite sequence of elements
of D, and g be a non trivial finite sequence of elements of D. Suppose
g1 = fiens and for every ¢ such that 1 < 7 and i < len f holds f; # g1.
Then (f = )5 =g~ .
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3. ON THE PLANE

We now state several propositions:

(19) For every non trivial finite sequence f of elements of EZ holds L(f,1) =
L(f12).

(20) For every s.c.c. finite sequence f of elements of 5% and for every n such
that n <len f holds f[n is s.n.c..

(21) For every s.c.c. finite sequence f of elements of £2 and for every n such
that 1 < n holds f|, is s.n.c..

(22) Let f be a circular s.c.c. finite sequence of elements of 5% and given n.
If n <len f and len f > 4, then f[n is one-to-one.

(23) Let f be a circular s.c.c. finite sequence of elements of 8%. Suppose
len f > 4. Let 4, j be natural numbers. If 1 < ¢ and ¢ < j and j < len f,
then fz 7& fj'

(24) Let f be a circular s.c.c. finite sequence of elements of £% and given n.
If 1 <n and len f > 4, then f,, is one-to-one.

(25) For every special non empty finite sequence f of elements of £2 holds
(f(m),..., f(n)) is special.
(26) Let f be a special non empty finite sequence of elements of £2 and g be
a special non trivial finite sequence of elements of é’%. If fienf = g1, then
f ~~ g is special.
(27)  For every circular unfolded s.c.c. finite sequence f of elements of £2 such
that len f > 4 holds £(f,1) N L(fj1) = {f1, fo}-
Let us note that there exists a finite sequence of elements of 5% which is
one-to-one, special, unfolded, s.n.c., and non empty.
We now state several propositions:

(28) For all finite sequences f, g of elements of €2 such that j < len f holds
L(f ~g,7) = L(].])-

(29) For all non empty finite sequences f, g of elements of £2 such that 1 < j
and j 4+ 1 < leng holds L(f ~ g,len f + j) = L(g,j + 1).

(30) Let f be a non empty finite sequence of elements of €% and g be a
non trivial finite sequence of elements of 6’%. If fiens = g1, then L(f ~—
g,len f) = L(g,1).

(31) Let f be a non empty finite sequence of elements of 5% and g be a non
trivial finite sequence of elements of 2. If j + 1 < leng and fien f = g1,
then L(f ~~g,lenf+j)=L(g,7+1).

(32) Let f be a non empty s.n.c. unfolded finite sequence of elements of £2
and given i. If 1 < i and @ < len f, then L(f,i) Nrng f = {fi, fi+1}
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(33) Let f, g be non trivial s.n.c. one-to-one unfolded finite sequences of

elements of 5%. If Z(f) N Z(g) ={fi,01} and fi = Gieng and g1 = fien f,
then f ~ g is s.c.c..

In the sequel f, g are finite sequences of elements of 5%.
The following propositions are true:

(34) If f is unfolded and g is unfolded and fiens = g1 and L(f,len f —"1)N
L£(9,1) = {fien s}, then f ~~ g is unfolded.

(35) If f is non empty and g is non trivial and fien f = g1, then E(f ~g) =
L(f)UL(g)-
(36) Suppose that
(i)  for every m such that n € dom f there exist ¢, j such that (i, j) € the
indices of G and f,, = G o (i,7),
(ii)  f is non constant, circular, unfolded, s.c.c., and special, and
(iii) lenf > 4.
Then there exists g such that
g is a sequence which elements belong to GG, unfolded, s.c.c., and special,

)
) L(f) = L(g),
(Vl) fl =Jg1,
) flenf = Jleng, and
) lenf <leng.
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