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Summary. In the paper, we investigate the duality of categories of com-
plete lattices and maps preserving suprema or infima according to [12, p. 179-183;
1.1-1.12]. The duality is based on the concept of the Galois connection.
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The papers [20], [8], [19], [21], [9], [16], [1], [23], [17], [25], [24], [18], [11], [14],
[27], [22], [13], [3], [10], [4], [15], [7], [6], [2], [26], and [5] provide the terminology
and notation for this paper.

1. INFS-PRESERVING AND SUPS-PRESERVING MAPS

Let S, T be complete lattices. One can check that there exists a connection
between S and T which is Galois.
Next we state the proposition
(1) Let S, T, S’ T' be non empty relational structures. Suppose that
(i)  the relational structure of S = the relational structure of S’, and
(ii)  the relational structure of T' = the relational structure of 7".
Let ¢ be a connection between S and T and ¢’ be a connection between S’
and T". If ¢ = ¢/, then if ¢ is Galois, then ¢’ is Galois.
Let S, T be lattices and let g be a map from S into T'. Let us assume that
S is complete and T is complete and g is infs-preserving. The lower adjoint of g
is a map from 7" into S and is defined as follows:

(Def. 1) (g, the lower adjoint of g) is Galois.
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Let S, T be lattices and let d be a map from 7" into S. Let us assume that
S is complete and T is complete and d is sups-preserving. The upper adjoint of
d is a map from S into T" and is defined as follows:

(Def. 2) (the upper adjoint of d, d) is Galois.
Let S, T be complete lattices and let g be an infs-preserving map from S
into T'. One can verify that the lower adjoint of g is lower adjoint.
Let S, T' be complete lattices and let d be a sups-preserving map from T’
into S. One can check that the upper adjoint of d is upper adjoint.
The following two propositions are true:
(2) Let S, T be complete lattices, g be an infs-preserving map from S into 7T,
and ¢ be an element of 7. Then (the lower adjoint of g)(t) = inf(g~(1t)).

(3) Let S, T be complete lattices, d be a sups-preserving map from 7" into S,
and s be an element of S. Then (the upper adjoint of d)(s) = sup(d~—!(]s)).

Let S, T be relational structures and let f be a function from the carrier
of S into the carrier of T'. The functor f°P yielding a map from S°P into T°P is
defined as follows:

(Def. 3) foP = f.

Let S, T be complete lattices and let g be an infs-preserving map from S
into T'. One can verify that ¢g°P is lower adjoint.

Let S, T' be complete lattices and let d be a sups-preserving map from S
into T'. Observe that d°P is upper adjoint.

We now state several propositions:

(4) Let S, T be complete lattices and g be an infs-preserving map from S
into T'. Then the lower adjoint of g = the upper adjoint of g°P.

(5) Let S, T be complete lattices and d be a sups-preserving map from S
into T'. Then the lower adjoint of d°P? = the upper adjoint of d.

(6) For every non empty relational structure L holds (idy, idz) is Galois.

(7) For every complete lattice L holds the lower adjoint of id; = id; and
the upper adjoint of idy, = idy,.

(8) Let Ly, Lo, L3 be complete lattices, g1 be an infs-preserving map from
L1 into Ls, and go be an infs-preserving map from Lo into Ls. Then the
lower adjoint of gs - g1 = (the lower adjoint of g;) - (the lower adjoint of
92)-

(9) Let Ly, Lo, Ls be complete lattices, di be a sups-preserving map from
L1 into Lo, and do be a sups-preserving map from Lo into Ls. Then the
upper adjoint of ds - d; = (the upper adjoint of d;) - (the upper adjoint of
da).

(10) Let S, T be complete lattices and g be an infs-preserving map from S
into 7". Then the upper adjoint of the lower adjoint of g = g.
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(11) Let S, T be complete lattices and d be a sups-preserving map from S
into T'. Then the lower adjoint of the upper adjoint of d = d.
(12) Let C be a non empty category structure and a, b, f be sets. Suppose
f € (the arrows of C)(a, b). Then there exist objects o1, 02 of C such that
o1 =a and o9 = b and f € (01,092) and f is a morphism from o; to 0s.
Let W be a non empty set. Let us assume that there exists an element w
of W such that w is non empty. The functor INFy yields a lattice-wise strict
category and is defined by the conditions (Def. 4).
(Def. 4)(i)  For every lattice x holds = is an object of INFyy iff x is strict and
complete and the carrier of x € W, and
(ii)  for all objects a, b of INFy and for every monotone map f from L,
into Ly holds f € (a,b) iff f is infs-preserving.
Let W be a non empty set. Let us assume that there exists an element w
of W such that w is non empty. The functor SUPyy yields a lattice-wise strict
category and is defined by the conditions (Def. 5).

(Def. 5)(i)  For every lattice = holds x is an object of SUPy iff z is strict and
complete and the carrier of x € W, and
(ii)  for all objects a, b of SUPw and for every monotone map f from L,
into Ly holds f € (a,b) iff f is sups-preserving.
Let W be a set with a non-empty element. Observe that INF'y has complete
lattices and SUPyw has complete lattices.
One can prove the following propositions:

(13) Let W be a set with a non-empty element and L be a lattice. Then L is
an object of INF'y, if and only if L is strict and complete and the carrier
of Le W.

(14) Let W be a set with a non-empty element, a, b be objects of INFy, and
f be aset. Then f € (a,b) if and only if f is an infs-preserving map from
L, into L.

(15) Let W be a set with a non-empty element and L be a lattice. Then L is
an object of SUPyy if and only if L is strict and complete and the carrier
of LeW.

(16) Let W be a set with a non-empty element, a, b be objects of SUPyy, and
f be a set. Then f € (a,b) if and only if f is a sups-preserving map from
L, into L.

(17) For every set W with a non-empty element holds the carrier of INFy =
the carrier of SUPyy.

Let W be a set with a non-empty element. The functor LowerAdjy, yields
a contravariant strict functor from INFy to SUPyw and is defined by the con-
ditions (Def. 6).
(Def. 6)(i)  For every object a of INFy holds LowerAdjy, (a) = L, and
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(ii)  for all objects a, b of INF'yy such that (a,b) # 0 and for every morphism
f from @ to b holds LowerAdjyy, (f) = the lower adjoint of @ f.
The functor UpperAdjy, yields a contravariant strict functor from SUPyw to
INFy and is defined by the conditions (Def. 7).
(Def. 7)(i)  For every object a of SUPy holds UpperAdjy, (a) = L,, and
(ii)  for all objects a, b of SUPyw such that (a,b) # () and for every morphism
f from a to b holds UpperAdjy, (f) = the upper adjoint of © f.
Let W be a set with a non-empty element. Observe that LowerAdjy, is
bijective and UpperAdjy, is bijective.
We now state several propositions:
(18) For every set W with a non-empty element holds (LowerAdjy, )=t =
UpperAdjy, and (UpperAdjy, ) ~! = LowerAdjy, .
(19) For every set W with a non-empty element holds LowerAdjy;, - UpperAdjy,
= idgyp,, and UpperAdjy, - LowerAdjy, = idnr,, -
(20) For every set W with a non-empty element holds INFy,, SUPy are
anti-isomorphic.
(21) For every set W with a non-empty element holds INFy, and SUPy are
anti-isomorphic under LowerAdjy; .
(22) For every set W with a non-empty element holds SUPy and INFyy are
anti-isomorphic under UpperAdjy;.

2. ScoTT CONTINUOUS MAPS AND CONTINUOUS LATTICES

Next we state the proposition

(23) Let S, T be complete lattices and g be an infs-preserving map from S
into T. Then g is directed-sups-preserving if and only if for every Scott
topological augmentation X of T" and for every Scott topological augmen-
tation Y of S and for every open subset V' of X holds T((the lower adjoint
of g)°V') is an open subset of Y.

Let S, T' be non empty reflexive relational structures and let f be a map
from S into T'. We say that f is waybelow-preserving if and only if:
(Def. 8) For all elements x, y of S such that z < y holds f(z) < f(y).
We now state two propositions:

(24) Let S, T be complete lattices and g be an infs-preserving map from S
into T'. Suppose g is directed-sups-preserving. Then the lower adjoint of ¢
is waybelow-preserving.

(25) Let S be a complete lattice, T' be a complete continuous lattice, and g
be an infs-preserving map from .S into 7". Suppose the lower adjoint of g
is waybelow-preserving. Then g is directed-sups-preserving.
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Let S, T be topological spaces and let f be a map from S into 7. We say
that f is relatively open if and only if:

(Def. 9) For every open subset V' of S holds f°V is an open subset of T'[ rng f.
One can prove the following propositions:

(26) Let X, Y be non empty topological spaces and d be a map from X into
Y. Then d is relatively open if and only if d° is open.

(27) Let S, T be complete lattices, g be an infs-preserving map from S into
T, X be a Scott topological augmentation of 7', Y be a Scott topological
augmentation of S, and V' be an open subset of X. Then (the lower adjoint
of g)°V = rng (the lower adjoint of g) N T((the lower adjoint of ¢)°V).

(28) Let S, T be complete lattices, g be an infs-preserving map from S into 7',
X be a Scott topological augmentation of T, and Y be a Scott topological
augmentation of S. Suppose that for every open subset V' of X holds 1((the
lower adjoint of ¢)°V') is an open subset of Y. Let d be a map from X into
Y. If d = the lower adjoint of g, then d is relatively open.

Let X, Y be complete lattices and let f be a sups-preserving map from X
into Y. One can check that Im f is complete.
Next we state four propositions:

(29) Let S, T be complete lattices, g be an infs-preserving map from S into
T, X be a Scott topological augmentation of T', Y be a Scott topological
augmentation of S, Z be a Scott topological augmentation of Im (the lower
adjoint of g), d be a map from X into Y, and d’ be a map from X into
Z. Suppose d = the lower adjoint of g and d’ = d. If d is relatively open,
then d’ is open.

(30) Let Ty, Ty, Si1, S2 be topological structures. Suppose that
(i)  the topological structure of T7 = the topological structure of T, and
(ii)  the topological structure of S; = the topological structure of Ss.
If S is a subspace of 11, then S5 is a subspace of T5.

(31) For every topological structure 7" holds T'[Q27 = the topological structure
of T.

(32) Let S, T be complete lattices and ¢ be an infs-preserving map from S into
T. Suppose g is one-to-one. Let X be a Scott topological augmentation of
T,Y be a Scott topological augmentation of S, and d be a map from X into
Y. Suppose d = the lower adjoint of g. Then g is directed-sups-preserving
if and only if d is open.

Let X be a complete lattice and let f be a projection map from X into X.
One can verify that Im f is complete.
We now state a number of propositions:
(33) Let L be a complete lattice and k be a kernel map from L into L. Then
(i)  k° is infs-preserving,
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(ii) ko is sups-preserving,
(iii)  the lower adjoint of k° = ko, and
(iv)  the upper adjoint of ko = k°.
(34) Let L be a complete lattice and k be a kernel map from L into L. Then
k is directed-sups-preserving if and only if k° is directed-sups-preserving.

(35) Let L be a complete lattice and k be a kernel map from L into L.
Then k is directed-sups-preserving if and only if for every Scott topological
augmentation X of Im k and for every Scott topological augmentation Y
of L and for every subset V of L such that V is an open subset of X holds
TV is an open subset of Y.

(36) Let L be a complete lattice, S be a sups-inheriting non empty full rela-
tional substructure of L, x, y be elements of L, and a, b be elements of S.
If a =2 and b =y, then if x < y, then a < b.

(37) Let L be a complete lattice and k be a kernel map from L into L.
Suppose k is directed-sups-preserving. Let x, y be elements of L and a, b
be elements of Imk. If a = x and b = y, then * < y iff a < b.

(38) Let L be a complete lattice and k be a kernel map from L into L. Suppose
that
(i) Imk is continuous, and

(ii) for all elements x, y of L and for all elements a, b of Imk such that
a=2zand b=y holds z < y iff a < b.

Then k is directed-sups-preserving.

(39) Let L be a complete lattice and ¢ be a closure map from L into L. Then
(i

)
(i)
i)
)

c® is sups-preserving,

Co is infs-preserving,

jay

ii)  the upper adjoint of ¢® = ¢,, and

(i
(iv
(40) Let L be a complete lattice and ¢ be a closure map from L into L. Then

the lower adjoint of ¢, = ¢°.

Im ¢ is directed-sups-inheriting if and only if ¢, is directed-sups-preserving.

(41) Let L be a complete lattice and ¢ be a closure map from L into L. Then
Im ¢ is directed-sups-inheriting if and only if for every Scott topological
augmentation X of Imc and for every Scott topological augmentation Y
of L and for every map f from Y into X such that f = ¢ holds f is open.

(42) Let L be a complete lattice and ¢ be a closure map from L into L. If
Im c is directed-sups-inheriting, then ¢° is waybelow-preserving.

(43) Let L be a continuous complete lattice and ¢ be a closure map from L
into L. If ¢° is waybelow-preserving, then Im c is directed-sups-inheriting.
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3. DUALITY OF SUBCATEGORIES OF INF AND SUP

Let W be a non empty set. The functor INF@,V yielding a strict non empty
subcategory of INF'yy is defined by the conditions (Def. 10).

(Def. 10)(i) Every object of INFyy is an object of INFI/V, and
(ii)  for all objects a, b of INFy and for all objects a’, b’ of INF},, such
that @’ = a and b’ = b and (a,b) # () and for every morphism f from a to
b holds f € (a/, V') iff @f is directed-sups-preserving.
Let W be a set with a non-empty element. The functor S UP?/V yields a strict
non empty subcategory of SUPy and is defined by the conditions (Def. 11).

(Def. 11)(1)  Every object of SUPy is an object of SUPY,, and
(ii)  for all objects a, b of SUPy and for all objects a’, ' of SUPY, such
that ' = a and ¥ = b and (a, b) # ) and for every morphism f from a to
b holds f € (a/, V) iff the upper adjoint of ©f is directed-sups-preserving.
The following propositions are true:

(44) Let S be a non empty relational structure, 7' be a non empty reflexive
antisymmetric relational structure, ¢t be an element of 7', and X be a non
empty subset of S. Then S —— t preserves sup of X and S — t preserves
inf of X.

(45) Let S be a non empty relational structure and 7" be a lower-bounded
non empty reflexive antisymmetric relational structure. Then S +—— 17 is
sups-preserving.

(46) Let S be a non empty relational structure and 7" be an upper-bounded
non empty reflexive antisymmetric relational structure. Then S +—— T is
infs-preserving.

Let S be a non empty relational structure and let T be an upper-bounded
non empty reflexive antisymmetric relational structure. Observe that S —— T
is directed-sups-preserving and infs-preserving.

Let S be a non empty relational structure and let T" be a lower-bounded non
empty reflexive antisymmetric relational structure. Observe that S —— L7 is
filtered-infs-preserving and sups-preserving.

Let S be a non empty relational structure and let 7" be an upper-bounded
non empty reflexive antisymmetric relational structure. Note that there exists
a map from S into T which is directed-sups-preserving and infs-preserving.

Let S be a non empty relational structure and let T" be a lower-bounded non
empty reflexive antisymmetric relational structure. One can check that there
exists a map from S into T which is filtered-infs-preserving and sups-preserving.

Next we state several propositions:
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(47) Let W be a set with a non-empty element and L be a lattice. Then L is
an object of INF IT,V if and only if L is strict and complete and the carrier
of Le W.

(48) Let W be a set with a non-empty element, a, b be objects of INFLV, and
f be a set. Then f € (a,b) if and only if f is a directed-sups-preserving
infs-preserving map from L, into L.

(49) Let W be a set with a non-empty element and L be a lattice. Then L is
an object of S UP?/V if and only if L is strict and complete and the carrier
of LeW.

(50) Let W be a set with a non-empty element, a, b be objects of SUP?,V, and
f be a set. Then f € (a,b) if and only if there exists a sups-preserving
map g from L, into L, such that ¢ = f and the upper adjoint of ¢ is
directed-sups-preserving.

(51) For every set W with a non-empty element holds INF;V =
Intersect(INFy,, UPSy).

Let W be a set with a non-empty element. The functor CLy yielding a strict
full non empty subcategory of INFIT/V is defined as follows:

(Def. 12) For every object a of INF l/v holds a is an object of CLyy iff L, is conti-
nuous.
Let W be a set with a non-empty element. Observe that CLy, has complete
lattices.
One can prove the following two propositions:

(52) Let W be a set with a non-empty element and L be a lattice. Suppose
the carrier of L € W. Then L is an object of CLyy if and only if L is strict,
complete, and continuous.

(53) Let W be a set with a non-empty element, a, b be objects of CLy, and
f be a set. Then f € (a,b) if and only if f is an infs-preserving directed-
sups-preserving map from IL, into L.

Let W be a set with a non-empty element. The functor C’L?,[I; yields a strict
full non empty subcategory of S UP?/V and is defined by:
(Def. 13) For every object a of S UP?,V holds a is an object of CL%‘} iff L, is conti-
nuous.
Next we state several propositions:

(54) Let W be a set with a non-empty element and L be a lattice. Suppose
the carrier of L € W. Then L is an object of CL?,E if and only if L is strict,
complete, and continuous.

(55) Let W be a set with a non-empty element, a, b be objects of CL}, and
f be a set. Then f € (a,b) if and only if there exists a sups-preserving
map g from L, into L, such that ¢ = f and the upper adjoint of g is
directed-sups-preserving.
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(56) For every set W with a non-empty element holds INF I/V and SUPY;, are
anti-isomorphic under LowerAdjy;.

(57) For every set W with a non-empty element holds S UP?,V and INF LV are
anti-isomorphic under UpperAdjy;.

(58) For every set W with a non-empty element holds CLy and CLy} are
anti-isomorphic under LowerAdjy; .

(59) For every set W with a non-empty element holds C’L?,[I,) and CLy are
anti-isomorphic under UpperAdjy;,.

4. COMPACT PRESERVING MAPS AND SUP-SEMILATTICES MORPHISMS

Let S, T be non empty reflexive relational structures and let f be a map
from S into T'. We say that f is compact-preserving if and only if:

(Def. 14) For every element s of S such that s is compact holds f(s) is compact.

One can prove the following propositions:

(60) Let S, T be complete lattices and d be a sups-preserving map from T’
into S. If d is waybelow-preserving, then d is compact-preserving.

(61) Let S, T be complete lattices and d be a sups-preserving map from 7T’
into S. Suppose T is algebraic and d is compact-preserving. Then d is
waybelow-preserving.

(62) Let R, S, T be non empty relational structures, X be a subset of R, f be
a map from R into S, and g be a map from S into 1. Suppose f preserves
sup of X and g preserves sup of f°X. Then g - f preserves sup of X.

Let S, T be non empty relational structures and let f be a map from S into
T. We say that f is finite-sups-preserving if and only if:

(Def. 15) For every finite subset X of S holds f preserves sup of X.
We say that f is bottom-preserving if and only if:
(Def. 16)  f preserves sup of 0g.

Next we state the proposition

(63) Let R, S, T be non empty relational structures, f be a map from R into
S, and g be a map from S into T'. Suppose f is finite-sups-preserving and
g is finite-sups-preserving. Then g - f is finite-sups-preserving.

Let S, T be non empty antisymmetric lower-bounded relational structures
and let f be a map from S into T'. Let us observe that f is bottom-preserving
if and only if:

(Def. 17)  f(Lls) = L.

Let L be a non empty relational structure and let S be a relational substruc-

ture of L. We say that S is finite-sups-inheriting if and only if:
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(Def. 18) For every finite subset X of S such that sup X exists in L holds | |, X €

the carrier of S.

We say that S is bottom-inheriting if and only if:

(Def. 19) L1 € the carrier of S.

Let S, T be non empty relational structures. Observe that every map from
S into T which is sups-preserving is also bottom-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure.
Note that every relational substructure of L which is finite-sups-inheriting is
also bottom-inheriting and join-inheriting.

Let L be a non empty relational structure. One can check that every rela-
tional substructure of L which is sups-inheriting is also finite-sups-inheriting.

Let S, T be lower-bounded non empty posets. One can verify that there
exists a map from S into 7' which is sups-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure.
Observe that every full relational substructure of L which is bottom-inheriting
is also non empty and lower-bounded.

Let L be a lower-bounded antisymmetric non empty relational structure.
Note that there exists a relational substructure of L which is non empty, sups-
inheriting, finite-sups-inheriting, bottom-inheriting, and full.

Next we state the proposition

(64) Let L be a lower-bounded antisymmetric non empty relational structure
and S be a non empty bottom-inheriting full relational substructure of L.
Then 1g= 17 .

Let L be a lower-bounded non empty poset with l.u.b.’s. Note that every
full relational substructure of L which is bottom-inheriting and join-inheriting
is also finite-sups-inheriting.

Next we state two propositions:

(65) Let S, T be non empty relational structures and f be a map from S
into T'. Suppose f is finite-sups-preserving. Then f is join-preserving and
bottom-preserving.

(66) Let S, T be lower-bounded posets with L.u.b.’s and f be a map from
S into T'. Suppose f is join-preserving and bottom-preserving. Then f is
finite-sups-preserving.

Let S, T be non empty relational structures. One can check that every map
from S into T which is sups-preserving is also finite-sups-preserving and every
map from S into T" which is finite-sups-preserving is also join-preserving and
bottom-preserving.

Let S be a non empty relational structure and let T" be a lower-bounded non
empty reflexive antisymmetric relational structure. Observe that there exists a
map from S into T" which is sups-preserving and finite-sups-preserving.
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Let L be a lower-bounded non empty poset. One can check that
CompactSublatt(L) is lower-bounded.
One can prove the following propositions:

(67) Let S be a relational structure, 7' be a non empty relational structure,
f be a map from S into T, S’ be a relational substructure of S, and T” be
a relational substructure of 7. Suppose f°(the carrier of S’) C the carrier
of T”. Then f[the carrier of S’ is a map from S’ into 1.

(68) Let S, T be lattices, f be a join-preserving map from S into T, S’ be
a non empty join-inheriting full relational substructure of S, 7" be a non
empty join-inheriting full relational substructure of 7', and g be a map
from S’ into T". If g = f|the carrier of S’, then g is join-preserving.

(69) Let S, T be lower-bounded lattices, f be a finite-sups-preserving map
from S into T, S’ be a non empty finite-sups-inheriting full relational
substructure of S, T” be a non empty finite-sups-inheriting full relational
substructure of T, and g be a map from S’ into T”. If g = f|the carrier of
S’, then g is finite-sups-preserving.

Let L be a complete lattice. One can verify that CompactSublatt(L) is finite-
sups-inheriting.
Next we state two propositions:

(70) Let S, T be complete lattices and d be a sups-preserving map
from T into S. Then d is compact-preserving if and only if dfthe
carrier of CompactSublatt(7) is a finite-sups-preserving map from
CompactSublatt(7) into CompactSublatt(.S).

(71) Let S, T be complete lattices. Suppose T is algebraic. Let g be an infs-
preserving map from S into 7. Then g is directed-sups-preserving if and
only if (the lower adjoint of ¢) [the carrier of CompactSublatt(T) is a finite-
sups-preserving map from CompactSublatt(7") into CompactSublatt(S).
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