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Summary. In the paper we show useful facts concerning reverse and inc-
lusion functors and the restriction of functors. We also introduce a new notation
for the intersection of categories and the isomorphism under arbitrary functors.
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The notation and terminology used in this paper have been introduced in the

following articles: [11], [12], [15], [13], [7], [2], [3], [4], [9], [14], [5], [10], [16], [17],

[8], [1], and [6].

1. Reverse Functors

The following propositions are true:

(1) Let A, B be transitive non empty category structures with units and

F be a feasible reflexive functor structure from A to B. Suppose F is

coreflexive and bijective. Let a be an object of A and b be an object of B.

Then F (a) = b if and only if F−1(b) = a.

(2) Let A, B be transitive non empty category structures with units, F

be a precovariant feasible functor structure from A to B, and G be a

precovariant feasible functor structure from B to A. Suppose F is bijective

and G = F−1. Let a1, a2 be objects of A. Suppose 〈a1, a2〉 6= ∅. Let f be a

morphism from a1 to a2 and g be a morphism from F (a1) to F (a2). Then

F (f) = g if and only if G(g) = f.

(3) Let A, B be transitive non empty category structures with units, F

be a precontravariant feasible functor structure from A to B, and G be
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746 grzegorz bancerek

a precontravariant feasible functor structure from B to A. Suppose F is

bijective and G = F−1. Let a1, a2 be objects of A. Suppose 〈a1, a2〉 6= ∅.

Let f be a morphism from a1 to a2 and g be a morphism from F (a2) to

F (a1). Then F (f) = g if and only if G(g) = f.

(4) Let A, B be categories and F be a functor from A to B. Suppose F is

bijective. Let G be a functor from B to A. If F ·G = idB, then the functor

structure of G = F−1.

(5) Let A, B be categories and F be a functor from A to B. Suppose F is

bijective. Let G be a functor from B to A. If G ·F = idA, then the functor

structure of G = F−1.

(6) Let A, B be categories and F be a covariant functor from A to B.

Suppose F is bijective. Let G be a covariant functor from B to A. Suppose

that

(i) for every object b of B holds F (G(b)) = b, and

(ii) for all objects a, b of B such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds F (G(f)) = f.

Then the functor structure of G = F−1.

(7) Let A, B be categories and F be a contravariant functor from A to B.

Suppose F is bijective. Let G be a contravariant functor from B to A.

Suppose that

(i) for every object b of B holds F (G(b)) = b, and

(ii) for all objects a, b of B such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds F (G(f)) = f.

Then the functor structure of G = F−1.

(8) Let A, B be categories and F be a covariant functor from A to B.

Suppose F is bijective. Let G be a covariant functor from B to A. Suppose

that

(i) for every object a of A holds G(F (a)) = a, and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds G(F (f)) = f.

Then the functor structure of G = F−1.

(9) Let A, B be categories and F be a contravariant functor from A to B.

Suppose F is bijective. Let G be a contravariant functor from B to A.

Suppose that

(i) for every object a of A holds G(F (a)) = a, and

(ii) for all objects a, b of A such that 〈a, b〉 6= ∅ and for every morphism f

from a to b holds G(F (f)) = f.

Then the functor structure of G = F−1.
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2. Intersection of Categories

Let A, B be category structures. We say that A and B have the same

composition if and only if:

(Def. 1) For all sets a1, a2, a3 holds (the composition of A)(〈〈a1, a2, a3〉〉) ≈ (the

composition of B)(〈〈a1, a2, a3〉〉).

Let us note that the predicate A and B have the same composition is symmetric.

Next we state three propositions:

(10) Let A, B be category structures. Then A and B have the same com-

position if and only if for all sets a1, a2, a3, x such that x ∈ dom (the

composition of A)(〈〈a1, a2, a3〉〉) and x ∈ dom (the composition of B)(〈〈a1,

a2, a3〉〉) holds (the composition of A)(〈〈a1, a2, a3〉〉)(x) = (the composition

of B)(〈〈a1, a2, a3〉〉)(x).

(11) Let A, B be transitive non empty category structures. Then A and B

have the same composition if and only if for all objects a1, a2, a3 of A such

that 〈a1, a2〉 6= ∅ and 〈a2, a3〉 6= ∅ and for all objects b1, b2, b3 of B such

that 〈b1, b2〉 6= ∅ and 〈b2, b3〉 6= ∅ and b1 = a1 and b2 = a2 and b3 = a3 and

for every morphism f1 from a1 to a2 and for every morphism g1 from b1

to b2 such that g1 = f1 and for every morphism f2 from a2 to a3 and for

every morphism g2 from b2 to b3 such that g2 = f2 holds f2 · f1 = g2 · g1.

(12) For all para-functional semi-functional categories A, B holds A and B

have the same composition.

Let f , g be functions. The functor Intersect(f, g) yielding a function is defi-

ned as follows:

(Def. 2) dom Intersect(f, g) = dom f ∩ dom g and for every set x such that x ∈

dom f ∩ dom g holds (Intersect(f, g))(x) = f(x) ∩ g(x).

Let us notice that the functor Intersect(f, g) is commutative.

One can prove the following propositions:

(13) For every set I and for all many sorted sets A, B indexed by I holds

Intersect(A,B) = A ∩B.

(14) Let I, J be sets, A be a many sorted set indexed by I, and B be a many

sorted set indexed by J . Then Intersect(A,B) is a many sorted set indexed

by I ∩ J.

(15) Let I, J be sets, A be a many sorted set indexed by I, B be a function,

and C be a many sorted set indexed by J . If C = Intersect(A,B), then

C ⊆̇ A.

(16) Let A1, A2, B1, B2 be sets, f be a function from A1 into A2, and g be a

function from B1 into B2. If f ≈ g, then f ∩ g is a function from A1 ∩B1

into A2 ∩B2.
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(17) Let I1, I2 be sets, A1, B1 be many sorted sets indexed by I1, A2, B2 be

many sorted sets indexed by I2, and A, B be many sorted sets indexed

by I1 ∩ I2. Suppose A = Intersect(A1, A2) and B = Intersect(B1, B2).

Let F be a many sorted function from A1 into B1 and G be a many

sorted function from A2 into B2. Suppose that for every set x such that

x ∈ domF and x ∈ domG holds F (x) ≈ G(x). Then Intersect(F, G) is a

many sorted function from A into B.

(18) Let I, J be sets, F be a many sorted set indexed by [: I, I :], and G

be a many sorted set indexed by [:J, J :]. Then there exists a many sor-

ted set H indexed by [: I ∩ J, I ∩ J :] such that H = Intersect(F, G) and

Intersect({|F |}, {|G|}) = {|H|}.

(19) Let I, J be sets, F1, F2 be many sorted sets indexed by [: I, I :], and G1,

G2 be many sorted sets indexed by [:J, J :]. Then there exist many sorted

sets H1, H2 indexed by [: I∩J, I∩J :] such that H1 = Intersect(F1, G1) and

H2 = Intersect(F2, G2) and Intersect({|F1, F2|}, {|G1, G2|}) = {|H1,H2|}.

Let A, B be category structures. Let us assume that A and B have the same

composition. The functor Intersect(A,B) yields a strict category structure and

is defined by the conditions (Def. 3).

(Def. 3)(i) The carrier of Intersect(A, B) = (the carrier of A) ∩ (the carrier of

B),

(ii) the arrows of Intersect(A,B) = Intersect(the arrows of A, the arrows

of B), and

(iii) the composition of Intersect(A,B) = Intersect(the composition of A,

the composition of B).

The following propositions are true:

(20) For all category structures A, B such that A and B have the same

composition holds Intersect(A,B) = Intersect(B, A).

(21) Let A, B be category structures. Suppose A and B have the same com-

position. Then Intersect(A,B) is a substructure of A.

(22) Let A, B be category structures. Suppose A and B have the same com-

position. Let a1, a2 be objects of A, b1, b2 be objects of B, and o1, o2 be

objects of Intersect(A,B). If o1 = a1 and o1 = b1 and o2 = a2 and o2 = b2,

then 〈o1, o2〉 = (〈a1, a2〉) ∩ (〈b1, b2〉).

(23) Let A, B be transitive category structures. If A and B have the same

composition, then Intersect(A,B) is transitive.

(24) Let A, B be category structures. Suppose A and B have the same com-

position. Let a1, a2 be objects of A, b1, b2 be objects of B, and o1, o2 be

objects of Intersect(A,B). Suppose o1 = a1 and o1 = b1 and o2 = a2 and

o2 = b2 and 〈a1, a2〉 6= ∅ and 〈b1, b2〉 6= ∅. Let f be a morphism from a1 to

a2 and g be a morphism from b1 to b2. If f = g, then f ∈ 〈o1, o2〉.
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(25) Let A, B be non empty category structures with units. Suppose A and

B have the same composition. Let a be an object of A, b be an object of

B, and o be an object of Intersect(A,B). If o = a and o = b and ida = idb,

then ida ∈ 〈o, o〉.

(26) Let A, B be categories. Suppose that

(i) A and B have the same composition,

(ii) Intersect(A,B) is non empty, and

(iii) for every object a of A and for every object b of B such that a = b

holds ida = idb .

Then Intersect(A,B) is a subcategory of A.

3. Subcategories

The scheme SubcategoryUniq deals with a category A, non empty subcate-

gories B, C of A, a unary predicate P, and a ternary predicate Q, and states

that:

The category structure of B = the category structure of C

provided the following requirements are met:

• For every object a of A holds a is an object of B iff P[a],

• Let a, b be objects of A and a′, b′ be objects of B. Suppose a′ = a

and b′ = b and 〈a, b〉 6= ∅. Let f be a morphism from a to b. Then

f ∈ 〈a′, b′〉 if and only if Q[a, b, f ],

• For every object a of A holds a is an object of C iff P[a], and

• Let a, b be objects of A and a′, b′ be objects of C. Suppose a′ = a

and b′ = b and 〈a, b〉 6= ∅. Let f be a morphism from a to b. Then

f ∈ 〈a′, b′〉 if and only if Q[a, b, f ].

The following proposition is true

(27) Let A be a non empty category structure andB be a non empty substruc-

ture of A. Then B is full if and only if for all objects a1, a2 of A and for all

objects b1, b2 of B such that b1 = a1 and b2 = a2 holds 〈b1, b2〉 = 〈a1, a2〉.

Now we present two schemes. The scheme FullSubcategoryEx deals with a

category A and a unary predicate P, and states that:

There exists a strict full non empty subcategory B of A such that

for every object a of A holds a is an object of B if and only if

P[a]

provided the parameters satisfy the following condition:

• There exists an object a of A such that P[a].

The scheme FullSubcategoryUniq deals with a category A, full non empty

subcategories B, C of A, and a unary predicate P, and states that:

The category structure of B = the category structure of C
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provided the parameters meet the following conditions:

• For every object a of A holds a is an object of B iff P[a], and

• For every object a of A holds a is an object of C iff P[a].

4. Inclusion Functors and Functor Restrictions

Let f be a function yielding function and let x, y be sets. Observe that f(x,

y) is relation-like and function-like.

One can prove the following proposition

(28) Let A be a category, C be a non empty subcategory of A, and a, b be

objects of C. If 〈a, b〉 6= ∅, then for every morphism f from a to b holds

( C

→֒
)(f) = f.

Let A be a category and let C be a non empty subcategory of A. Note that
C

→֒
is id-preserving and comp-preserving.

Let A be a category and let C be a non empty subcategory of A. One can

verify that C

→֒
is precovariant.

Let A be a category and let C be a non empty subcategory of A. Then C

→֒

is a strict covariant functor from C to A.

Let A, B be categories, let C be a non empty subcategory of A, and let F

be a covariant functor from A to B. Then F ↾C is a strict covariant functor from

C to B.

Let A, B be categories, let C be a non empty subcategory of A, and let F be

a contravariant functor from A to B. Then F ↾C is a strict contravariant functor

from C to B.

Next we state several propositions:

(29) Let A, B be categories, C be a non empty subcategory of A, F be a

functor structure from A to B, a be an object of A, and c be an object of

C. If c = a, then (F ↾C)(c) = F (a).

(30) Let A, B be categories, C be a non empty subcategory of A, F be a

covariant functor from A to B, a, b be objects of A, and c, d be objects of

C. Suppose c = a and d = b and 〈c, d〉 6= ∅. Let f be a morphism from a

to b and g be a morphism from c to d. If g = f, then (F ↾C)(g) = F (f).

(31) Let A, B be categories, C be a non empty subcategory of A, F be a

contravariant functor from A to B, a, b be objects of A, and c, d be objects

of C. Suppose c = a and d = b and 〈c, d〉 6= ∅. Let f be a morphism from

a to b and g be a morphism from c to d. If g = f, then (F ↾C)(g) = F (f).

(32) Let A, B be non empty graphs and F be a bimap structure from A into

B. Suppose F is precovariant and one-to-one. Let a, b be objects of A. If

F (a) = F (b), then a = b.
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(33) Let A, B be non empty reflexive graphs and F be a feasible precovariant

functor structure from A to B. Suppose F is faithful. Let a, b be objects of

A. Suppose 〈a, b〉 6= ∅. Let f , g be morphisms from a to b. If F (f) = F (g),

then f = g.

(34) Let A, B be non empty graphs and F be a precovariant functor structure

from A to B. Suppose F is surjective. Let a, b be objects of B. Suppose

〈a, b〉 6= ∅. Let f be a morphism from a to b. Then there exist objects c, d

of A and there exists a morphism g from c to d such that a = F (c) and

b = F (d) and 〈c, d〉 6= ∅ and f = F (g).

(35) Let A, B be non empty graphs and F be a bimap structure from A into

B. Suppose F is precontravariant and one-to-one. Let a, b be objects of

A. If F (a) = F (b), then a = b.

(36) Let A, B be non empty reflexive graphs and F be a feasible precontra-

variant functor structure from A to B. Suppose F is faithful. Let a, b be

objects of A. Suppose 〈a, b〉 6= ∅. Let f , g be morphisms from a to b. If

F (f) = F (g), then f = g.

(37) Let A, B be non empty graphs and F be a precontravariant functor

structure from A to B. Suppose F is surjective. Let a, b be objects of B.

Suppose 〈a, b〉 6= ∅. Let f be a morphism from a to b. Then there exist

objects c, d of A and there exists a morphism g from c to d such that

b = F (c) and a = F (d) and 〈c, d〉 6= ∅ and f = F (g).

5. Isomorphisms under Arbitrary Functor

Let A, B be categories, let F be a functor structure from A to B, and let

A′, B′ be categories. We say that A′ and B′ are isomorphic under F if and only

if the conditions (Def. 4) are satisfied.

(Def. 4)(i) A′ is a subcategory of A,

(ii) B′ is a subcategory of B, and

(iii) there exists a covariant functor G from A′ to B′ such that G is bijective

and for every object a′ of A′ and for every object a of A such that a′ = a

holds G(a′) = F (a) and for all objects b′, c′ of A′ and for all objects b, c

of A such that 〈b′, c′〉 6= ∅ and b′ = b and c′ = c and for every morphism f ′

from b′ to c′ and for every morphism f from b to c such that f ′ = f holds

G(f ′) = (Morph-MapF (b, c))(f).

We say that A′ and B′ are anti-isomorphic under F if and only if the conditions

(Def. 5) are satisfied.

(Def. 5)(i) A′ is a subcategory of A,

(ii) B′ is a subcategory of B, and
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(iii) there exists a contravariant functor G from A′ to B′ such that G is

bijective and for every object a′ of A′ and for every object a of A such

that a′ = a holds G(a′) = F (a) and for all objects b′, c′ of A′ and for all

objects b, c of A such that 〈b′, c′〉 6= ∅ and b′ = b and c′ = c and for every

morphism f ′ from b′ to c′ and for every morphism f from b to c such that

f ′ = f holds G(f ′) = (Morph-MapF (b, c))(f).

We now state several propositions:

(38) Let A, B, A1, B1 be categories and F be a functor structure from A to

B. If A1 and B1 are isomorphic under F , then A1 and B1 are isomorphic.

(39) Let A, B, A1, B1 be categories and F be a functor structure from A

to B. Suppose A1 and B1 are anti-isomorphic under F . Then A1, B1 are

anti-isomorphic.

(40) Let A, B be categories and F be a covariant functor from A to B. If A

and B are isomorphic under F , then F is bijective.

(41) Let A, B be categories and F be a contravariant functor from A to B.

If A and B are anti-isomorphic under F , then F is bijective.

(42) Let A, B be categories and F be a covariant functor from A to B. If F

is bijective, then A and B are isomorphic under F .

(43) Let A, B be categories and F be a contravariant functor from A to B.

If F is bijective, then A and B are anti-isomorphic under F .

Now we present two schemes. The scheme CoBijectRestriction deals with

non empty categories A, B, a covariant functor C from A to B, a non empty

subcategory D of A, and a non empty subcategory E of B, and states that:

D and E are isomorphic under C

provided the parameters satisfy the following conditions:

• C is bijective,

• For every object a of A holds a is an object of D iff C(a) is an

object of E , and

• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let a1, b1 be objects

of D. Suppose a1 = a and b1 = b. Let a2, b2 be objects of E .

Suppose a2 = C(a) and b2 = C(b). Let f be a morphism from a to

b. Then f ∈ 〈a1, b1〉 if and only if C(f) ∈ 〈a2, b2〉.

The scheme ContraBijectRestriction deals with non empty categories A, B,

a contravariant functor C from A to B, a non empty subcategory D of A, and a

non empty subcategory E of B, and states that:

D and E are anti-isomorphic under C

provided the parameters meet the following conditions:

• C is bijective,

• For every object a of A holds a is an object of D iff C(a) is an

object of E , and
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• Let a, b be objects of A. Suppose 〈a, b〉 6= ∅. Let a1, b1 be objects

of D. Suppose a1 = a and b1 = b. Let a2, b2 be objects of E .

Suppose a2 = C(a) and b2 = C(b). Let f be a morphism from a to

b. Then f ∈ 〈a1, b1〉 if and only if C(f) ∈ 〈b2, a2〉.

The following propositions are true:

(44) For every category A and for every non empty subcategory B of A holds

B and B are isomorphic under idA.

(45) For all functions f , g such that f ⊆ g holds xf ⊆xg.

(46) For all functions f , g such that dom f is a binary relation andxf ⊆xg

holds f ⊆ g.

(47) Let I, J be sets, A be a many sorted set indexed by [: I, I :], and B be a

many sorted set indexed by [:J, J :]. If A ⊆̇ B, then xA ⊆̇xB.

(48) Let A be a transitive non empty category structure and B be a transitive

non empty substructure of A. Then Bop is a substructure of Aop.

(49) For every category A and for every non empty subcategory B of A holds

Bop is a subcategory of Aop.

(50) Let A be a category and B be a non empty subcategory of A. Then B

and Bop are anti-isomorphic under the dualizing functor from A into Aop.

(51) Let A1, A2 be categories and F be a covariant functor from A1 to A2.

Suppose F is bijective. Let B1 be a non empty subcategory of A1 and B2

be a non empty subcategory of A2. Suppose B1 and B2 are isomorphic

under F . Then B2 and B1 are isomorphic under F−1.

(52) Let A1, A2 be categories and F be a contravariant functor from A1 to A2.

Suppose F is bijective. Let B1 be a non empty subcategory of A1 and B2

be a non empty subcategory of A2. Suppose B1 and B2 are anti-isomorphic

under F . Then B2 and B1 are anti-isomorphic under F−1.

(53) Let A1, A2, A3 be categories, F be a covariant functor from A1 to A2,

G be a covariant functor from A2 to A3, B1 be a non empty subcategory

of A1, B2 be a non empty subcategory of A2, and B3 be a non empty

subcategory of A3. Suppose B1 and B2 are isomorphic under F and B2

and B3 are isomorphic under G. Then B1 and B3 are isomorphic under

G · F.

(54) Let A1, A2, A3 be categories, F be a contravariant functor from A1 to A2,

G be a covariant functor from A2 to A3, B1 be a non empty subcategory

of A1, B2 be a non empty subcategory of A2, and B3 be a non empty

subcategory of A3. Suppose B1 and B2 are anti-isomorphic under F and

B2 and B3 are isomorphic under G. Then B1 and B3 are anti-isomorphic

under G · F.

(55) Let A1, A2, A3 be categories, F be a covariant functor from A1 to A2, G

be a contravariant functor from A2 to A3, B1 be a non empty subcategory



754 grzegorz bancerek

of A1, B2 be a non empty subcategory of A2, and B3 be a non empty

subcategory of A3. Suppose B1 and B2 are isomorphic under F and B2

and B3 are anti-isomorphic under G. Then B1 and B3 are anti-isomorphic

under G · F.

(56) Let A1, A2, A3 be categories, F be a contravariant functor from A1

to A2, G be a contravariant functor from A2 to A3, B1 be a non empty

subcategory of A1, B2 be a non empty subcategory of A2, and B3 be a

non empty subcategory of A3. Suppose B1 and B2 are anti-isomorphic

under F and B2 and B3 are anti-isomorphic under G. Then B1 and B3

are isomorphic under G · F.
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