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Summary. In this paper we introduce technical notions used by a system
which automatically generates Mizar documentation for specified circuits. They
provide a ready for use elements needed to justify correctness of circuits’ con-
struction. We concentrate on the concept of stabilization and analyze one-gate
circuits and their combinations.
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The articles [21], [26], [20], [11], [10], [27], [7], [12], [2], [3], [8], [1], [9], [14], [4],
[6], [22], [25], [23], [5], [17], [16], [15], [18], [19], [13], and [24] provide the notation
and terminology for this paper.

1. Stabilizing Circuits

The following proposition is true

(1) Let S be a non void circuit-like non empty many sorted signature,
A be a non-empty circuit of S, s be a state of A, and x be a
set. If x ∈ InputVertices(S), then for every natural number n holds
(Following(s, n))(x) = s(x).

Let S be a non void circuit-like non empty many sorted signature, let A be
a non-empty circuit of S, and let s be a state of A. We say that s is stabilizing
if and only if:

1This paper was written when the first author visited Shinshu University as a two-year
JSPS Fellow.

2The paper was prepared during the author’s cooperative research at Shinshu University
’Verification of circuit designs with the aid of the Mizar system’.
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(Def. 1) There exists a natural number n such that Following(s, n) is stable.

Let S be a non void circuit-like non empty many sorted signature and let A

be a non-empty circuit of S. We say that A is stabilizing if and only if:

(Def. 2) Every state of A is stabilizing.

We say that A has a stabilization limit if and only if:

(Def. 3) There exists a natural number n such that for every state s of A holds
Following(s, n) is stable.

Let S be a non void circuit-like non empty many sorted signature. Note that
every non-empty circuit of S which has a stabilization limit is also stabilizing.

Let S be a non void circuit-like non empty many sorted signature, let A be
a non-empty circuit of S, and let s be a state of A. Let us assume that s is
stabilizing. The functor Result(s) yields a state of A and is defined as follows:

(Def. 4) Result(s) is stable and there exists a natural number n such that
Result(s) = Following(s, n).

Let S be a non void circuit-like non empty many sorted signature, let A be
a non-empty circuit of S, and let s be a state of A. Let us assume that s is
stabilizing. The stabilization time of s is a natural number and is defined by the
conditions (Def. 5).

(Def. 5)(i) Following(s, the stabilization time of s) is stable, and
(ii) for every natural number n such that n < the stabilization time of s

holds Following(s, n) is not stable.

The following propositions are true:

(2) Let S be a non void circuit-like non empty many sorted signature, A be
a non-empty circuit of S, and s be a state of A. If s is stabilizing, then
Result(s) = Following(s, the stabilization time of s).

(3) Let S be a non void circuit-like non empty many sorted signature, A be
a non-empty circuit of S, s be a state of A, and n be a natural number. If
Following(s, n) is stable, then the stabilization time of s ¬ n.

(4) Let S be a non void circuit-like non empty many sorted signature, A be
a non-empty circuit of S, s be a state of A, and n be a natural number. If
Following(s, n) is stable, then Result(s) = Following(s, n).

(5) Let S be a non void circuit-like non empty many sorted signature, A

be a non-empty circuit of S, s be a state of A, and n be a natural num-
ber. Suppose s is stabilizing and n  the stabilization time of s. Then
Result(s) = Following(s, n).

(6) Let S be a non void circuit-like non empty many sorted signature, A be
a non-empty circuit of S, and s be a state of A. If s is stabilizing, then for
every set x such that x ∈ InputVertices(S) holds (Result(s))(x) = s(x).

(7) Let S1, S be non void circuit-like non empty many sorted signatures, A1

be a non-empty circuit of S1, A be a non-empty circuit of S, s be a state
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of A, and s1 be a state of A1. If s1 = s¹the carrier of S1, then for every
vertex v1 of S1 holds s1(v1) = s(v1).

(8) Let S1, S2 be non void circuit-like non empty many sorted
signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and
InputVertices(S2) misses InnerVertices(S1). Let S be a non void circuit-
like non empty many sorted signature. Suppose S = S1+·S2. Let A1 be
a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose
A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let
s be a state of A, s1 be a state of A1, and s2 be a state of A2. Suppose
s1 = s¹the carrier of S1 and s2 = s¹the carrier of S2 and s1 is stabilizing
and s2 is stabilizing. Then s is stabilizing.

(9) Let S1, S2 be non void circuit-like non empty many sorted
signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and
InputVertices(S2) misses InnerVertices(S1). Let S be a non void circuit-
like non empty many sorted signature. Suppose S = S1+·S2. Let A1 be
a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose
A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s¹the carrier of S1

and s1 is stabilizing. Let s2 be a state of A2. Suppose s2 = s¹the carrier
of S2 and s2 is stabilizing. Then the stabilization time of s = max(the
stabilization time of s1, the stabilization time of s2).

(10) Let S1, S2 be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) misses InnerVertices(S2). Let S be a non void
circuit-like non empty many sorted signature. Suppose S = S1+·S2. Let A1

be a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose
A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s¹the carrier of S1

and s1 is stabilizing. Let s2 be a state of A2. Suppose s2 = Following(s, the
stabilization time of s1)¹the carrier of S2 and s2 is stabilizing. Then s is
stabilizing.

(11) Let S1, S2 be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) misses InnerVertices(S2). Let S be a non void
circuit-like non empty many sorted signature. Suppose S = S1+·S2. Let A1

be a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose
A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s¹the carrier of S1

and s1 is stabilizing. Let s2 be a state of A2. Suppose s2 = Following(s, the
stabilization time of s1)¹the carrier of S2 and s2 is stabilizing. Then the
stabilization time of s = (the stabilization time of s1) + (the stabilization
time of s2).

(12) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
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Suppose InputVertices(S1) misses InnerVertices(S2) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A be
a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let s be a
state of A and s1 be a state of A1. Suppose s1 = s¹the carrier of S1 and s1

is stabilizing. Let s2 be a state of A2. Suppose s2 = Following(s, the stabili-
zation time of s1)¹the carrier of S2 and s2 is stabilizing. Then Result(s)¹the
carrier of S1 = Result(s1).

2. One-gate Circuits

We now state three propositions:

(13) Let x be a set, X be a non empty finite set, n be a natural number, p

be a finite sequence with length n, g be a function from Xn into X, and
s be a state of 1GateCircuit(p, g). Then s · p is an element of Xn.

(14) For all sets x1, x2, x3, x4 holds rng〈x1, x2, x3, x4〉 = {x1, x2, x3, x4}.
(15) For all sets x1, x2, x3, x4, x5 holds rng〈x1, x2, x3, x4, x5〉 =
{x1, x2, x3, x4, x5}.

Let x1, x2, x3, x4 be sets. Then 〈x1, x2, x3, x4〉 is a finite sequence with length
4. Let x5 be a set. Then 〈x1, x2, x3, x4, x5〉 is a finite sequence with length 5.

Let S be a many sorted signature. We say that S is one-gate if and only if
the condition (Def. 6) is satisfied.

(Def. 6) There exists a non empty finite set X and there exists a natural number
n and there exists a finite sequence p with length n and there exists a
function f from Xn into X such that S = 1GateCircStr(p, f).

Let S be a non empty many sorted signature and let A be an algebra over
S. We say that A is one-gate if and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists a non empty finite set X and there exists a natural number
n and there exists a finite sequence p with length n and there exists a
function f from Xn into X such that S = 1GateCircStr(p, f) and A =
1GateCircuit(p, f).

Let p be a finite sequence and let x be a set. Observe that 1GateCircStr(p, x)
is finite.

Let us note that every many sorted signature which is one-gate is also strict,
non void, non empty, unsplit, and finite and has arity held in gates.

One can check that every non empty many sorted signature which is one-gate
has also denotation held in gates.

Let X be a non empty finite set, let n be a natural number, let p be a finite
sequence with length n, and let f be a function from Xn into X. Note that
1GateCircStr(p, f) is one-gate.

One can check that there exists a many sorted signature which is one-gate.
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Let S be an one-gate many sorted signature. Observe that every circuit of
S which is one-gate is also strict and non-empty.

Let X be a non empty finite set, let n be a natural number, let p be a finite
sequence with length n, and let f be a function from Xn into X. One can check
that 1GateCircuit(p, f) is one-gate.

Let S be an one-gate many sorted signature. Observe that there exists a
circuit of S which is one-gate and non-empty.

Let S be an one-gate many sorted signature. The functor Output S yields a
vertex of S and is defined as follows:

(Def. 8) Output S =
⋃

(the operation symbols of S).

Let S be an one-gate many sorted signature. Observe that Output S is pair.
Next we state several propositions:

(16) Let S be an one-gate many sorted signature, p be a finite sequence, and
x be a set. If S = 1GateCircStr(p, x), then Output S = 〈〈p, x〉〉.

(17) For every one-gate many sorted signature S holds InnerVertices(S) =
{Output S}.

(18) Let S be an one-gate many sorted signature, A be an one-gate cir-
cuit of S, n be a natural number, X be a finite non empty set, f be a
function from Xn into X, and p be a finite sequence with length n. If
A = 1GateCircuit(p, f), then S = 1GateCircStr(p, f).

(19) Let n be a natural number, X be a finite non empty set, f be a function
from Xn into X, p be a finite sequence with length n, and s be a state
of 1GateCircuit(p, f). Then (Following(s))(Output 1GateCircStr(p, f)) =
f(s · p).

(20) Let S be an one-gate many sorted signature, A be an one-gate circuit of
S, and s be a state of A. Then Following(s) is stable.

Let S be a non void circuit-like non empty many sorted signature. Observe
that every non-empty circuit of S which is one-gate has also a stabilization limit.

We now state two propositions:

(21) Let S be an one-gate many sorted signature, A be an one-gate circuit of
S, and s be a state of A. Then Result(s) = Following(s).

(22) Let S be an one-gate many sorted signature, A be an one-gate circuit of
S, and s be a state of A. Then the stabilization time of s ¬ 1.

In this article we present several logical schemes. The scheme OneGate1Ex
deals with a set A, a non empty finite set B, and a unary functor F yielding an
element of B, and states that:

There exists an one-gate many sorted signature S and there exists
an one-gate circuit A of S such that InputVertices(S) = {A} and
for every state s of A holds (Result(s))(Output S) = F(s(A))

for all values of the parameters.
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The scheme OneGate2Ex deals with sets A, B, a non empty finite set C, and
a binary functor F yielding an element of C, and states that:

There exists an one-gate many sorted signature S and there exi-
sts an one-gate circuit A of S such that InputVertices(S) = {A,B}
and for every state s of A holds (Result(s))(Output S) = F(s(A), s(B))

for all values of the parameters.
The scheme OneGate3Ex deals with sets A, B, C, a non empty finite set D,

and a ternary functor F yielding an element of D, and states that:
There exists an one-gate many sorted signature S and there exists
an one-gate circuit A of S such that InputVertices(S) = {A,B, C}
and for every state s of A holds (Result(s))(Output S)

= F(s(A), s(B), s(C))
for all values of the parameters.

The scheme OneGate4Ex deals with sets A, B, C, D, a non empty finite set
E , and a 4-ary functor F yielding an element of E , and states that:

There exists an one-gate many sorted signature S and there exists
an one-gate circuit A of S such that InputVertices(S) = {A,B, C,D}
and for every state s of A holds (Result(s))(Output S)

= F(s(A), s(B), s(C), s(D))
for all values of the parameters.

The scheme OneGate5Ex deals with sets A, B, C, D, E , a non empty finite
set F , and a 5-ary functor F yielding an element of F , and states that:

There exists an one-gate many sorted signature S and there exists
an one-gate circuit A of S such that InputVertices(S) = {A,B, C,D, E}
and for every state s of A holds (Result(s))(Output S)

= F(s(A), s(B), s(C), s(D), s(E))
for all values of the parameters.

3. Mono-sorted Circuits

One can prove the following propositions:

(23) For every constant function f holds f = dom f 7−→ the value of f .

(24) For all non empty sets X, Y and for all natural numbers n, m such that
n 6= 0 and Xn = Y m holds X = Y and n = m.

(25) For all non empty many sorted signatures S1, S2 holds every vertex of
S1 is a vertex of S1+·S2.

(26) For all non empty many sorted signatures S1, S2 holds every vertex of
S2 is a vertex of S1+·S2.

Let X be a non empty finite set. A non void non empty unsplit many sorted
signature with arity held in gates with denotation held in gates is said to be a
signature over X if it satisfies the condition (Def. 9).
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(Def. 9) There exists a circuit A of it such that the sorts of A are constant and
the value of the sorts of A = X and A has denotation held in gates.

Next we state the proposition

(27) Let n be a natural number, X be a non empty finite set, f be a func-
tion from Xn into X, and p be a finite sequence with length n. Then
1GateCircStr(p, f) is a signature over X.

Let X be a non empty finite set. Observe that there exists a signature over
X which is strict and one-gate.

Let n be a natural number, let X be a non empty finite set, let f be a
function from Xn into X, and let p be a finite sequence with length n. Then
1GateCircStr(p, f) is a strict signature over X.

Let X be a non empty finite set and let S be a signature over X. A circuit
of S is called a circuit over X and S if:

(Def. 10) It has denotation held in gates and the sorts of it are constant and the
value of the sorts of it = X.

Let X be a non empty finite set and let S be a signature over X. One can
check that every circuit over X and S is non-empty and has denotation held in
gates.

Next we state the proposition

(28) Let n be a natural number, X be a non empty finite set, f be a func-
tion from Xn into X, and p be a finite sequence with length n. Then
1GateCircuit(p, f) is a circuit over X and 1GateCircStr(p, f).

Let X be a non empty finite set and let S be an one-gate signature over
X. One can check that there exists a circuit over X and S which is strict and
one-gate.

Let X be a non empty finite set and let S be a signature over X. One can
check that there exists a circuit over X and S which is strict.

Let n be a natural number, let X be a non empty finite set, let f be a
function from Xn into X, and let p be a finite sequence with length n. Then
1GateCircuit(p, f) is a strict circuit over X and 1GateCircStr(p, f).

One can prove the following propositions:

(29) For every non empty finite set X and for all signatures S1, S2 over X

holds S1 ≈ S2.

(30) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a
circuit over X and S1, and A2 be a circuit over X and S2. Then A1 ≈ A2.

(31) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a
circuit over X and S1, and A2 be a circuit over X and S2. Then A1+·A2

is a circuit of S1+·S2.

(32) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a
circuit over X and S1, and A2 be a circuit over X and S2. Then A1+·A2
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has denotation held in gates.

(33) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a
circuit over X and S1, and A2 be a circuit over X and S2. Then the sorts
of A1+·A2 are constant and the value of the sorts of A1+·A2 = X.

Let S1, S2 be finite non empty many sorted signatures. Note that S1+·S2 is
finite.

Let X be a non empty finite set and let S1, S2 be signatures over X. One
can verify that S1+·S2 has denotation held in gates.

Let X be a non empty finite set and let S1, S2 be signatures over X. Then
S1+·S2 is a strict signature over X.

Let X be a non empty finite set, let S1, S2 be signatures over X, let A1 be
a circuit over X and S1, and let A2 be a circuit over X and S2. Then A1+·A2

is a strict circuit over X and S1+·S2.

One can prove the following two propositions:

(34) For all sets x, y holds rk(x) ∈ rk(〈〈x, y〉〉) and rk(y) ∈ rk(〈〈x, y〉〉).
(35) Let S be a finite non void non empty unsplit many sorted signature

with arity held in gates with denotation held in gates and A be a non-
empty circuit of S such that A has denotation held in gates. Then A has
a stabilization limit.

Let X be a non empty finite set and let S be a finite signature over X. One
can verify that every circuit over X and S has a stabilization limit.

Now we present three schemes. The scheme 1AryDef deals with a non empty
set A and a unary functor F yielding an element of A, and states that:

(i) There exists a function f from A1 into A such that for
every element x of A holds f(〈x〉) = F(x), and
(ii) for all functions f1, f2 from A1 into A such that for every
element x of A holds f1(〈x〉) = F(x) and for every element x of
A holds f2(〈x〉) = F(x) holds f1 = f2

for all values of the parameters.
The scheme 2AryDef deals with a non empty set A and a binary functor F

yielding an element of A, and states that:
(i) There exists a function f from A2 into A such that for all

elements x, y of A holds f(〈x, y〉) = F(x, y), and
(ii) for all functions f1, f2 from A2 into A such that for all
elements x, y of A holds f1(〈x, y〉) = F(x, y) and for all elements
x, y of A holds f2(〈x, y〉) = F(x, y) holds f1 = f2

for all values of the parameters.
The scheme 3AryDef deals with a non empty set A and a ternary functor F

yielding an element of A, and states that:
(i) There exists a function f from A3 into A such that for all

elements x, y, z of A holds f(〈x, y, z〉) = F(x, y, z), and



preliminaries to automatic generation . . . 125

(ii) for all functions f1, f2 from A3 into A such that for all
elements x, y, z of A holds f1(〈x, y, z〉) = F(x, y, z) and for all
elements x, y, z of A holds f2(〈x, y, z〉) = F(x, y, z) holds f1 = f2

for all values of the parameters.
We now state three propositions:

(36) For every function f and for every set x such that x ∈ dom f holds
f · 〈x〉 = 〈f(x)〉.

(37) Let f be a function and x1, x2, x3, x4 be sets. If x1 ∈ dom f and x2 ∈
dom f and x3 ∈ dom f and x4 ∈ dom f, then f · 〈x1, x2, x3, x4〉 = 〈f(x1),
f(x2), f(x3), f(x4)〉.

(38) Let f be a function and x1, x2, x3, x4, x5 be sets. Suppose x1 ∈ dom f

and x2 ∈ dom f and x3 ∈ dom f and x4 ∈ dom f and x5 ∈ dom f. Then
f · 〈x1, x2, x3, x4, x5〉 = 〈f(x1), f(x2), f(x3), f(x4), f(x5)〉.

Now we present several schemes. The scheme OneGate1Result deals with a
set A, a non empty finite set B, a unary functor F yielding an element of B,

and a function C from B1 into B, and states that:
For every state s of 1GateCircuit(〈A〉, C) and for every element a1

of B such that a1 = s(A) holds (Result(s))(Output 1GateCircStr(〈A〉, C)) =
F(a1)

provided the following requirement is met:
• For every function g from B1 into B holds g = C iff for every

element a1 of B holds g(〈a1〉) = F(a1).
The scheme OneGate2Result deals with sets A, B, a non empty finite set C,

a binary functor F yielding an element of C, and a function D from C2 into C,
and states that:

For every state s of 1GateCircuit(〈A,B〉,D) and for all ele-
ments a1, a2 of C such that a1 = s(A) and a2 = s(B) holds
(Result(s))(Output 1GateCircStr(〈A,B〉,D)) = F(a1, a2)

provided the parameters satisfy the following condition:
• For every function g from C2 into C holds g = D iff for all elements

a1, a2 of C holds g(〈a1, a2〉) = F(a1, a2).
The scheme OneGate3Result deals with sets A, B, C, a non empty finite set

D, a ternary functor F yielding an element of D, and a function E from D3 into
D, and states that:

Let s be a state of 1GateCircuit(〈A,B, C〉, E) and a1, a2, a3 be
elements of D. If a1 = s(A) and a2 = s(B) and a3 = s(C), then
(Result(s))(Output 1GateCircStr(〈A,B, C〉, E)) = F(a1, a2, a3)

provided the following requirement is met:
• For every function g from D3 into D holds g = E iff for all elements

a1, a2, a3 of D holds g(〈a1, a2, a3〉) = F(a1, a2, a3).
The scheme OneGate4Result deals with sets A, B, C, D, a non empty finite
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set E , a 4-ary functor F yielding an element of E , and a function F from E4 into
E , and states that:

Let s be a state of 1GateCircuit(〈A,B, C,D〉,F) and a1, a2, a3,
a4 be elements of E . If a1 = s(A) and a2 = s(B) and a3 = s(C)
and a4 = s(D), then (Result(s))(Output 1GateCircStr(〈A,B, C,
D〉,F)) = F(a1, a2, a3, a4)

provided the following condition is met:
• Let g be a function from E4 into E . Then g = F if and only

if for all elements a1, a2, a3, a4 of E holds g(〈a1, a2, a3, a4〉) =
F(a1, a2, a3, a4).

The scheme OneGate5Result deals with sets A, B, C, D, E , a non empty
finite set F , a 5-ary functor F yielding an element of F , and a function G from
F5 into F , and states that:

Let s be a state of 1GateCircuit(〈A,B, C,D, E〉,G) and a1,
a2, a3, a4, a5 be elements of F . Suppose a1 = s(A)
and a2 = s(B) and a3 = s(C) and a4 = s(D) and
a5 = s(E). Then (Result(s))(Output 1GateCircStr(〈A,B, C,D,

E〉,G)) = F(a1, a2, a3, a4, a5)
provided the following requirement is met:
• Let g be a function from F5 into F . Then g = G if and only

if for all elements a1, a2, a3, a4, a5 of F holds g(〈a1, a2, a3, a4,

a5〉) = F(a1, a2, a3, a4, a5).

4. Input of a Compound Circuit

We now state a number of propositions:

(39) Let n be a natural number, X be a non empty finite set,
f be a function from Xn into X, p be a finite sequence with
length n, and S be a signature over X. If rng p ⊆ the car-
rier of S and Output 1GateCircStr(p, f) /∈ InputVertices(S), then
InputVertices(S+· 1GateCircStr(p, f)) = InputVertices(S).

(40) Let X1, X2 be sets, X be a non empty finite set, n be a na-
tural number, f be a function from Xn into X, p be a finite
sequence with length n, and S be a signature over X. Suppose
rng p = X1 ∪ X2 and X1 ⊆ the carrier of S and X2 misses
InnerVertices(S) and Output 1GateCircStr(p, f) /∈ InputVertices(S).
Then InputVertices(S+· 1GateCircStr(p, f)) = InputVertices(S) ∪X2.

(41) Let x1 be a set, X be a non empty finite set, f be a function
from X1 into X, and S be a signature over X. If x1 ∈ the car-
rier of S and Output 1GateCircStr(〈x1〉, f) /∈ InputVertices(S), then
InputVertices(S+· 1GateCircStr(〈x1〉, f)) = InputVertices(S).
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(42) Let x1, x2 be sets, X be a non empty finite set, f be a function
from X2 into X, and S be a signature over X. Suppose x1 ∈ the
carrier of S and x2 /∈ InnerVertices(S) and Output 1GateCircStr(〈x1,

x2〉, f) /∈ InputVertices(S). Then InputVertices(S+· 1GateCircStr(〈x1,

x2〉, f)) = InputVertices(S) ∪ {x2}.
(43) Let x1, x2 be sets, X be a non empty finite set, f be a function

from X2 into X, and S be a signature over X. Suppose x2 ∈ the
carrier of S and x1 /∈ InnerVertices(S) and Output 1GateCircStr(〈x1,

x2〉, f) /∈ InputVertices(S). Then InputVertices(S+· 1GateCircStr(〈x1,

x2〉, f)) = InputVertices(S) ∪ {x1}.
(44) Let x1, x2 be sets, X be a non empty finite set, f be a function

from X2 into X, and S be a signature over X. Suppose x1 ∈ the
carrier of S and x2 ∈ the carrier of S and Output 1GateCircStr(〈x1,

x2〉, f) /∈ InputVertices(S). Then InputVertices(S+· 1GateCircStr(〈x1,

x2〉, f)) = InputVertices(S).
(45) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x1 ∈ the
carrier of S and x2 /∈ InnerVertices(S) and x3 /∈ InnerVertices(S)
and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then
InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪
{x2, x3}.

(46) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-
tion from X3 into X, and S be a signature over X. Suppose x2 ∈ the
carrier of S and x1 /∈ InnerVertices(S) and x3 /∈ InnerVertices(S)
and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then
InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪
{x1, x3}.

(47) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-
tion from X3 into X, and S be a signature over X. Suppose x3 ∈ the
carrier of S and x1 /∈ InnerVertices(S) and x2 /∈ InnerVertices(S)
and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then
InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪
{x1, x2}.

(48) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-
tion from X3 into X, and S be a signature over X. Suppose x1 ∈ the
carrier of S and x2 ∈ the carrier of S and x3 /∈ InnerVertices(S)
and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then
InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪
{x3}.

(49) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-
tion from X3 into X, and S be a signature over X. Suppose x1 ∈ the
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carrier of S and x3 ∈ the carrier of S and x2 /∈ InnerVertices(S)
and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then
InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪
{x2}.

(50) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-
tion from X3 into X, and S be a signature over X. Suppose x2 ∈ the
carrier of S and x3 ∈ the carrier of S and x1 /∈ InnerVertices(S)
and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then
InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪
{x1}.

(51) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-
tion from X3 into X, and S be a signature over X. Suppose x1 ∈
the carrier of S and x2 ∈ the carrier of S and x3 ∈ the carrier
of S and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then
InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S).

5. Result of a Compound Circuit

Next we state the proposition

(52) Let X be a non empty finite set, S be a finite signature over X,
A be a circuit over X and S, n be a natural number, f be a func-
tion from Xn into X, and p be a finite sequence with length n. Sup-
pose Output 1GateCircStr(p, f) /∈ InputVertices(S). Let s be a state of
A+· 1GateCircuit(p, f) and s′ be a state of A. Suppose s′ = s¹the carrier
of S. Then the stabilization time of s ¬ 1 + the stabilization time of s′.

Now we present several schemes. The scheme Comb1CircResult deals with a
set A, a non empty finite set B, a unary functor F yielding an element of B, a
finite signature C over B, a circuit D over B and C, and a function E from B1

into B, and states that:
Let s be a state of D+· 1GateCircuit(〈A〉, E) and s′ be a
state of D. Suppose s′ = s¹the carrier of C. Let a1 be an
element of B. Suppose if A ∈ InnerVertices(C), then a1 =
(Result(s′))(A) and if A /∈ InnerVertices(C), then a1 = s(A).
Then (Result(s))(Output 1GateCircStr(〈A〉, E)) = F(a1)

provided the parameters meet the following conditions:
• For every function g from B1 into B holds g = E iff for every

element a1 of B holds g(〈a1〉) = F(a1), and
• Output 1GateCircStr(〈A〉, E) /∈ InputVertices(C).

The scheme Comb2CircResult deals with sets A, B, a non empty finite set
C, a binary functor F yielding an element of C, a finite signature D over C, a
circuit E over C and D, and a function F from C2 into C, and states that:
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Let s be a state of E+· 1GateCircuit(〈A,B〉,F) and s′ be
a state of E . Suppose s′ = s¹the carrier of D. Let a1,
a2 be elements of C. Suppose if A ∈ InnerVertices(D),
then a1 = (Result(s′))(A) and if A /∈ InnerVertices(D),
then a1 = s(A) and if B ∈ InnerVertices(D), then a2 =
(Result(s′))(B) and if B /∈ InnerVertices(D), then a2 = s(B).
Then (Result(s))(Output 1GateCircStr(〈A,B〉,F)) = F(a1, a2)

provided the parameters meet the following requirements:
• For every function g from C2 into C holds g = F iff for all elements

a1, a2 of C holds g(〈a1, a2〉) = F(a1, a2), and
• Output 1GateCircStr(〈A,B〉,F) /∈ InputVertices(D).

The scheme Comb3CircResult deals with sets A, B, C, a non empty finite set
D, a ternary functor F yielding an element of D, a finite signature E over D, a
circuit F over D and E , and a function G from D3 into D, and states that:

Let s be a state of F+· 1GateCircuit(〈A,B, C〉,G) and s′ be a state
of F . Suppose s′ = s¹the carrier of E . Let a1, a2, a3 be elements
of D. Suppose that
(i) if A ∈ InnerVertices(E), then a1 = (Result(s′))(A),
(ii) if A /∈ InnerVertices(E), then a1 = s(A),
(iii) if B ∈ InnerVertices(E), then a2 = (Result(s′))(B),
(iv) if B /∈ InnerVertices(E), then a2 = s(B),
(v) if C ∈ InnerVertices(E), then a3 = (Result(s′))(C), and
(vi) if C /∈ InnerVertices(E), then a3 = s(C).

Then (Result(s))(Output 1GateCircStr(〈A,B, C〉,G)) = F(a1, a2, a3)
provided the parameters meet the following requirements:
• For every function g from D3 into D holds g = G iff for all elements

a1, a2, a3 of D holds g(〈a1, a2, a3〉) = F(a1, a2, a3), and
• Output 1GateCircStr(〈A,B, C〉,G) /∈ InputVertices(E).

The scheme Comb4CircResult deals with sets A, B, C, D, a non empty finite
set E , a 4-ary functor F yielding an element of E , a finite signature F over E , a
circuit G over E and F , and a function H from E4 into E , and states that:

Let s be a state of G+· 1GateCircuit(〈A,B, C,D〉,H) and s′ be
a state of G. Suppose s′ = s¹the carrier of F . Let a1, a2, a3,
a4 be elements of E . Suppose that if A ∈ InnerVertices(F),
then a1 = (Result(s′))(A) and if A /∈ InnerVertices(F),
then a1 = s(A) and if B ∈ InnerVertices(F), then a2 =
(Result(s′))(B) and if B /∈ InnerVertices(F), then a2 = s(B) and
if C ∈ InnerVertices(F), then a3 = (Result(s′))(C) and if C /∈
InnerVertices(F), then a3 = s(C) and if D ∈ InnerVertices(F),
then a4 = (Result(s′))(D) and if D /∈ InnerVertices(F), then a4 =
s(D). Then (Result(s))(Output 1GateCircStr(〈A,B, C,D〉,H)) =
F(a1, a2, a3, a4)
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provided the parameters satisfy the following conditions:
• Let g be a function from E4 into E . Then g = H if and only

if for all elements a1, a2, a3, a4 of E holds g(〈a1, a2, a3, a4〉) =
F(a1, a2, a3, a4), and

• Output 1GateCircStr(〈A,B, C,D〉,H) /∈ InputVertices(F).
The scheme Comb5CircResult deals with sets A, B, C, D, E , a non empty

finite set F , a 5-ary functor F yielding an element of F , a finite signature G
over F , a circuit H over F and G, and a function I from F5 into F , and states
that:

Let s be a state of H+· 1GateCircuit(〈A,B, C,D, E〉, I) and
s′ be a state of H. Suppose s′ = s¹the carrier of G. Let
a1, a2, a3, a4, a5 be elements of F . Suppose that if A ∈
InnerVertices(G), then a1 = (Result(s′))(A) and if A /∈
InnerVertices(G), then a1 = s(A) and if B ∈ InnerVertices(G),
then a2 = (Result(s′))(B) and if B /∈ InnerVertices(G), then
a2 = s(B) and if C ∈ InnerVertices(G), then a3 = (Result(s′))(C)
and if C /∈ InnerVertices(G), then a3 = s(C) and if D ∈
InnerVertices(G), then a4 = (Result(s′))(D) and if D /∈
InnerVertices(G), then a4 = s(D) and if E ∈ InnerVertices(G),
then a5 = (Result(s′))(E) and if E /∈ InnerVertices(G), then
a5 = s(E). Then (Result(s))(Output 1GateCircStr(〈A,B, C,D,

E〉, I)) = F(a1, a2, a3, a4, a5)
provided the parameters meet the following conditions:
• Let g be a function from F5 into F . Then g = I if and only

if for all elements a1, a2, a3, a4, a5 of F holds g(〈a1, a2, a3, a4,

a5〉) = F(a1, a2, a3, a4, a5), and
• Output 1GateCircStr(〈A,B, C,D, E〉, I) /∈ InputVertices(G).

6. Inputs Without Pairs

Let S be a non empty many sorted signature. We say that S has nonpair
inputs if and only if:

(Def. 11) InputVertices(S) has no pairs.

Note that N has no pairs. Let X be a set with no pairs. Note that every
subset of X has no pairs.

Let us observe that every function which is natural-yielding is also nonpair
yielding.

Let us note that every finite sequence of elements of N is natural-yielding.
Let us observe that there exists a finite sequence which is one-to-one and

natural-yielding.
Let n be a natural number. Observe that there exists a finite sequence with

length n which is one-to-one and natural-yielding.
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Let p be a nonpair yielding finite sequence and let f be a set. Observe that
1GateCircStr(p, f) has nonpair inputs.

One can verify that there exists an one-gate many sorted signature which
has nonpair inputs. Let X be a non empty finite set. One can verify that there
exists an one-gate signature over X which has nonpair inputs.

Let S be a non empty many sorted signature with nonpair inputs. One can
check that InputVertices(S) has no pairs.

The following proposition is true

(53) Let S be a non empty many sorted signature with nonpair inputs and x

be a vertex of S. If x is pair, then x ∈ InnerVertices(S).
Let S be an unsplit non empty many sorted signature with arity held in

gates. One can verify that InnerVertices(S) is relation-like.
Let S be an unsplit non empty non void many sorted signature with deno-

tation held in gates. Note that InnerVertices(S) is relation-like.
Let S1, S2 be unsplit non empty many sorted signatures with arity held in

gates with nonpair inputs. One can verify that S1+·S2 has nonpair inputs.
One can prove the following propositions:

(54) For every non pair set x and for every binary relation R holds x /∈ R.

(55) Let x1 be a set, X be a non empty finite set, f be a function from X1

into X, and S be a signature over X with nonpair inputs. If x1 ∈ the
carrier of S or x1 is non pair, then S+· 1GateCircStr(〈x1〉, f) has nonpair
inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair
inputs, let x1 be a vertex of S, and let f be a function from X1 into X. One
can verify that S+· 1GateCircStr(〈x1〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair
inputs, let x1 be a non pair set, and let f be a function from X1 into X. One
can verify that S+· 1GateCircStr(〈x1〉, f) has nonpair inputs.

We now state the proposition

(56) Let x1, x2 be sets, X be a non empty finite set, f be a function from
X2 into X, and S be a signature over X with nonpair inputs. Suppose
x1 ∈ the carrier of S or x1 is non pair but x2 ∈ the carrier of S or x2 is
non pair. Then S+· 1GateCircStr(〈x1, x2〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair
inputs, let x1 be a vertex of S, let n2 be a non pair set, and let f be a function
from X2 into X. Observe that S+· 1GateCircStr(〈x1, n2〉, f) has nonpair inputs
and S+· 1GateCircStr(〈n2, x1〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair
inputs, let x1, x2 be vertices of S, and let f be a function from X2 into X. One
can verify that S+· 1GateCircStr(〈x1, x2〉, f) has nonpair inputs.

One can prove the following proposition
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(57) Let x1, x2, x3 be sets, X be a non empty finite set, f be a function from
X3 into X, and S be a signature over X with nonpair inputs. Suppose
that

(i) x1 ∈ the carrier of S or x1 is non pair,
(ii) x2 ∈ the carrier of S or x2 is non pair, and
(iii) x3 ∈ the carrier of S or x3 is non pair.

Then S+· 1GateCircStr(〈x1, x2, x3〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair
inputs, let x1, x2 be vertices of S, let n be a non pair set, and let f be a function
from X3 into X. One can verify the following observations:

∗ S+· 1GateCircStr(〈x1, x2, n〉, f) has nonpair inputs,

∗ S+· 1GateCircStr(〈x1, n, x2〉, f) has nonpair inputs, and

∗ S+· 1GateCircStr(〈n, x1, x2〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair
inputs, let x be a vertex of S, let n1, n2 be non pair sets, and let f be a function
from X3 into X. One can check the following observations:

∗ S+· 1GateCircStr(〈x, n1, n2〉, f) has nonpair inputs,

∗ S+· 1GateCircStr(〈n1, x, n2〉, f) has nonpair inputs, and

∗ S+· 1GateCircStr(〈n1, n2, x〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair
inputs, let x1, x2, x3 be vertices of S, and let f be a function from X3 into X.
Observe that S+· 1GateCircStr(〈x1, x2, x3〉, f) has nonpair inputs.
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The terminology and notation used here are introduced in the following articles:
[24], [27], [1], [3], [4], [2], [14], [12], [25], [22], [23], [11], [21], [8], [9], [6], [26], [15],
[10], [18], [17], [5], [20], [19], [7], [13], and [16].

In this paper n is a natural number.
We now state a number of propositions:

(1) For all subsets A, B of E2
T such that A meets B holds proj1◦A meets

proj1◦B.

(2) Let A, B be subsets of E2
T and s be a real number. If A misses B and

A ⊆ HorizontalLine s and B ⊆ HorizontalLine s, then proj1◦A misses
proj1◦B.

(3) For every closed subset S of E2
T such that S is Bounded holds proj1◦ S

is closed.

(4) For every compact subset S of E2
T holds proj1◦ S is compact.

(5) Let p, q, p1, q1 be points of E2
T. Suppose L(p, q) is vertical and L(p1, q1) is

vertical and p1 = (p1)1 and p2 ¬ (p1)2 and (p1)2 ¬ (q1)2 and (q1)2 ¬ q2.

Then L(p1, q1) ⊆ L(p, q).
(6) Let p, q, p1, q1 be points of E2

T. Suppose L(p, q) is horizontal and L(p1, q1)
is horizontal and p2 = (p1)2 and p1 ¬ (p1)1 and (p1)1 ¬ (q1)1 and (q1)1 ¬
q1. Then L(p1, q1) ⊆ L(p, q).

(7) Let G be a Go-board and i, j, k, j1, k1 be natural numbers. Suppose
1 ¬ i and i ¬ len G and 1 ¬ j and j ¬ j1 and j1 ¬ k1 and k1 ¬ k and
k ¬ width G. Then L(G ◦ (i, j1), G ◦ (i, k1)) ⊆ L(G ◦ (i, j), G ◦ (i, k)).

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(8) Let G be a Go-board and i, j, k, j1, k1 be natural numbers. Suppose
1 ¬ i and i ¬ width G and 1 ¬ j and j ¬ j1 and j1 ¬ k1 and k1 ¬ k and
k ¬ len G. Then L(G ◦ (j1, i), G ◦ (k1, i)) ⊆ L(G ◦ (j, i), G ◦ (k, i)).

(9) Let G be a Go-board and j, k, j1, k1 be natural numbers. Suppose
1 ¬ j and j ¬ j1 and j1 ¬ k1 and k1 ¬ k and k ¬ width G. Then L(G ◦
(Center G, j1), G◦(Center G, k1)) ⊆ L(G◦(Center G, j), G◦(Center G, k)).

(10) Let G be a Go-board. Suppose len G = width G. Let j, k, j1, k1 be
natural numbers. Suppose 1 ¬ j and j ¬ j1 and j1 ¬ k1 and k1 ¬ k

and k ¬ len G. Then L(G ◦ (j1, Center G), G ◦ (k1, Center G)) ⊆ L(G ◦
(j, Center G), G ◦ (k, Center G)).

(11) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j, k be natural numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n)
and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n) and Gauge(C, n) ◦
(i, j) ∈ L̃(LowerSeq(C, n)). Then there exists a natural number j1 such
that j ¬ j1 and j1 ¬ k and L(Gauge(C, n) ◦ (i, j1), Gauge(C, n) ◦ (i, k)) ∩
L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (i, j1)}.

(12) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j, k be natural numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n)
and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n) and Gauge(C, n) ◦
(i, k) ∈ L̃(UpperSeq(C, n)). Then there exists a natural number k1 such
that j ¬ k1 and k1 ¬ k and L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k1))∩
L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (i, k1)}.

(13) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j, k be natural numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n)
and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n) and Gauge(C, n)◦ (i, j) ∈
L̃(LowerSeq(C, n)) and Gauge(C, n) ◦ (i, k) ∈ L̃(UpperSeq(C, n)). Then
there exist natural numbers j1, k1 such that j ¬ j1 and j1 ¬ k1 and k1 ¬ k

and L(Gauge(C, n) ◦ (i, j1), Gauge(C, n) ◦ (i, k1)) ∩ L̃(LowerSeq(C, n)) =
{Gauge(C, n) ◦ (i, j1)} and L(Gauge(C, n) ◦ (i, j1), Gauge(C, n) ◦ (i, k1))∩
L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (i, k1)}.

(14) Let C be a compact connected non vertical non horizontal subset of
E2

T and i, j, k be natural numbers. Suppose 1 ¬ j and j ¬ k and k ¬
len Gauge(C, n) and 1 ¬ i and i ¬ width Gauge(C, n) and Gauge(C, n) ◦
(j, i) ∈ L̃(LowerSeq(C, n)). Then there exists a natural number j1 such
that j ¬ j1 and j1 ¬ k and L(Gauge(C, n) ◦ (j1, i), Gauge(C, n) ◦ (k, i)) ∩
L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (j1, i)}.

(15) Let C be a compact connected non vertical non horizontal subset of
E2

T and i, j, k be natural numbers. Suppose 1 ¬ j and j ¬ k and k ¬
len Gauge(C, n) and 1 ¬ i and i ¬ width Gauge(C, n) and Gauge(C, n) ◦
(k, i) ∈ L̃(UpperSeq(C, n)). Then there exists a natural number k1 such
that j ¬ k1 and k1 ¬ k and L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k1, i)) ∩
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L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (k1, i)}.
(16) Let C be a compact connected non vertical non horizontal subset

of E2
T and i, j, k be natural numbers. Suppose 1 ¬ j and j ¬ k

and k ¬ len Gauge(C, n) and 1 ¬ i and i ¬ width Gauge(C, n) and
Gauge(C, n) ◦ (j, i) ∈ L̃(LowerSeq(C, n)) and Gauge(C, n) ◦ (k, i) ∈
L̃(UpperSeq(C, n)). Then there exist natural numbers j1, k1 such that
j ¬ j1 and j1 ¬ k1 and k1 ¬ k and L(Gauge(C, n) ◦ (j1, i), Gauge(C, n) ◦
(k1, i))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦ (j1, i)} and L(Gauge(C, n)◦
(j1, i), Gauge(C, n)◦(k1, i))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(k1, i)}.

(17) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j, k be natural numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n)
and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n) and Gauge(C, n) ◦
(i, j) ∈ L̃(UpperSeq(C, n)). Then there exists a natural number j1 such
that j ¬ j1 and j1 ¬ k and L(Gauge(C, n) ◦ (i, j1), Gauge(C, n) ◦ (i, k)) ∩
L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (i, j1)}.

(18) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j, k be natural numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n)
and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n) and Gauge(C, n) ◦
(i, k) ∈ L̃(LowerSeq(C, n)). Then there exists a natural number k1 such
that j ¬ k1 and k1 ¬ k and L(Gauge(C, n) ◦ (i, j), Gauge(C, n) ◦ (i, k1))∩
L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (i, k1)}.

(19) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j, k be natural numbers. Suppose 1 ¬ i and i ¬ len Gauge(C, n)
and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n) and Gauge(C, n)◦ (i, j) ∈
L̃(UpperSeq(C, n)) and Gauge(C, n) ◦ (i, k) ∈ L̃(LowerSeq(C, n)). Then
there exist natural numbers j1, k1 such that j ¬ j1 and j1 ¬ k1 and k1 ¬ k

and L(Gauge(C, n) ◦ (i, j1), Gauge(C, n) ◦ (i, k1)) ∩ L̃(UpperSeq(C, n)) =
{Gauge(C, n) ◦ (i, j1)} and L(Gauge(C, n) ◦ (i, j1), Gauge(C, n) ◦ (i, k1))∩
L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (i, k1)}.

(20) Let C be a compact connected non vertical non horizontal subset of
E2

T and i, j, k be natural numbers. Suppose 1 ¬ j and j ¬ k and k ¬
len Gauge(C, n) and 1 ¬ i and i ¬ width Gauge(C, n) and Gauge(C, n) ◦
(j, i) ∈ L̃(UpperSeq(C, n)). Then there exists a natural number j1 such
that j ¬ j1 and j1 ¬ k and L(Gauge(C, n) ◦ (j1, i), Gauge(C, n) ◦ (k, i)) ∩
L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (j1, i)}.

(21) Let C be a compact connected non vertical non horizontal subset of
E2

T and i, j, k be natural numbers. Suppose 1 ¬ j and j ¬ k and k ¬
len Gauge(C, n) and 1 ¬ i and i ¬ width Gauge(C, n) and Gauge(C, n) ◦
(k, i) ∈ L̃(LowerSeq(C, n)). Then there exists a natural number k1 such
that j ¬ k1 and k1 ¬ k and L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k1, i))∩
L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (k1, i)}.
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(22) Let C be a compact connected non vertical non horizontal subset
of E2

T and i, j, k be natural numbers. Suppose 1 ¬ j and j ¬ k

and k ¬ len Gauge(C, n) and 1 ¬ i and i ¬ width Gauge(C, n) and
Gauge(C, n) ◦ (j, i) ∈ L̃(UpperSeq(C, n)) and Gauge(C, n) ◦ (k, i) ∈
L̃(LowerSeq(C, n)). Then there exist natural numbers j1, k1 such that
j ¬ j1 and j1 ¬ k1 and k1 ¬ k and L(Gauge(C, n) ◦ (j1, i), Gauge(C, n) ◦
(k1, i))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(j1, i)} and L(Gauge(C, n)◦
(j1, i), Gauge(C, n)◦(k1, i))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦(k1, i)}.

(23) Let C be a simple closed curve and i, j, k be natural numbers. Sup-
pose 1 < i and i < len Gauge(C, n) and 1 ¬ j and j ¬ k and
k ¬ width Gauge(C, n) and Gauge(C, n) ◦ (i, k) ∈ L̃(UpperSeq(C, n))
and Gauge(C, n) ◦ (i, j) ∈ L̃(LowerSeq(C, n)). Then L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) meets LowerArc C.

(24) Let C be a simple closed curve and i, j, k be natural numbers. Sup-
pose 1 < i and i < len Gauge(C, n) and 1 ¬ j and j ¬ k and
k ¬ width Gauge(C, n) and Gauge(C, n) ◦ (i, k) ∈ L̃(UpperSeq(C, n))
and Gauge(C, n) ◦ (i, j) ∈ L̃(LowerSeq(C, n)). Then L(Gauge(C, n) ◦
(i, j), Gauge(C, n) ◦ (i, k)) meets UpperArc C.

(25) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose 1 < i and i < len Gauge(C, n) and 1 ¬ j

and j ¬ k and k ¬ width Gauge(C, n) and n > 0 and
Gauge(C, n) ◦ (i, k) ∈ UpperArc L̃(Cage(C, n)) and Gauge(C, n) ◦ (i, j) ∈
LowerArc L̃(Cage(C, n)). Then L(Gauge(C, n)◦ (i, j), Gauge(C, n)◦ (i, k))
meets LowerArc C.

(26) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose 1 < i and i < len Gauge(C, n) and 1 ¬ j

and j ¬ k and k ¬ width Gauge(C, n) and n > 0 and
Gauge(C, n) ◦ (i, k) ∈ UpperArc L̃(Cage(C, n)) and Gauge(C, n) ◦ (i, j) ∈
LowerArc L̃(Cage(C, n)). Then L(Gauge(C, n)◦ (i, j), Gauge(C, n)◦ (i, k))
meets UpperArc C.

(27) Let C be a simple closed curve and j, k be natural numbers. Suppose
1 ¬ j and j ¬ k and k ¬ width Gauge(C, n + 1) and Gauge(C, n +
1) ◦ (Center Gauge(C, n + 1), k) ∈ UpperArc L̃(Cage(C, n + 1)) and
Gauge(C, n+1)◦(Center Gauge(C, n+1), j) ∈ LowerArc L̃(Cage(C, n+1)).
Then L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), j), Gauge(C, n + 1) ◦
(Center Gauge(C, n + 1), k)) meets LowerArc C.

(28) Let C be a simple closed curve and j, k be natural numbers. Suppose
1 ¬ j and j ¬ k and k ¬ width Gauge(C, n + 1) and Gauge(C, n +
1) ◦ (Center Gauge(C, n + 1), k) ∈ UpperArc L̃(Cage(C, n + 1)) and
Gauge(C, n+1)◦(Center Gauge(C, n+1), j) ∈ LowerArc L̃(Cage(C, n+1)).
Then L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), j), Gauge(C, n + 1) ◦
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(Center Gauge(C, n + 1), k)) meets UpperArc C.

(29) Let C be a compact connected non vertical non horizontal subset of E2
T

and i, j, k be natural numbers. Suppose 1 < j and k < len Gauge(C, n)
and 1 ¬ i and i ¬ width Gauge(C, n) and Gauge(C, n) ◦ (k, i) ∈
L̃(UpperSeq(C, n)) and Gauge(C, n) ◦ (j, i) ∈ L̃(LowerSeq(C, n)). Then
j 6= k.

(30) Let C be a simple closed curve and i, j, k be natural numbers.
Suppose 1 < j and j ¬ k and k < len Gauge(C, n) and 1 ¬ i

and i ¬ width Gauge(C, n) and L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦
(k, i)) ∩ L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (k, i)} and L(Gauge(C, n) ◦
(j, i), Gauge(C, n) ◦ (k, i)) ∩ L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (j, i)}.
Then L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k, i)) meets LowerArc C.

(31) Let C be a simple closed curve and i, j, k be natural numbers.
Suppose 1 < j and j ¬ k and k < len Gauge(C, n) and 1 ¬ i

and i ¬ width Gauge(C, n) and L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦
(k, i)) ∩ L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (k, i)} and L(Gauge(C, n) ◦
(j, i), Gauge(C, n) ◦ (k, i)) ∩ L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (j, i)}.
Then L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k, i)) meets UpperArc C.

(32) Let C be a simple closed curve and i, j, k be natural numbers. Sup-
pose 1 < j and j ¬ k and k < len Gauge(C, n) and 1 ¬ i and
i ¬ width Gauge(C, n) and Gauge(C, n) ◦ (k, i) ∈ L̃(UpperSeq(C, n))
and Gauge(C, n) ◦ (j, i) ∈ L̃(LowerSeq(C, n)). Then L(Gauge(C, n) ◦
(j, i), Gauge(C, n) ◦ (k, i)) meets LowerArc C.

(33) Let C be a simple closed curve and i, j, k be natural numbers. Sup-
pose 1 < j and j ¬ k and k < len Gauge(C, n) and 1 ¬ i and
i ¬ width Gauge(C, n) and Gauge(C, n) ◦ (k, i) ∈ L̃(UpperSeq(C, n))
and Gauge(C, n) ◦ (j, i) ∈ L̃(LowerSeq(C, n)). Then L(Gauge(C, n) ◦
(j, i), Gauge(C, n) ◦ (k, i)) meets UpperArc C.

(34) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose 1 < j and j ¬ k and k < len Gauge(C, n)
and 1 ¬ i and i ¬ width Gauge(C, n) and n > 0 and
Gauge(C, n) ◦ (k, i) ∈ UpperArc L̃(Cage(C, n)) and Gauge(C, n) ◦ (j, i) ∈
LowerArc L̃(Cage(C, n)). Then L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k, i))
meets LowerArc C.

(35) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose 1 < j and j ¬ k and k < len Gauge(C, n)
and 1 ¬ i and i ¬ width Gauge(C, n) and n > 0 and
Gauge(C, n) ◦ (k, i) ∈ UpperArc L̃(Cage(C, n)) and Gauge(C, n) ◦ (j, i) ∈
LowerArc L̃(Cage(C, n)). Then L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k, i))
meets UpperArc C.

(36) Let C be a simple closed curve and j, k be natural numbers. Sup-
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pose 1 < j and j ¬ k and k < len Gauge(C, n + 1) and Gauge(C, n +
1) ◦ (k, Center Gauge(C, n + 1)) ∈ UpperArc L̃(Cage(C, n + 1)) and
Gauge(C, n+1)◦(j, Center Gauge(C, n+1)) ∈ LowerArc L̃(Cage(C, n+1)).
Then L(Gauge(C, n + 1) ◦ (j, Center Gauge(C, n + 1)), Gauge(C, n + 1) ◦
(k, Center Gauge(C, n + 1))) meets LowerArc C.

(37) Let C be a simple closed curve and j, k be natural numbers. Sup-
pose 1 < j and j ¬ k and k < len Gauge(C, n + 1) and Gauge(C, n +
1) ◦ (k, Center Gauge(C, n + 1)) ∈ UpperArc L̃(Cage(C, n + 1)) and
Gauge(C, n+1)◦(j, Center Gauge(C, n+1)) ∈ LowerArc L̃(Cage(C, n+1)).
Then L(Gauge(C, n + 1) ◦ (j, Center Gauge(C, n + 1)), Gauge(C, n + 1) ◦
(k, Center Gauge(C, n + 1))) meets UpperArc C.

(38) Let C be a simple closed curve and i, j, k be natural numbers.
Suppose 1 < j and j ¬ k and k < len Gauge(C, n) and 1 ¬ i

and i ¬ width Gauge(C, n) and L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦
(k, i)) ∩ L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (j, i)} and L(Gauge(C, n) ◦
(j, i), Gauge(C, n) ◦ (k, i)) ∩ L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (k, i)}.
Then L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k, i)) meets LowerArc C.

(39) Let C be a simple closed curve and i, j, k be natural numbers.
Suppose 1 < j and j ¬ k and k < len Gauge(C, n) and 1 ¬ i

and i ¬ width Gauge(C, n) and L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦
(k, i)) ∩ L̃(UpperSeq(C, n)) = {Gauge(C, n) ◦ (j, i)} and L(Gauge(C, n) ◦
(j, i), Gauge(C, n) ◦ (k, i)) ∩ L̃(LowerSeq(C, n)) = {Gauge(C, n) ◦ (k, i)}.
Then L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k, i)) meets UpperArc C.

(40) Let C be a simple closed curve and i, j, k be natural numbers. Sup-
pose 1 < j and j ¬ k and k < len Gauge(C, n) and 1 ¬ i and
i ¬ width Gauge(C, n) and Gauge(C, n) ◦ (j, i) ∈ L̃(UpperSeq(C, n))
and Gauge(C, n) ◦ (k, i) ∈ L̃(LowerSeq(C, n)). Then L(Gauge(C, n) ◦
(j, i), Gauge(C, n) ◦ (k, i)) meets LowerArc C.

(41) Let C be a simple closed curve and i, j, k be natural numbers. Sup-
pose 1 < j and j ¬ k and k < len Gauge(C, n) and 1 ¬ i and
i ¬ width Gauge(C, n) and Gauge(C, n) ◦ (j, i) ∈ L̃(UpperSeq(C, n))
and Gauge(C, n) ◦ (k, i) ∈ L̃(LowerSeq(C, n)). Then L(Gauge(C, n) ◦
(j, i), Gauge(C, n) ◦ (k, i)) meets UpperArc C.

(42) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose 1 < j and j ¬ k and k < len Gauge(C, n)
and 1 ¬ i and i ¬ width Gauge(C, n) and n > 0 and
Gauge(C, n) ◦ (j, i) ∈ UpperArc L̃(Cage(C, n)) and Gauge(C, n) ◦ (k, i) ∈
LowerArc L̃(Cage(C, n)). Then L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k, i))
meets LowerArc C.

(43) Let C be a simple closed curve and i, j, k be natural num-
bers. Suppose 1 < j and j ¬ k and k < len Gauge(C, n)
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and 1 ¬ i and i ¬ width Gauge(C, n) and n > 0 and
Gauge(C, n) ◦ (j, i) ∈ UpperArc L̃(Cage(C, n)) and Gauge(C, n) ◦ (k, i) ∈
LowerArc L̃(Cage(C, n)). Then L(Gauge(C, n) ◦ (j, i), Gauge(C, n) ◦ (k, i))
meets UpperArc C.

(44) Let C be a simple closed curve and j, k be natural numbers. Sup-
pose 1 < j and j ¬ k and k < len Gauge(C, n + 1) and Gauge(C, n +
1) ◦ (j, Center Gauge(C, n + 1)) ∈ UpperArc L̃(Cage(C, n + 1)) and
Gauge(C, n+1)◦(k, Center Gauge(C, n+1)) ∈ LowerArc L̃(Cage(C, n+1)).
Then L(Gauge(C, n + 1) ◦ (j, Center Gauge(C, n + 1)), Gauge(C, n + 1) ◦
(k, Center Gauge(C, n + 1))) meets LowerArc C.

(45) Let C be a simple closed curve and j, k be natural numbers. Sup-
pose 1 < j and j ¬ k and k < len Gauge(C, n + 1) and Gauge(C, n +
1) ◦ (j, Center Gauge(C, n + 1)) ∈ UpperArc L̃(Cage(C, n + 1)) and
Gauge(C, n+1)◦(k, Center Gauge(C, n+1)) ∈ LowerArc L̃(Cage(C, n+1)).
Then L(Gauge(C, n + 1) ◦ (j, Center Gauge(C, n + 1)), Gauge(C, n + 1) ◦
(k, Center Gauge(C, n + 1))) meets UpperArc C.

(46) Let C be a simple closed curve and i1, i2, j, k be natu-
ral numbers. Suppose that 1 < i1 and i1 ¬ i2 and i2 <

len Gauge(C, n) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n)
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(i2, k)}
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦(i1, j)}.
Then L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n) ◦ (i2, k)) meets UpperArc C.

(47) Let C be a simple closed curve and i1, i2, j, k be natu-
ral numbers. Suppose that 1 < i1 and i1 ¬ i2 and i2 <

len Gauge(C, n) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n)
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(i2, k)}
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦(i1, j)}.
Then L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n) ◦ (i2, k)) meets LowerArc C.

(48) Let C be a simple closed curve and i1, i2, j, k be natu-
ral numbers. Suppose that 1 < i2 and i2 ¬ i1 and i1 <

len Gauge(C, n) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n)
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(i2, k)}
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦(i1, j)}.
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Then L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n) ◦ (i2, k)) meets UpperArc C.

(49) Let C be a simple closed curve and i1, i2, j, k be natu-
ral numbers. Suppose that 1 < i2 and i2 ¬ i1 and i1 <

len Gauge(C, n) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n)
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(UpperSeq(C, n)) = {Gauge(C, n)◦(i2, k)}
and (L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n)◦(i2, k)))∩L̃(LowerSeq(C, n)) = {Gauge(C, n)◦(i1, j)}.
Then L(Gauge(C, n) ◦ (i1, j), Gauge(C, n) ◦ (i1, k)) ∪ L(Gauge(C, n) ◦
(i1, k), Gauge(C, n) ◦ (i2, k)) meets LowerArc C.

(50) Let C be a simple closed curve and i1, i2, j, k be natural numbers.
Suppose that 1 < i1 and i1 < len Gauge(C, n + 1) and 1 < i2 and i2 <

len Gauge(C, n+1) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n+1) and
Gauge(C, n + 1) ◦ (i1, k) ∈ UpperArc L̃(Cage(C, n + 1)) and Gauge(C, n +
1) ◦ (i2, j) ∈ LowerArc L̃(Cage(C, n + 1)). Then L(Gauge(C, n + 1) ◦
(i2, j), Gauge(C, n+1)◦ (i2, k))∪L(Gauge(C, n+1)◦ (i2, k), Gauge(C, n+
1) ◦ (i1, k)) meets UpperArc C.

(51) Let C be a simple closed curve and i1, i2, j, k be natural numbers.
Suppose that 1 < i1 and i1 < len Gauge(C, n + 1) and 1 < i2 and i2 <

len Gauge(C, n+1) and 1 ¬ j and j ¬ k and k ¬ width Gauge(C, n+1) and
Gauge(C, n + 1) ◦ (i1, k) ∈ UpperArc L̃(Cage(C, n + 1)) and Gauge(C, n +
1) ◦ (i2, j) ∈ LowerArc L̃(Cage(C, n + 1)). Then L(Gauge(C, n + 1) ◦
(i2, j), Gauge(C, n+1)◦ (i2, k))∪L(Gauge(C, n+1)◦ (i2, k), Gauge(C, n+
1) ◦ (i1, k)) meets LowerArc C.

(52) Let C be a simple closed curve and i, j, k be natural numbers.
Suppose 1 < i and i < len Gauge(C, n + 1) and 1 ¬ j and j ¬
k and k ¬ width Gauge(C, n + 1) and Gauge(C, n + 1) ◦ (i, k) ∈
UpperArc L̃(Cage(C, n + 1)) and Gauge(C, n + 1) ◦ (Center Gauge(C, n +
1), j) ∈ LowerArc L̃(Cage(C, n + 1)). Then L(Gauge(C, n + 1) ◦
(Center Gauge(C, n+1), j), Gauge(C, n+1)◦(Center Gauge(C, n+1), k))∪
L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), k), Gauge(C, n + 1) ◦ (i, k))
meets UpperArc C.

(53) Let C be a simple closed curve and i, j, k be natural numbers.
Suppose 1 < i and i < len Gauge(C, n + 1) and 1 ¬ j and j ¬
k and k ¬ width Gauge(C, n + 1) and Gauge(C, n + 1) ◦ (i, k) ∈
UpperArc L̃(Cage(C, n + 1)) and Gauge(C, n + 1) ◦ (Center Gauge(C, n +
1), j) ∈ LowerArc L̃(Cage(C, n + 1)). Then L(Gauge(C, n + 1) ◦
(Center Gauge(C, n+1), j), Gauge(C, n+1)◦(Center Gauge(C, n+1), k))∪
L(Gauge(C, n + 1) ◦ (Center Gauge(C, n + 1), k), Gauge(C, n + 1) ◦ (i, k))
meets LowerArc C.
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Summary. The aim of the paper is to show that the only subcontinua of
the Jordan curve are arcs, the whole curve, and singletons of its points. Addi-
tionally, it has been shown that the only subcontinua of the unit interval I are
closed intervals.
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1. Preliminaries

Let us note that every simple closed curve is non trivial.
Let T be a non empty topological space. One can check that there exists a

subset of T which is non empty, compact, and connected.
Let us observe that every element of the carrier of I is real.
Next we state two propositions:

(1) Let X be a non empty set and A, B be non empty subsets of X. If A ⊂ B,

then there exists an element p of X such that p ∈ B and A ⊆ B \ {p}.
(2) Let X be a non empty set and A be a non empty subset of X. Then A

is trivial if and only if there exists an element x of X such that A = {x}.
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Let T be a non trivial 1-sorted structure. Observe that there exists a subset
of the carrier of T which is non trivial.

The following proposition is true

(3) For every non trivial set X and for every set p there exists an element q

of X such that q 6= p.

Let X be a non trivial set. Observe that there exists a subset of X which is
non trivial.

We now state a number of propositions:

(4) Let T be a non trivial set, X be a non trivial subset of T , and p be a
set. Then there exists an element q of T such that q ∈ X and q 6= p.

(5) Let f , g be functions and a be a set. Suppose f is one-to-one and g is
one-to-one and dom f ∩ dom g = {a} and rng f ∩ rng g = {f(a)}. Then
f+·g is one-to-one.

(6) Let f , g be functions and a be a set. Suppose f is one-to-one and g

is one-to-one and dom f ∩ dom g = {a} and rng f ∩ rng g = {f(a)} and
f(a) = g(a). Then (f+·g)−1 = f−1+·g−1.

(7) Let n be a natural number, A be a non empty subset of the carrier of
En

T, and p, q be points of En
T. If A is an arc from p to q, then A \ {p} is

non empty.

(8) For every natural number n and for all points a, b of En
T holds L(a, b) is

n-convex.

(9) For all real numbers s1, s3, s4, l such that s1 ¬ s3 and s1 < s4 and 0 ¬ l

and l ¬ 1 holds s1 ¬ (1− l) · s3 + l · s4.

(10) For every set x and for all real numbers a, b such that a ¬ b and x ∈ [a, b]
holds x ∈ ]a, b[ or x = a or x = b.

(11) For all real numbers a, b, c, d such that ]a, b[ meets [c, d] holds b > c.

(12) For all real numbers a, b, c, d such that b ¬ c holds [a, b] misses ]c, d[.

(13) For all real numbers a, b, c, d such that b ¬ c holds ]a, b[ misses [c, d].

(14) For all real numbers a, b, c, d such that a < b and [a, b] ⊆ [c, d] holds
c ¬ a and b ¬ d.

(15) For all real numbers a, b, c, d such that a < b and ]a, b[ ⊆ [c, d] holds
c ¬ a and b ¬ d.

(16) For all real numbers a, b, c, d such that a < b and ]a, b[ ⊆ [c, d] holds
[a, b] ⊆ [c, d].

(17) Let A be a subset of the carrier of I and a, b be real numbers. If a < b

and A = ]a, b[, then [a, b] ⊆ the carrier of I.
(18) Let A be a subset of the carrier of I and a, b be real numbers. If a < b

and A = ]a, b], then [a, b] ⊆ the carrier of I.
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(19) Let A be a subset of the carrier of I and a, b be real numbers. If a < b

and A = [a, b[, then [a, b] ⊆ the carrier of I.
(20) For all real numbers a, b such that a 6= b holds ]a, b] = [a, b].
(21) For all real numbers a, b such that a 6= b holds [a, b[ = [a, b].
(22) For every subset A of I and for all real numbers a, b such that a < b and

A = ]a, b[ holds A = [a, b].
(23) For every subset A of the carrier of I and for all real numbers a, b such

that a < b and A = ]a, b] holds A = [a, b].
(24) For every subset A of the carrier of I and for all real numbers a, b such

that a < b and A = [a, b[ holds A = [a, b].
(25) For all real numbers a, b such that a < b holds [a, b] 6= ]a, b].
(26) For all real numbers a, b holds [a, b[ misses {b} and ]a, b] misses {a}.
(27) For all real numbers a, b such that a ¬ b holds [a, b] \ {a} = ]a, b].
(28) For all real numbers a, b such that a ¬ b holds [a, b] \ {b} = [a, b[.
(29) For all real numbers a, b, c such that a < b and b < c holds ]a, b]∩ [b, c[=
{b}.

(30) For all real numbers a, b, c holds [a, b[ misses [b, c] and [a, b] misses ]b, c].
(31) For all real numbers a, b, c such that a ¬ b and b ¬ c holds [a, c] \ {b} =

[a, b[∪]b, c].
(32) Let A be a subset of the carrier of I and a, b be real numbers. If a ¬ b

and A = [a, b], then 0 ¬ a and b ¬ 1.

(33) Let A, B be subsets of I and a, b, c be real numbers. If a < b and b < c

and A = [a, b[ and B = ]b, c], then A and B are separated.

(34) For all real numbers a, b such that a ¬ b holds [a, b] = [a, b[∪{b}.
(35) For all real numbers a, b such that a ¬ b holds [a, b] = {a} ∪ ]a, b].
(36) For all real numbers a, b, c, d such that a ¬ b and b < c and c ¬ d holds

[a, d] = [a, b] ∪ ]b, c[ ∪ [c, d].
(37) For all real numbers a, b, c, d such that a ¬ b and b < c and c ¬ d holds

[a, d] \ ([a, b] ∪ [c, d]) = ]b, c[.
(38) For all real numbers a, b, c such that a < b and b < c holds ]a, b]∪ ]b, c[ =

]a, c[.
(39) For all real numbers a, b, c such that a < b and b < c holds [b, c[⊆ ]a, c[.
(40) For all real numbers a, b, c such that a < b and b < c holds ]a, b]∪ [b, c[=

]a, c[.
(41) For all real numbers a, b, c such that a < b and b < c holds ]a, c[\ ]a, b] =

]b, c[.
(42) For all real numbers a, b, c such that a < b and b < c holds ]a, c[ \ [b, c[=

]a, b[.
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(43) For all points p1, p2 of I holds [p1, p2] is a subset of I.
(44) For all points a, b of I holds ]a, b[ is a subset of I.

2. Decompositions of Intervals

The following propositions are true:

(45) For every real number p holds {p} is a closed-interval subset of R.

(46) Let A be a non empty connected subset of I and a, b, c be points of I. If
a ¬ b and b ¬ c and a ∈ A and c ∈ A, then b ∈ A.

(47) For every non empty connected subset A of I and for all real numbers a,
b such that a ∈ A and b ∈ A holds [a, b] ⊆ A.

(48) For all real numbers a, b and for every subset A of I such that a ¬ b and
A = [a, b] holds A is closed.

(49) For all points p1, p2 of I such that p1 ¬ p2 holds [p1, p2] is a non empty
compact connected subset of I.

(50) Let X be a subset of the carrier of I and X ′ be a subset of R. If X ′ = X,

then X ′ is upper bounded and lower bounded.

(51) Let X be a subset of the carrier of I, X ′ be a subset of R, and x be a
real number. If x ∈ X ′ and X ′ = X, then inf X ′ ¬ x and x ¬ sup X ′.

(52) For every subset A of R and for every subset B of I such that A = B

holds A is closed iff B is closed.

(53) For every closed-interval subset C of R holds inf C ¬ sup C.

(54) Let C be a non empty compact connected subset of I and C ′ be a subset
of R. If C = C ′ and [inf C ′, sup C ′] ⊆ C ′, then [inf C ′, sup C ′] = C ′.

(55) Every non empty compact connected subset of I is a closed-interval sub-
set of R.

(56) For every non empty compact connected subset C of I there exist points
p1, p2 of I such that p1 ¬ p2 and C = [p1, p2].

3. Decompositions of Simple Closed Curves

The strict non empty subspace I(01) of I is defined as follows:

(Def. 1) The carrier of I(01) = ]0, 1[.
One can prove the following propositions:

(57) For every subset A of I such that A = the carrier of I(01) holds I(01) =
I¹A.

(58) The carrier of I(01) = (the carrier of I) \ {0, 1}.
(59) I(01) is an open subspace of I.
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(60) For every real number r holds r ∈ the carrier of I(01) iff 0 < r and r < 1.

(61) For all points a, b of I such that a < b and b 6= 1 holds ]a, b] is a non
empty subset of I(01).

(62) For all points a, b of I such that a < b and a 6= 0 holds [a, b[ is a non
empty subset of I(01).

(63) For every simple closed curve D holds (E2
T)¹¤E2 and (E2

T)¹D are home-
omorphic.

(64) Let D be a non empty subset of E2
T and p1, p2 be points of E2

T. If D is an
arc from p1 to p2, then I(01) and (E2

T)¹(D \ {p1, p2}) are homeomorphic.

(65) Let D be a subset of the carrier of E2
T and p1, p2 be points of E2

T. If D is
an arc from p1 to p2, then I and (E2

T)¹D are homeomorphic.

(66) For all points p1, p2 of E2
T such that p1 6= p2 holds I and (E2

T)¹L(p1, p2)
are homeomorphic.

(67) Let E be a subset of I(01). Given points p1, p2 of I such that p1 < p2

and E = [p1, p2]. Then I and I(01)¹E are homeomorphic.

(68) Let A be a non empty subset of the carrier of E2
T, p, q be points of E2

T,
and a, b be points of I. Suppose A is an arc from p to q and a < b. Then
there exists a non empty subset E of I and there exists a map f from I¹E
into (E2

T)¹A such that E = [a, b] and f is a homeomorphism and f(a) = p

and f(b) = q.

(69) Let A be a topological space, B be a non empty topological space, f be
a map from A into B, C be a topological space, and X be a subset of A.
Suppose f is continuous and C is a subspace of B. Let h be a map from
A¹X into C. If h = f¹X, then h is continuous.

(70) For every subset X of I and for all points a, b of I such that a ¬ b and
X = ]a, b[ holds X is open.

(71) For every subset X of I(01) and for all points a, b of I such that a ¬ b

and X = ]a, b[ holds X is open.

(72) For every non empty subset X of I(01) and for every point a of I such
that 0 < a and X = ]0, a] holds X is closed.

(73) For every non empty subset X of I(01) and for every point a of I such
that X = [a, 1[ holds X is closed.

(74) Let A be a non empty subset of the carrier of E2
T, p, q be points of E2

T,
and a, b be points of I. Suppose A is an arc from p to q and a < b and
b 6= 1. Then there exists a non empty subset E of I(01) and there exists
a map f from I(01)¹E into (E2

T)¹(A \ {p}) such that E = ]a, b] and f is a
homeomorphism and f(b) = q.

(75) Let A be a non empty subset of the carrier of E2
T, p, q be points of E2

T,
and a, b be points of I. Suppose A is an arc from p to q and a < b and
a 6= 0. Then there exists a non empty subset E of I(01) and there exists
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a map f from I(01)¹E into (E2
T)¹(A \ {q}) such that E = [a, b[ and f is a

homeomorphism and f(a) = p.

(76) Let A, B be non empty subsets of the carrier of E2
T and p, q be points

of E2
T. Suppose A is an arc from p to q and B is an arc from q to p and

A∩B = {p, q} and p 6= q. Then I(01) and (E2
T)¹((A \ {p})∪ (B \ {p})) are

homeomorphic.

(77) For every simple closed curve D and for every point p of E2
T such that

p ∈ D holds (E2
T)¹(D \ {p}) and I(01) are homeomorphic.

(78) Let D be a simple closed curve and p, q be points of E2
T. If p ∈ D and

q ∈ D, then (E2
T)¹(D \ {p}) and (E2

T)¹(D \ {q}) are homeomorphic.

(79) Let C be a non empty subset of E2
T and E be a subset of I(01). Suppose

there exist points p1, p2 of I such that p1 < p2 and E = [p1, p2] and
I(01)¹E and (E2

T)¹C are homeomorphic. Then there exist points s1, s2 of
E2

T such that C is an arc from s1 to s2.

(80) Let D1 be a non empty subset of E2
T, f be a map from (E2

T)¹D1 into I(01),
and C be a non empty subset of E2

T. Suppose f is a homeomorphism
and C ⊆ D1 and there exist points p1, p2 of I such that p1 < p2 and
f◦C = [p1, p2]. Then there exist points s1, s2 of E2

T such that C is an arc
from s1 to s2.

(81) Let D be a simple closed curve and C be a non empty compact connected
subset of E2

T. Suppose C ⊆ D. Then C = D or there exist points p1, p2 of
E2

T such that C is an arc from p1 to p2 or there exists a point p of E2
T such

that C = {p}.
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in Euclidean Space1
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Summary. The concept of the minimal distance between two sets in a
Euclidean space is introduced and some useful lemmas are proved.

MML Identifier: JORDAN1K.

The papers [25], [26], [13], [24], [4], [27], [5], [1], [14], [17], [23], [8], [22], [15],
[6], [3], [9], [10], [11], [2], [19], [21], [12], [20], [7], [16], and [18] provide the
terminology and notation for this paper.

1. Preliminaries

In this paper X is a set and Y is a non empty set.
We now state several propositions:

(1) Let f be a function from X into Y . Suppose f is onto. Let y be an
element of Y . Then there exists a set x such that x ∈ X and y = f(x).

(2) Let f be a function from X into Y . Suppose f is onto. Let y be an
element of Y . Then there exists an element x of X such that y = f(x).

(3) For every function f from X into Y and for every subset A of X such
that f is onto holds (f◦A)c ⊆ f◦Ac.

(4) For every function f from X into Y and for every subset A of X such
that f is one-to-one holds f◦Ac ⊆ (f◦A)c.

(5) For every function f from X into Y and for every subset A of X such
that f is bijective holds (f◦A)c = f◦Ac.

1This work has been partially supported by the European Community TYPES grant IST-
1999-29001 and CALCULEMUS grant HPRN-CT-2000-00102. The work was completed while
the author visited Shinhsu University (Nagano).
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2. Topological and Metrizable Spaces

One can prove the following two propositions:

(6) For every topological space T and for every subset A of T holds A is a
component of ∅T iff A is empty.

(7) Let T be a non empty topological space and A, B, C be subsets of T .
If A ⊆ B and A is a component of C and B is a component of C, then
A = B.

In the sequel n denotes a natural number.
We now state the proposition

(8) If n  1, then for every subset P of En such that P is bounded holds
−P is not bounded.

In the sequel r is a real number and M is a non empty metric space.
Next we state a number of propositions:

(9) For every non empty subset C of Mtop and for every point p of Mtop

holds (distmin(C))(p)  0.

(10) Let C be a non empty subset of Mtop and p be a point of M . If for every
point q of M such that q ∈ C holds ρ(p, q)  r, then (distmin(C))(p)  r.

(11) For all non empty subsets A, B of Mtop holds distmin
min(A,B)  0.

(12) For all compact subsets A, B of Mtop such that A meets B holds
distmin

min(A,B) = 0.
(13) Let A, B be non empty subsets of Mtop. Suppose that for all points p, q

of M such that p ∈ A and q ∈ B holds ρ(p, q)  r. Then distmin
min(A,B)  r.

(14) Let P , Q be subsets of En
T. Suppose P is a component of Qc. Then P is

inside component of Q or P is outside component of Q.

(15) If n  1, then BDD ∅En
T

= ∅En
T
.

(16) BDD ΩEn
T

= ∅En
T
.

(17) If n  1, then UBD ∅En
T

= ΩEn
T
.

(18) UBD ΩEn
T

= ∅En
T
.

(19) For every connected subset P of En
T and for every subset Q of En

T such
that P misses Q holds P ⊆ UBD Q or P ⊆ BDD Q.

3. Euclid Plane

For simplicity, we adopt the following rules: C, D are simple closed curves,
n is a natural number, p, q, q1, q2 are points of E2

T, r, s1, s2, t1, t2 are real
numbers, and x, y are points of E2.

Next we state a number of propositions:

(20) ρ([0, 0], r · q) = |r| · ρ([0, 0], q).
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(21) ρ(q1 + q, q2 + q) = ρ(q1, q2).
(22) If p 6= q, then ρ(p, q) > 0.

(23) ρ(q1 − q, q2 − q) = ρ(q1, q2).
(24) ρ(p, q) = ρ(−p,−q).
(25) ρ(q − q1, q − q2) = ρ(q1, q2).
(26) ρ(r · p, r · q) = |r| · ρ(p, q).
(27) If r ¬ 1, then ρ(p, r · p + (1− r) · q) = (1− r) · ρ(p, q).
(28) If 0 ¬ r, then ρ(q, r · p + (1− r) · q) = r · ρ(p, q).
(29) If p ∈ L(q1, q2), then ρ(q1, p) + ρ(p, q2) = ρ(q1, q2).
(30) If q1 ∈ L(q2, p) and q1 6= q2, then ρ(q1, p) < ρ(q2, p).
(31) If y = [0, 0], then Ball(y, r) = {q : |q| < r}.

4. Affine Maps

Next we state several propositions:

(32) (AffineMap(r, s1, r, s2))(p) = r · p + [s1, s2].
(33) (AffineMap(r, q1, r, q2))(p) = r · p + q.

(34) If s1 > 0 and s2 > 0, then
AffineMap(s1, t1, s2, t2) ·AffineMap( 1

s1
,− t1

s1
, 1

s2
,− t2

s2
) = idR2 .

(35) If y = [0, 0] and x = q and r > 0, then (AffineMap(r, q1, r, q2))◦Ball(y, 1) =
Ball(x, r).

(36) For all real numbers A, B, C, D such that A > 0 and C > 0 holds
AffineMap(A,B, C, D) is onto.

(37) Ball(x, r)c is a connected subset of E2
T.

5. Minimal Distance Between Subsets

Let us consider n and let A, B be subsets of the carrier of En
T. The functor

distmin(A,B) yielding a real number is defined by:

(Def. 1) There exist subsets A′, B′ of (En)top such that A = A′ and B = B′ and
distmin(A,B) = distmin

min(A′, B′).
Let M be a non empty metric space and let P , Q be non empty compact

subsets of Mtop. Let us note that the functor distmin
min(P, Q) is commutative. Let

us observe that the functor distmax
max(P,Q) is commutative.

Let us consider n and let A, B be non empty compact subsets of En
T. Let us

observe that the functor distmin(A,B) is commutative.
Next we state several propositions:

(38) For all non empty subsets A, B of En
T holds distmin(A,B)  0.
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(39) For all compact subsets A, B of En
T such that A meets B holds

distmin(A,B) = 0.
(40) Let A, B be non empty subsets of En

T. Suppose that for all points p, q of
En

T such that p ∈ A and q ∈ B holds ρ(p, q)  r. Then distmin(A,B)  r.

(41) Let D be a subset of the carrier of En
T and A, C be non empty subsets

of the carrier of En
T. If C ⊆ D, then distmin(A, D) ¬ distmin(A,C).

(42) For all non empty compact subsets A, B of En
T there exist points p, q of

En
T such that p ∈ A and q ∈ B and distmin(A,B) = ρ(p, q).

(43) For all points p, q of En
T holds distmin({p}, {q}) = ρ(p, q).

Let us consider n, let p be a point of En
T, and let B be a subset of the carrier

of En
T. The functor ρ(p, B) yielding a real number is defined as follows:

(Def. 2) ρ(p,B) = distmin({p}, B).
Next we state several propositions:

(44) For every non empty subset A of En
T and for every point p of En

T holds
ρ(p,A)  0.

(45) For every compact subset A of En
T and for every point p of En

T such that
p ∈ A holds ρ(p,A) = 0.

(46) Let A be a non empty compact subset of En
T and p be a point of En

T.
Then there exists a point q of En

T such that q ∈ A and ρ(p, A) = ρ(p, q).
(47) Let C be a non empty subset of the carrier of En

T and D be a subset of the
carrier of En

T. If C ⊆ D, then for every point q of En
T holds ρ(q,D) ¬ ρ(q, C).

(48) Let A be a non empty subset of En
T and p be a point of En

T. If for every
point q of En

T such that q ∈ A holds ρ(p, q)  r, then ρ(p,A)  r.

(49) For all points p, q of En
T holds ρ(p, {q}) = ρ(p, q).

(50) For every non empty subset A of En
T and for all points p, q of En

T such
that q ∈ A holds ρ(p,A) ¬ ρ(p, q).

(51) Let A be a compact non empty subset of E2
T and B be an open subset

of E2
T. If A ⊆ B, then for every point p of E2

T such that p /∈ B holds
ρ(p,B) < ρ(p, A).

6. BDD and UBD

The following two propositions are true:

(52) UBD C meets UBD D.

(53) If q ∈ UBD C and p ∈ BDD C, then ρ(q, C) < ρ(q, p).

Let us consider C. Observe that BDD C is non empty.
One can prove the following three propositions:

(54) If p /∈ BDD C, then ρ(p, C) ¬ ρ(p, BDD C).
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(55) C 6⊆ BDD D or D 6⊆ BDD C.

(56) If C ⊆ BDD D, then D ⊆ UBD C.

7. Main Definitions

We now state the proposition

(57) L̃(Cage(C, n)) ⊆ UBD C.

Let us consider C. The functor LowerMiddlePoint C yielding a point of E2
T

is defined by:

(Def. 3) LowerMiddlePoint C =
FPoint(LowerArc C, W-min C, E-max C, VerticalLine W-bound C+E-bound C

2 ).
The functor UpperMiddlePoint C yielding a point of E2

T is defined by:

(Def. 4) UpperMiddlePoint C =
FPoint(UpperArc C, W-min C, E-max C, VerticalLine W-bound C+E-bound C

2 ).
We now state several propositions:

(58) LowerArc C meets VerticalLine W-bound C+E-bound C
2 .

(59) UpperArc C meets VerticalLine W-bound C+E-bound C
2 .

(60) (LowerMiddlePoint C)1 = W-bound C+E-bound C
2 .

(61) (UpperMiddlePoint C)1 = W-bound C+E-bound C
2 .

(62) LowerMiddlePoint C ∈ LowerArc C.

(63) UpperMiddlePoint C ∈ UpperArc C.
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Summary. Relations of convergence of real sequences and convergence
of metric spaces are investigated. An abstract intermediate value theorem for
two closed sets in the range is presented. At the end, it is proven that an arc
connecting the west minimal point and the east maximal point in a simple closed
curve must be identical to the upper arc or lower arc of the closed curve.

MML Identifier: TOPMETR3.

The notation and terminology used here are introduced in the following papers:
[21], [22], [23], [3], [4], [2], [12], [18], [6], [1], [20], [7], [5], [8], [16], [14], [13], [15],
[11], [19], [17], [9], and [10].

The following propositions are true:

(1) Let R be a non empty subset of R and r0 be a real number. If for every
real number r such that r ∈ R holds r ¬ r0, then sup R ¬ r0.

(2) Let X be a non empty metric space, S be a sequence of X, and F be a
subset of Xtop. Suppose S is convergent and for every natural number n

holds S(n) ∈ F and F is closed. Then lim S ∈ F.

(3) Let X, Y be non empty metric spaces, f be a map from Xtop into Ytop,
and S be a sequence of X. Then f · S is a sequence of Y .

(4) Let X, Y be non empty metric spaces, f be a map from Xtop into Ytop,
S be a sequence of X, and T be a sequence of Y . If S is convergent and
T = f · S and f is continuous, then T is convergent.

1This work has been partially supported by the European Community TYPES grant IST-
1999-29001 and CALCULEMUS grant HPRN-CT-2000-00102.
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(5) For every non empty metric space X holds every function from N into
the carrier of X is a sequence of X.

(6) Let s be a sequence of real numbers and S be a sequence of the metric
space of real numbers such that s = S. Then

(i) s is convergent iff S is convergent, and
(ii) if s is convergent, then lim s = lim S.

(7) Let a, b be real numbers and s be a sequence of real numbers. If rng s ⊆
[a, b], then s is a sequence of [a, b]M.

(8) Let a, b be real numbers and S be a sequence of [a, b]M. Suppose a ¬ b.

Then S is a sequence of the metric space of real numbers.

(9) Let a, b be real numbers, S1 be a sequence of [a, b]M, and S be a sequence
of the metric space of real numbers such that S = S1 and a ¬ b. Then

(i) S is convergent iff S1 is convergent, and
(ii) if S is convergent, then lim S = lim S1.

(10) Let a, b be real numbers, s be a sequence of real numbers, and S be a
sequence of [a, b]M. If S = s and a ¬ b and s is convergent, then S is
convergent and lim s = lim S.

(11) Let a, b be real numbers, s be a sequence of real numbers, and S be a
sequence of [a, b]M. If S = s and a ¬ b and s is non-decreasing, then S is
convergent.

(12) Let a, b be real numbers, s be a sequence of real numbers, and S be a
sequence of [a, b]M. If S = s and a ¬ b and s is non-increasing, then S is
convergent.

(13) Let s be a sequence of real numbers and r0 be a real number. Suppose
for every natural number n holds s(n) ¬ r0 and s is convergent. Then
lim s ¬ r0.

(14) Let s be a sequence of real numbers and r0 be a real number. Suppose
for every natural number n holds s(n)  r0 and s is convergent. Then
lim s  r0.

(15) Let R be a non empty subset of R. Suppose R is upper bounded. Then
there exists a sequence s of real numbers such that s is non-decreasing
and rng s ⊆ R and lim s = sup R.

(16) Let R be a non empty subset of R. Suppose R is lower bounded. Then
there exists a sequence s of real numbers such that s is non-increasing and
rng s ⊆ R and lim s = inf R.

(17) Let X be a non empty metric space, f be a map from I into Xtop, F1, F2

be subsets of Xtop, and r1, r2 be real numbers. Suppose that 0 ¬ r1 and
r2 ¬ 1 and r1 ¬ r2 and f(r1) ∈ F1 and f(r2) ∈ F2 and F1 is closed and F2

is closed and f is continuous and F1 ∪ F2 = the carrier of X. Then there
exists a real number r such that r1 ¬ r and r ¬ r2 and f(r) ∈ F1 ∩ F2.
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(18) Let n be a natural number, p1, p2 be points of En
T, and P , P1 be non

empty subsets of the carrier of En
T. If P is an arc from p1 to p2 and P1 is

an arc from p2 to p1 and P1 ⊆ P, then P1 = P.

(19) Let P , P1 be compact non empty subsets of E2
T. Suppose P is a simple

closed curve and P1 is an arc from W-min P to E-max P and P1 ⊆ P.

Then P1 = UpperArc P or P1 = LowerArc P.
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Summary. The purpose of the paper is to prove lemmas needed for the
Jordan curve theorem. The main result is that the decomposition of a simple
closed curve into two arcs with the ends p1, p2 is unique in the sense that every
arc on the curve with the same ends must be equal to one of them.

MML Identifier: JORDAN16.

The articles [25], [24], [26], [14], [27], [2], [4], [8], [3], [22], [17], [21], [7], [6],
[20], [1], [23], [15], [9], [5], [10], [19], [18], [11], [13], [12], and [16] provide the
terminology and notation for this paper.

One can prove the following proposition

(1) Let S1 be a finite non empty subset of R and e be a real number. If for
every real number r such that r ∈ S1 holds r < e, then max S1 < e.

For simplicity, we use the following convention: C is a simple closed curve,
A, A1, A2 are subsets of E2

T, p, p1, p2, q, q1, q2 are points of E2
T, and n is a

natural number.
Let us consider n. Note that there exists a subset of En

T which is trivial.
We now state a number of propositions:

(2) For all sets a, b, c, X such that a ∈ X and b ∈ X and c ∈ X holds
{a, b, c} ⊆ X.

(3) ∅En
T

is Bounded.

(4) LowerArc C 6= UpperArc C.

(5) Segment(A, p1, p2, q1, q2) ⊆ A.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
The work has been done while the author visited Shinshu University.
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(6) Let T be a non empty topological space and A, B be subsets of the
carrier of T . If A ⊆ B, then T ¹A is a subspace of T ¹B.

(7) If A is an arc from p1 to p2 and q ∈ A, then q ∈ LSegment(A, p1, p2, q).
(8) If A is an arc from p1 to p2 and q ∈ A, then q ∈ RSegment(A, p1, p2, q).
(9) If A is an arc from p1 to p2 and LE q1, q2, A, p1, p2, then q1 ∈

Segment(A, p1, p2, q1, q2) and q2 ∈ Segment(A, p1, p2, q1, q2).
(10) Segment(p, q, C) ⊆ C.

(11) If p ∈ C and q ∈ C, then LE(p, q, C) or LE(q, p, C).
(12) Let X, Y be non empty topological spaces, Y0 be a non empty subspace

of Y , f be a map from X into Y , and g be a map from X into Y0. If f = g

and f is continuous, then g is continuous.

(13) Let S, T be non empty topological spaces, S0 be a non empty subspace
of S, T0 be a non empty subspace of T , and f be a map from S into
T . Suppose f is a homeomorphism. Let g be a map from S0 into T0. If
g = f¹S0 and g is onto, then g is a homeomorphism.

(14) Let P1, P2, P3 be subsets of E2
T and p1, p2 be points of E2

T. Suppose P1

is an arc from p1 to p2 and P2 is an arc from p1 to p2 and P3 is an arc
from p1 to p2 and P2 ∩ P3 = {p1, p2} and P1 ⊆ P2 ∪ P3. Then P1 = P2 or
P1 = P3.

(15) Let C be a simple closed curve, A1, A2 be subsets of E2
T, and p1, p2 be

points of E2
T. Suppose A1 is an arc from p1 to p2 and A2 is an arc from

p1 to p2 and A1 ⊆ C and A2 ⊆ C and A1 6= A2. Then A1 ∪ A2 = C and
A1 ∩A2 = {p1, p2}.

(16) Let A1, A2 be subsets of E2
T and p1, p2, q1, q2 be points of E2

T. If A1 is
an arc from p1 to p2 and A1 ∩A2 = {q1, q2}, then A1 6= A2.

(17) Let C be a simple closed curve, A1, A2 be subsets of E2
T, and p1, p2 be

points of E2
T. Suppose A1 is an arc from p1 to p2 and A2 is an arc from p1

to p2 and A1 ⊆ C and A2 ⊆ C and A1∩A2 = {p1, p2}. Then A1∪A2 = C.

(18) Suppose A1 ⊆ C and A2 ⊆ C and A1 6= A2 and A1 is an arc from p1 to
p2 and A2 is an arc from p1 to p2. Let given A. If A is an arc from p1 to
p2 and A ⊆ C, then A = A1 or A = A2.

(19) Let C be a simple closed curve and A be a non empty subset of E2
T. If

A is an arc from W-min C to E-max C and A ⊆ C, then A = LowerArc C

or A = UpperArc C.

(20) Suppose A is an arc from p1 to p2 and LE q1, q2, A, p1, p2. Then there
exists a map g from I into (E2

T)¹A and there exist real numbers s1, s2 such
that g is a homeomorphism and g(0) = p1 and g(1) = p2 and g(s1) = q1

and g(s2) = q2 and 0 ¬ s1 and s1 ¬ s2 and s2 ¬ 1.

(21) Suppose A is an arc from p1 to p2 and LE q1, q2, A, p1, p2 and q1 6= q2.

Then there exists a map g from I into (E2
T)¹A and there exist real numbers
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s1, s2 such that g is a homeomorphism and g(0) = p1 and g(1) = p2 and
g(s1) = q1 and g(s2) = q2 and 0 ¬ s1 and s1 < s2 and s2 ¬ 1.

(22) If A is an arc from p1 to p2 and LE q1, q2, A, p1, p2, then
Segment(A, p1, p2, q1, q2) is non empty.

(23) If p ∈ C, then p ∈ Segment(p, W-min C, C) and W-min C ∈
Segment(p, W-min C, C).

Let f be a partial function from R to R. We say that f is continuous if and
only if:

(Def. 1) f is continuous on dom f.

Let f be a function from R into R. Let us observe that f is continuous if
and only if:

(Def. 2) f is continuous on R.

Let a, b be real numbers. The functor AffineMap(a, b) yielding a function
from R into R is defined by:

(Def. 3) For every real number x holds (AffineMap(a, b))(x) = a · x + b.

Let a, b be real numbers. Observe that AffineMap(a, b) is continuous.
Let us mention that there exists a function from R into R which is continuous.
We now state a number of propositions:

(24) Let f , g be continuous partial functions from R to R. Then g · f is a
continuous partial function from R to R.

(25) For all real numbers a, b holds (AffineMap(a, b))(0) = b.

(26) For all real numbers a, b holds (AffineMap(a, b))(1) = a + b.

(27) For all real numbers a, b such that a 6= 0 holds AffineMap(a, b) is one-
to-one.

(28) For all real numbers a, b, x, y such that a > 0 and x < y holds
(AffineMap(a, b))(x) < (AffineMap(a, b))(y).

(29) For all real numbers a, b, x, y such that a < 0 and x < y holds
(AffineMap(a, b))(x) > (AffineMap(a, b))(y).

(30) For all real numbers a, b, x, y such that a  0 and x ¬ y holds
(AffineMap(a, b))(x) ¬ (AffineMap(a, b))(y).

(31) For all real numbers a, b, x, y such that a ¬ 0 and x ¬ y holds
(AffineMap(a, b))(x)  (AffineMap(a, b))(y).

(32) For all real numbers a, b such that a 6= 0 holds rng AffineMap(a, b) = R.

(33) For all real numbers a, b such that a 6= 0 holds (AffineMap(a, b))−1 =
AffineMap(a−1,− b

a).
(34) For all real numbers a, b such that a > 0 holds (AffineMap(a, b))◦[0, 1] =

[b, a + b].
(35) For every map f from R1 into R1 and for all real numbers a, b such that

a 6= 0 and f = AffineMap(a, b) holds f is a homeomorphism.
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(36) If A is an arc from p1 to p2 and LE q1, q2, A, p1, p2 and q1 6= q2, then
Segment(A, p1, p2, q1, q2) is an arc from q1 to q2.

(37) Let p1, p2 be points of E2
T and P be a subset of E2

T. Suppose P ⊆ C

and P is an arc from p1 to p2 and W-min C ∈ P and E-max C ∈ P. Then
UpperArc C ⊆ P or LowerArc C ⊆ P.
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The articles [12], [13], [1], [6], [7], [10], [4], [3], [11], [5], [8], [2], and [9] provide
the notation and terminology for this paper.

We follow the rules: C, P denote simple closed curves and a, b, c, d, e denote
points of E2

T.
We now state several propositions:

(1) Let n be a natural number, a, p1, p2 be points of En
T, and P be a subset

of the carrier of En
T. Suppose a ∈ P and P is an arc from p1 to p2. Then

there exists a map f from I into (En
T)¹P and there exists a real number r

such that f is a homeomorphism and f(0) = p1 and f(1) = p2 and 0 ¬ r

and r ¬ 1 and f(r) = a.

(2) LE(W-min P, E-max P, P ).
(3) If LE(a, E-max P, P ), then a ∈ UpperArc P.

(4) If LE(E-max P, a, P ), then a ∈ LowerArc P.

(5) If LE(a, W-min P, P ), then a ∈ LowerArc P.

(6) Let P be a subset of the carrier of E2
T. Suppose a 6= b and P is an arc

from c to d and LE a, b, P , c, d. Then there exists e such that a 6= e and
b 6= e and LE a, e, P , c, d and LE e, b, P , c, d.

(7) If a ∈ P, then there exists e such that a 6= e and LE(a, e, P ).
(8) If a 6= b and LE(a, b, P ), then there exists c such that c 6= a and c 6= b

and LE(a, c, P ) and LE(c, b, P ).
Let P be a compact non empty subset of E2

T and let a, b, c, d be points of
E2

T. We say that a, b, c, d are in this order on P if and only if:

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(Def. 1) LE(a, b, P ) and LE(b, c, P ) and LE(c, d, P ) or LE(b, c, P ) and LE(c, d, P )
and LE(d, a, P ) or LE(c, d, P ) and LE(d, a, P ) and LE(a, b, P ) or
LE(d, a, P ) and LE(a, b, P ) and LE(b, c, P ).

The following propositions are true:

(9) If a ∈ P, then a, a, a, a are in this order on P .

(10) If a, b, c, d are in this order on P , then b, c, d, a are in this order on P .

(11) If a, b, c, d are in this order on P , then c, d, a, b are in this order on P .

(12) If a, b, c, d are in this order on P , then d, a, b, c are in this order on P .

(13) Suppose a 6= b and a, b, c, d are in this order on P . Then there exists e

such that e 6= a and e 6= b and a, e, b, c are in this order on P .

(14) Suppose a 6= b and a, b, c, d are in this order on P . Then there exists e

such that e 6= a and e 6= b and a, e, b, d are in this order on P .

(15) Suppose b 6= c and a, b, c, d are in this order on P . Then there exists e

such that e 6= b and e 6= c and a, b, e, c are in this order on P .

(16) Suppose b 6= c and a, b, c, d are in this order on P . Then there exists e

such that e 6= b and e 6= c and b, e, c, d are in this order on P .

(17) Suppose c 6= d and a, b, c, d are in this order on P . Then there exists e

such that e 6= c and e 6= d and a, c, e, d are in this order on P .

(18) Suppose c 6= d and a, b, c, d are in this order on P . Then there exists e

such that e 6= c and e 6= d and b, c, e, d are in this order on P .

(19) Suppose d 6= a and a, b, c, d are in this order on P . Then there exists e

such that e 6= d and e 6= a and a, b, d, e are in this order on P .

(20) Suppose d 6= a and a, b, c, d are in this order on P . Then there exists e

such that e 6= d and e 6= a and a, c, d, e are in this order on P .

(21) Suppose a 6= c and a 6= d and b 6= d and a, b, c, d are in this order on P

and b, a, c, d are in this order on P . Then a = b.

(22) Suppose a 6= b and b 6= c and c 6= d and a, b, c, d are in this order on P

and c, b, a, d are in this order on P . Then a = c.

(23) Suppose a 6= b and a 6= c and b 6= d and a, b, c, d are in this order on P

and d, b, c, a are in this order on P . Then a = d.

(24) Suppose a 6= c and a 6= d and b 6= d and a, b, c, d are in this order on P

and a, c, b, d are in this order on P . Then b = c.

(25) Suppose a 6= b and b 6= c and c 6= d and a, b, c, d are in this order on P

and a, d, c, b are in this order on P . Then b = d.

(26) Suppose a 6= b and a 6= c and b 6= d and a, b, c, d are in this order on P

and a, b, d, c are in this order on P . Then c = d.

(27) Suppose a ∈ C and b ∈ C and c ∈ C and d ∈ C. Then
(i) a, b, c, d are in this order on C, or
(ii) a, b, d, c are in this order on C, or
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(iii) a, c, b, d are in this order on C, or
(iv) a, c, d, b are in this order on C, or
(v) a, d, b, c are in this order on C, or
(vi) a, d, c, b are in this order on C.
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The notation and terminology used in this paper are introduced in the following
articles: [19], [21], [22], [2], [3], [10], [20], [13], [14], [18], [6], [17], [5], [11], [1], [7],
[8], [4], [9], [16], [12], and [15].

1. Preliminaries

For simplicity, we adopt the following rules: n denotes an element of N, V

denotes a subset of the carrier of En
T, s, s1, s2, t, t1, t2 denote points of En

T, C

denotes a simple closed curve, P denotes a subset of the carrier of E2
T, and a, p,

p1, p2, q, q1, q2 denote points of E2
T.

Next we state several propositions:

(1) For all real numbers a, b holds (a− b)2 = (b− a)2.

(2) Let S, T be non empty topological spaces, f be a map from S into T ,
and A be a subset of T . If f is a homeomorphism and A is connected, then
f−1(A) is connected.

(3) Let S, T be non empty topological structures, f be a map from S into
T , and A be a subset of T . If f is a homeomorphism and A is compact,
then f−1(A) is compact.

(4) proj2◦NorthHalfline a is lower bounded.

(5) proj2◦ SouthHalfline a is upper bounded.

(6) proj1◦WestHalfline a is upper bounded.

(7) proj1◦ EastHalfline a is lower bounded.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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Let us consider a. One can verify the following observations:

∗ proj2◦NorthHalfline a is non empty,

∗ proj2◦ SouthHalfline a is non empty,

∗ proj1◦WestHalfline a is non empty, and

∗ proj1◦ EastHalfline a is non empty.

Next we state four propositions:

(8) inf(proj2◦NorthHalfline a) = a2.

(9) sup(proj2◦ SouthHalfline a) = a2.

(10) sup(proj1◦WestHalfline a) = a1.

(11) inf(proj1◦ EastHalfline a) = a1.

Let us consider a. One can verify the following observations:

∗ NorthHalfline a is closed,

∗ SouthHalfline a is closed,

∗ EastHalfline a is closed, and

∗ WestHalfline a is closed.

One can prove the following propositions:

(12) If a ∈ BDD P, then NorthHalfline a 6⊆ UBD P.

(13) If a ∈ BDD P, then SouthHalfline a 6⊆ UBD P.

(14) If a ∈ BDD P, then EastHalfline a 6⊆ UBD P.

(15) If a ∈ BDD P, then WestHalfline a 6⊆ UBD P.

(16) Let P be a subset of the carrier of E2
T and p1, p2, q be points of E2

T. If P

is an arc from p1 to p2 and q 6= p2, then p2 /∈ LSegment(P, p1, p2, q).
(17) Let P be a subset of the carrier of E2

T and p1, p2, q be points of E2
T. If P

is an arc from p1 to p2 and q 6= p1, then p1 /∈ RSegment(P, p1, p2, q).
(18) Let C be a simple closed curve, P be a subset of the carrier of E2

T, and
p1, p2 be points of E2

T. Suppose P is an arc from p1 to p2 and P ⊆ C. Then
there exists a non empty subset R of E2

T such that R is an arc from p1 to
p2 and P ∪R = C and P ∩R = {p1, p2}.

(19) Let P be a subset of the carrier of E2
T and p1, p2, q1, q2 be points of E2

T.
Suppose P is an arc from p1 to p2 and q1 ∈ P and q2 ∈ P and q1 6= p1

and q1 6= p2 and q2 6= p1 and q2 6= p2 and q1 6= q2. Then there exists a non
empty subset Q of E2

T such that Q is an arc from q1 to q2 and Q ⊆ P and
Q misses {p1, p2}.

2. Two Special Points on a Simple Closed Curve

Let us consider p, P . The functor North-Bound(p, P ) yields a point of E2
T

and is defined by:
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(Def. 1) North-Bound(p, P ) = [p1, inf(proj2◦(P ∩NorthHalfline p))].
The functor South-Bound(p, P ) yields a point of E2

T and is defined by:

(Def. 2) South-Bound(p, P ) = [p1, sup(proj2◦(P ∩ SouthHalfline p))].
One can prove the following propositions:

(20) (North-Bound(p, P ))1 = p1 and (South-Bound(p, P ))1 = p1.

(21) (North-Bound(p, P ))2 = inf(proj2◦(P ∩NorthHalfline p)) and
(South-Bound(p, P ))2 = sup(proj2◦(P ∩ SouthHalfline p)).

(22) For every compact subset C of E2
T such that p ∈ BDD C holds

North-Bound(p, C) ∈ C and North-Bound(p, C) ∈ NorthHalfline p and
South-Bound(p, C) ∈ C and South-Bound(p, C) ∈ SouthHalfline p.

(23) For every compact subset C of E2
T such that p ∈ BDD C holds

(South-Bound(p, C))2 < p2 and p2 < (North-Bound(p, C))2.

(24) For every compact subset C of E2
T such that p ∈ BDD C holds

inf(proj2◦(C ∩NorthHalfline p)) > sup(proj2◦(C ∩ SouthHalfline p)).
(25) For every compact subset C of E2

T such that p ∈ BDD C holds
South-Bound(p, C) 6= North-Bound(p, C).

(26) For every subset C of the carrier of E2
T holds

L(North-Bound(p, C), South-Bound(p, C)) is vertical.

(27) For every compact subset C of E2
T such that p ∈ BDD C holds

L(North-Bound(p, C), South-Bound(p, C)) ∩ C =
{North-Bound(p, C), South-Bound(p, C)}.

(28) Let C be a compact subset of E2
T. Suppose p ∈ BDD C and q ∈

BDD C and p1 6= q1. Then North-Bound(p, C), South-Bound(q, C),
North-Bound(q, C), South-Bound(p, C) are mutually different.

3. An Order of Points on a Simple Closed Curve

Let us consider n, V , s1, s2, t1, t2. We say that s1, s2 separate t1, t2 on V

if and only if:

(Def. 3) For every subset A of the carrier of En
T such that A is an arc from s1 to

s2 and A ⊆ V holds A meets {t1, t2}.
We introduce s1, s2 are neighbours wrt t1, t2 on V as an antonym of s1, s2

separate t1, t2 on V .
We now state a number of propositions:

(29) t, t separate s1, s2 on V .

(30) If s1, s2 separate t1, t2 on V , then s2, s1 separate t1, t2 on V .

(31) If s1, s2 separate t1, t2 on V , then s1, s2 separate t2, t1 on V .

(32) s, t1 separate s, t2 on V .

(33) t1, s separate t2, s on V .
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(34) t1, s separate s, t2 on V .

(35) s, t1 separate t2, s on V .

(36) Let p1, p2, q be points of E2
T. Suppose q ∈ C and p1 ∈ C and p2 ∈ C and

p1 6= p2 and p1 6= q and p2 6= q. Then p1, p2 are neighbours wrt q, q on C.

(37) If p1 6= p2 and p1 ∈ C and p2 ∈ C, then if p1, p2 separate q1, q2 on C,
then q1, q2 separate p1, p2 on C.

(38) Suppose p1 ∈ C and p2 ∈ C and q1 ∈ C and p1 6= p2 and q1 6= p1 and
q1 6= p2 and q2 6= p1 and q2 6= p2. Then p1, p2 are neighbours wrt q1, q2 on
C or p1, q1 are neighbours wrt p2, q2 on C.
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Summary. Initial notions for order sorted algebras.

MML Identifier: OSALG 1.

The articles [9], [13], [14], [4], [15], [5], [8], [7], [2], [3], [1], [10], [12], [11], and [6]
provide the notation and terminology for this paper.

1. Preliminaries

In this paper i is a set.
Let I be a set, let f be a many sorted set indexed by I, and let p be a finite

sequence of elements of I. One can check that f · p is finite sequence-like.
Let S be a non empty many sorted signature. A sort symbol of S is an

element of S.
Let S be a non empty many sorted signature.

(Def. 1) An element of the operation symbols of S is said to be an operation
symbol of S.

Let S be a non void non empty many sorted signature and let o be an
operation symbol of S. Then the result sort of o is an element of S.

Let X be a set. Then 4X is an order in X. We introduce 4o
X as a synonym

of 4X .
Let X be a set. Then 4X is an equivalence relation of X. We introduce 4r

X

as a synonym of 4X .

1This work was done during author’s research visit in Bialystok, funded by the CALCU-
LEMUS grant HPRN-CT-2000-00102.
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We introduce overloaded many sorted signatures which are extensions of
many sorted signature and are systems
〈 a carrier, operation symbols, an overloading, an arity, a result sort 〉,

where the carrier is a set, the operation symbols constitute a set, the overloading
is an equivalence relation of the operation symbols, the arity is a function from
the operation symbols into the carrier∗, and the result sort is a function from
the operation symbols into the carrier.

We introduce relation sorted signatures which are extensions of many sorted
signature and relational structure and are systems
〈 a carrier, an internal relation, operation symbols, an arity, a result sort 〉,

where the carrier is a set, the internal relation is a binary relation on the carrier,
the operation symbols constitute a set, the arity is a function from the operation
symbols into the carrier∗, and the result sort is a function from the operation
symbols into the carrier.

We consider overloaded relation sorted signatures as extensions of overloaded
many sorted signature and relation sorted signature as systems
〈 a carrier, an internal relation, operation symbols, an overloading, an arity,

a result sort 〉,
where the carrier is a set, the internal relation is a binary relation on the carrier,
the operation symbols constitute a set, the overloading is an equivalence relation
of the operation symbols, the arity is a function from the operation symbols into
the carrier∗, and the result sort is a function from the operation symbols into
the carrier.

For simplicity, we use the following convention: A, O are non empty sets, R

is an order in A, O1 is an equivalence relation of O, f is a function from O into
A∗, and g is a function from O into A.

One can prove the following proposition

(1) 〈A,R,O, O1, f, g〉 is non empty, non void, reflexive, transitive, and anti-
symmetric.

Let us consider A, R, O, O1, f , g. One can verify that 〈A, R, O,O1, f, g〉 is
strict, non empty, reflexive, transitive, and antisymmetric.

2. The Notions: Order-Sorted, Discernable, Op-Discrete

In the sequel S is an overloaded relation sorted signature.
Let us consider S. We say that S is order-sorted if and only if:

(Def. 2) S is reflexive, transitive, and antisymmetric.

Let us note that every overloaded relation sorted signature which is order-
sorted is also reflexive, transitive, and antisymmetric and there exists an overlo-
aded relation sorted signature which is strict, non empty, non void, and order-
sorted.
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Let us observe that there exists an overloaded many sorted signature which
is non empty and non void.

Let S be a non empty non void overloaded many sorted signature and let x,
y be operation symbols of S. The predicate x ∼= y is defined by:

(Def. 3) 〈〈x, y〉〉 ∈ the overloading of S.

Let us notice that the predicate x ∼= y is reflexive and symmetric.
One can prove the following proposition

(2) Let S be a non empty non void overloaded many sorted signature and
o, o1, o2 be operation symbols of S. If o ∼= o1 and o1

∼= o2, then o ∼= o2.

Let S be a non empty non void overloaded many sorted signature. We say
that S is discernable if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let x, y be operation symbols of S. Suppose x ∼= y and Arity(x) =
Arity(y) and the result sort of x = the result sort of y. Then x = y.

We say that S is op-discrete if and only if:

(Def. 5) The overloading of S = 4r
the operation symbols of S .

The following two propositions are true:

(3) Let S be a non empty non void overloaded many sorted signature. Then
S is op-discrete if and only if for all operation symbols x, y of S such that
x ∼= y holds x = y.

(4) For every non empty non void overloaded many sorted signature S such
that S is op-discrete holds S is discernable.

3. Order Sorted Signature

In the sequel S0 is a non empty non void many sorted signature.
Let us consider S0. The functor OSSign S0 yields a strict non empty non

void order-sorted overloaded relation sorted signature and is defined by the
conditions (Def. 6).

(Def. 6)(i) The carrier of S0 = the carrier of OSSign S0,

(ii) 4the carrier of S0 = the internal relation of OSSign S0,

(iii) the operation symbols of S0 = the operation symbols of OSSign S0,

(iv) 4the operation symbols of S0 = the overloading of OSSign S0,

(v) the arity of S0 = the arity of OSSign S0, and
(vi) the result sort of S0 = the result sort of OSSign S0.

Next we state the proposition

(5) OSSign S0 is discrete and op-discrete.

Let us mention that there exists a strict non empty non void order-sorted
overloaded relation sorted signature which is discrete, op-discrete, and discer-
nable.
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Let us observe that every non empty non void overloaded relation sorted
signature which is op-discrete is also discernable.

Let us consider S0. Observe that OSSign S0 is discrete and op-discrete.
An order sorted signature is a discernable non empty non void order-sorted

overloaded relation sorted signature.
We use the following convention: S is a non empty poset, s1, s2 are elements

of S, and w1, w2 are elements of (the carrier of S)∗.
Let us consider S and let w1, w2 be elements of (the carrier of S)∗. The

predicate w1 ¬ w2 is defined as follows:

(Def. 7) len w1 = len w2 and for every set i such that i ∈ dom w1 and for all s1,
s2 such that s1 = w1(i) and s2 = w2(i) holds s1 ¬ s2.

Let us note that the predicate w1 ¬ w2 is reflexive.
We now state two propositions:

(6) For all elements w1, w2 of (the carrier of S)∗ such that w1 ¬ w2 and
w2 ¬ w1 holds w1 = w2.

(7) If S is discrete and w1 ¬ w2, then w1 = w2.

We follow the rules: S is an order sorted signature, o, o1, o2 are operation
symbols of S, and w1 is an element of (the carrier of S)∗.

One can prove the following proposition

(8) If S is discrete and o1
∼= o2 and Arity(o1) ¬ Arity(o2) and the result

sort of o1 ¬ the result sort of o2, then o1 = o2.

Let us consider S and let us consider o. We say that o is monotone if and
only if:

(Def. 8) For every o2 such that o ∼= o2 and Arity(o) ¬ Arity(o2) holds the result
sort of o ¬ the result sort of o2.

Let us consider S. We say that S is monotone if and only if:

(Def. 9) Every operation symbol of S is monotone.

The following proposition is true

(9) If S is op-discrete, then S is monotone.

Let us observe that there exists an order sorted signature which is monotone.
Let S be a monotone order sorted signature. Observe that there exists an

operation symbol of S which is monotone.
Let S be a monotone order sorted signature. One can check that every ope-

ration symbol of S is monotone.
One can check that every order sorted signature which is op-discrete is also

monotone.
We now state the proposition

(10) If S is monotone and Arity(o1) = ∅ and o1
∼= o2 and Arity(o2) = ∅, then

o1 = o2.
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Let us consider S, o, o1, w1. We say that o1 has least args for o, w1 if and
only if:

(Def. 10) o ∼= o1 and w1 ¬ Arity(o1) and for every o2 such that o ∼= o2 and
w1 ¬ Arity(o2) holds Arity(o1) ¬ Arity(o2).

We say that o1 has least sort for o, w1 if and only if:

(Def. 11) o ∼= o1 and w1 ¬ Arity(o1) and for every o2 such that o ∼= o2 and
w1 ¬ Arity(o2) holds the result sort of o1 ¬ the result sort of o2.

Let us consider S, o, o1, w1. We say that o1 has least rank for o, w1 if and
only if:

(Def. 12) o1 has least args for o, w1 and least sort for o, w1.

Let us consider S, o. We say that o is regular if and only if:

(Def. 13) o is monotone and for every w1 such that w1 ¬ Arity(o) holds there
exists o1 which has least args for o, w1.

Let S1 be a monotone order sorted signature. We say that S1 is regular if
and only if:

(Def. 14) Every operation symbol of S1 is regular.

In the sequel S1 is a monotone order sorted signature, o, o1 are operation
symbols of S1, and w1 is an element of (the carrier of S1)∗.

We now state two propositions:

(11) S1 is regular iff for all o, w1 such that w1 ¬ Arity(o) holds there exists
o1 which has least rank for o, w1.

(12) For every monotone order sorted signature S1 such that S1 is op-discrete
holds S1 is regular.

One can verify that there exists a monotone order sorted signature which is
regular.

Let us mention that every monotone order sorted signature which is op-
discrete is also regular.

Let S2 be a regular monotone order sorted signature. One can verify that
every operation symbol of S2 is regular.

We adopt the following rules: S2 is a regular monotone order sorted si-
gnature, o, o3, o4 are operation symbols of S2, and w1 is an element of
(the carrier of S2)∗.

One can prove the following proposition

(13) If w1 ¬ Arity(o) and o3 has least args for o, w1 and o4 has least args for
o, w1, then o3 = o4.

Let us consider S2, o, w1. Let us assume that w1 ¬ Arity(o). The functor
LBound(o, w1) yields an operation symbol of S2 and is defined as follows:

(Def. 15) LBound(o, w1) has least args for o, w1.

One can prove the following proposition



184 josef urban

(14) For every w1 such that w1 ¬ Arity(o) holds LBound(o, w1) has least
rank for o, w1.

In the sequel R denotes a non empty poset and z denotes a non empty set.
Let us consider R, z. The functor ConstOSSet(R, z) yielding a many sorted

set indexed by the carrier of R is defined by:

(Def. 16) ConstOSSet(R, z) = (the carrier of R) 7−→ z.

The following proposition is true

(15) ConstOSSet(R, z) is non-empty and for all elements s1, s2 of R such that
s1 ¬ s2 holds (ConstOSSet(R, z))(s1) ⊆ (ConstOSSet(R, z))(s2).

Let C be a 1-sorted structure.

(Def. 17) A many sorted set indexed by the carrier of C is said to be a many sorted
set indexed by C.

Let us consider R, z. Then ConstOSSet(R, z) is a many sorted set indexed
by R.

Let us consider R and let M be a many sorted set indexed by R. We say
that M is order-sorted if and only if:

(Def. 18) For all elements s1, s2 of R such that s1 ¬ s2 holds M(s1) ⊆M(s2).
Next we state the proposition

(16) ConstOSSet(R, z) is order-sorted.

Let us consider R. Observe that there exists a many sorted set indexed by
R which is order-sorted.

Let us consider R, z. Then ConstOSSet(R, z) is an order-sorted many sorted
set indexed by R.

Let R be a non empty poset. An order sorted set of R is an order-sorted
many sorted set indexed by R.

Let R be a non empty poset. Observe that there exists an order sorted set
of R which is non-empty.

We adopt the following convention: s1, s2 denote sort symbols of S, o,
o1, o2, o3 denote operation symbols of S, and w1, w2 denote elements of
(the carrier of S)∗.

Let us consider S and let M be an algebra over S. We say that M is order-
sorted if and only if:

(Def. 19) For all s1, s2 such that s1 ¬ s2 holds (the sorts of M)(s1) ⊆ (the sorts
of M)(s2).

The following proposition is true

(17) For every algebra M over S holds M is order-sorted iff the sorts of M

are an order sorted set of S.

In the sequel C1 denotes a many sorted function from (ConstOSSet(S, z))# ·
the arity of S into ConstOSSet(S, z) · the result sort of S.



order sorted algebras 185

Let us consider S, z, C1. The functor ConstOSA(S, z, C1) yielding a strict
non-empty algebra over S is defined by:

(Def. 20) The sorts of ConstOSA(S, z, C1) = ConstOSSet(S, z) and the characte-
ristics of ConstOSA(S, z, C1) = C1.

One can prove the following proposition

(18) ConstOSA(S, z, C1) is order-sorted.

Let us consider S. One can check that there exists an algebra over S which
is strict, non-empty, and order-sorted.

Let us consider S, z, C1. One can verify that ConstOSA(S, z, C1) is order-
sorted.

Let us consider S. An order sorted algebra of S is an order-sorted algebra
over S.

Next we state the proposition

(19) For every discrete order sorted signature S holds every algebra over S is
order-sorted.

Let S be a discrete order sorted signature. Observe that every algebra over
S is order-sorted.

In the sequel A denotes an order sorted algebra of S.
We now state the proposition

(20) If w1 ¬ w2, then (the sorts of A)#(w1) ⊆ (the sorts of A)#(w2).
In the sequel M is an algebra over S0.
Let us consider S0, M . The functor OSAlg M yielding a strict order sorted

algebra of OSSign S0 is defined as follows:

(Def. 21) The sorts of OSAlg M = the sorts of M and the characteristics of
OSAlg M = the characteristics of M .

In the sequel A denotes an order sorted algebra of S.
We now state the proposition

(21) For all elements w1, w2, w3 of (the carrier of S)∗ such that w1 ¬ w2 and
w2 ¬ w3 holds w1 ¬ w3.

Let us consider S, o1, o2. The predicate o1 ¬ o2 is defined as follows:

(Def. 22) o1
∼= o2 and Arity(o1) ¬ Arity(o2) and the result sort of o1 ¬ the result

sort of o2.

Let us note that the predicate o1 ¬ o2 is reflexive.
We now state several propositions:

(22) If o1 ¬ o2 and o2 ¬ o1, then o1 = o2.

(23) If o1 ¬ o2 and o2 ¬ o3, then o1 ¬ o3.

(24) If the result sort of o1 ¬ the result sort of o2, then Result(o1, A) ⊆
Result(o2, A).

(25) If Arity(o1) ¬ Arity(o2), then Args(o1, A) ⊆ Args(o2, A).
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(26) If o1 ¬ o2, then Args(o1, A) ⊆ Args(o2, A) and Result(o1, A) ⊆
Result(o2, A).

Let us consider S, A. We say that A is monotone if and only if:

(Def. 23) For all o1, o2 such that o1 ¬ o2 holds Den(o2, A)¹ Args(o1, A) = Den(o1,

A).
We now state two propositions:

(27) Let A be a non-empty order sorted algebra of S. Then A is monotone if
and only if for all o1, o2 such that o1 ¬ o2 holds Den(o1, A) ⊆ Den(o2, A).

(28) If S is discrete and op-discrete, then A is monotone.

Let us consider S, z and let z1 be an element of z. The functor
TrivialOSA(S, z, z1) yielding a strict order sorted algebra of S is defined by:

(Def. 24) The sorts of TrivialOSA(S, z, z1) = ConstOSSet(S, z) and for every o

holds Den(o, TrivialOSA(S, z, z1)) = Args(o, TrivialOSA(S, z, z1)) 7−→ z1.

Next we state the proposition

(29) For every element z1 of z holds TrivialOSA(S, z, z1) is non-empty and
TrivialOSA(S, z, z1) is monotone.

Let us consider S. Note that there exists an order sorted algebra of S which
is monotone, strict, and non-empty.

Let us consider S, z and let z1 be an element of z. One can check that
TrivialOSA(S, z, z1) is monotone and non-empty.

In the sequel o5, o6 are operation symbols of S.
Let us consider S. The functor OperNames S yields a non empty family of

subsets of the operation symbols of S and is defined as follows:

(Def. 25) OperNames S = Classes (the overloading of S).

Let us consider S. One can check that every element of OperNames S is non
empty.

Let us consider S. An OperName of S is an element of OperNames S.

Let us consider S, o5. The functor Name o5 yields an OperName of S and is
defined by:

(Def. 26) Name o5 = [o5]the overloading of S .

Next we state three propositions:

(30) o5
∼= o6 iff o6 ∈ [o5]the overloading of S .

(31) o5
∼= o6 iff Name o5 = Name o6.

(32) For every set X holds X is an OperName of S iff there exists o5 such
that X = Name o5.

Let us consider S and let o be an OperName of S. We see that the element
of o is an operation symbol of S.

Next we state two propositions:



order sorted algebras 187

(33) For every OperName o8 of S and for every operation symbol o7 of S

holds o7 is an element of o8 iff Name o7 = o8.

(34) Let S2 be a regular monotone order sorted signature, o5, o6 be operation
symbols of S2, and w be an element of (the carrier of S2)∗. If o5

∼= o6 and
len Arity(o5) = len Arity(o6) and w ¬ Arity(o5) and w ¬ Arity(o6), then
LBound(o5, w) = LBound(o6, w).

Let S2 be a regular monotone order sorted signature, let o8 be an OperName
of S2, and let w be an element of (the carrier of S2)∗. Let us assume that there
exists an element o7 of o8 such that w ¬ Arity(o7). The functor LBound(o8, w)
yields an element of o8 and is defined as follows:

(Def. 27) For every element o7 of o8 such that w ¬ Arity(o7) holds
LBound(o8, w) = LBound(o7, w).

Next we state the proposition

(35) Let S be a regular monotone order sorted signature, o be an operation
symbol of S, and w1 be an element of (the carrier of S)∗. If w1 ¬ Arity(o),
then LBound(o, w1) ¬ o.
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The papers [8], [5], [12], [14], [4], [7], [15], [3], [1], [6], [9], [10], [11], [2], and [13]
provide the notation and terminology for this paper.

1. Auxiliary Facts about Order Sorted Sets

In this paper x denotes a set and R denotes a non empty poset.
Next we state two propositions:

(1) For all order sorted sets X, Y of R holds X ∩Y is an order sorted set of
R.

(2) For all order sorted sets X, Y of R holds X ∪Y is an order sorted set of
R.

Let R be a non empty poset and let M be an order sorted set of R. A many
sorted subset indexed by M is said to be an order sorted subset of M if:

(Def. 1) It is an order sorted set of R.

Let R be a non empty poset and let M be a non-empty order sorted set of
R. Note that there exists an order sorted subset of M which is non-empty.

1This work was done during author’s research visit in Bialystok, funded by the CALCU-
LEMUS grant HPRN-CT-2000-00102.
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2. Constants of an Order Sorted Algebra

Let S be an order sorted signature and let U0 be an order sorted algebra of
S. A many sorted subset indexed by the sorts of U0 is said to be an OSSubset
of U0 if:

(Def. 2) It is an order sorted set of S.

Let S be an order sorted signature. Note that there exists an order sorted
algebra of S which is monotone, strict, and non-empty.

Let S be an order sorted signature and let U0 be a non-empty order sorted
algebra of S. One can verify that there exists an OSSubset of U0 which is non-
empty.

Next we state the proposition

(3) For every non void strict non empty many sorted signature S0 with
constant operations holds OSSign S0 has constant operations.

Let us note that there exists an order sorted signature which is strict and
has constant operations.

3. Subalgebras of an Order Sorted Algebra

The following proposition is true

(4) Let S be an order sorted signature and U0 be an order sorted algebra of
S. Then 〈the sorts of U0, the characteristics of U0〉 is order-sorted.

Let S be an order sorted signature and let U0 be an order sorted algebra of
S. One can verify that there exists a subalgebra of U0 which is order-sorted.

Let S be an order sorted signature and let U0 be an order sorted algebra of
S. An OSSubAlgebra of U0 is an order-sorted subalgebra of U0.

Let S be an order sorted signature and let U0 be an order sorted algebra of
S. One can verify that there exists an OSSubAlgebra of U0 which is strict.

Let S be an order sorted signature and let U0 be a non-empty order sorted
algebra of S. Observe that there exists an OSSubAlgebra of U0 which is non-
empty and strict.

One can prove the following proposition

(5) Let S be an order sorted signature, U0 be an order sorted algebra of S,
and U1 be an algebra over S. Then U1 is an OSSubAlgebra of U0 if and
only if the following conditions are satisfied:

(i) the sorts of U1 are an OSSubset of U0, and
(ii) for every OSSubset B of U0 such that B = the sorts of U1 holds B is

operations closed and the characteristics of U1 = Opers(U0, B).
In the sequel S1 is an order sorted signature and O0, O1, O2 are order sorted

algebras of S1.
The following propositions are true:
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(6) O1 is an OSSubAlgebra of O1.

(7) If O0 is an OSSubAlgebra of O1 and O1 is an OSSubAlgebra of O2, then
O0 is an OSSubAlgebra of O2.

(8) If O1 is a strict OSSubAlgebra of O2 and O2 is a strict OSSubAlgebra
of O1, then O1 = O2.

(9) For all OSSubAlgebras O1, O2 of O0 such that the sorts of O1 ⊆ the
sorts of O2 holds O1 is an OSSubAlgebra of O2.

(10) For all strict OSSubAlgebras O1, O2 of O0 such that the sorts of O1 = the
sorts of O2 holds O1 = O2.

In the sequel s, s1, s2 are sort symbols of S1.
Let us consider S1, O0, s. The functor OSConstants(O0, s) yields a subset

of (the sorts of O0)(s) and is defined by:

(Def. 3) OSConstants(O0, s) =
⋃{Constants(O0, s2) : s2 ¬ s}.

One can prove the following proposition

(11) Constants(O0, s) ⊆ OSConstants(O0, s).
Let us consider S1 and let M be a many sorted set indexed by the carrier of

S1. The functor OSCl M yields an order sorted set of S1 and is defined by:

(Def. 4) For every sort symbol s of S1 holds (OSCl M)(s) =
⋃{M(s1) : s1 ¬ s}.

Next we state three propositions:

(12) For every many sorted set M indexed by the carrier of S1 holds M ⊆
OSCl M.

(13) Let M be a many sorted set indexed by the carrier of S1 and A be an
order sorted set of S1. If M ⊆ A, then OSCl M ⊆ A.

(14) For every order sorted signature S and for every order sorted set X of
S holds OSCl X = X.

Let us consider S1, O0. The functor OSConstants O0 yields an OSSubset of
O0 and is defined by:

(Def. 5) For every sort symbol s of S1 holds (OSConstants O0)(s) =
OSConstants(O0, s).

One can prove the following propositions:

(15) Constants(O0) ⊆ OSConstants O0.

(16) For every OSSubset A of O0 such that Constants(O0) ⊆ A holds
OSConstants O0 ⊆ A.

(17) For every OSSubset A of O0 holds OSConstants O0 = OSCl Constants(O0).
(18) For every OSSubAlgebra O1 of O0 holds OSConstants O0 is an OSSubset

of O1.

(19) Let S be an order sorted signature with constant operations, O0 be a non-
empty order sorted algebra of S, and O1 be a non-empty OSSubAlgebra
of O0. Then OSConstants O0 is a non-empty OSSubset of O1.
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4. Order Sorted Subsets of an Order Sorted Algebra

Next we state the proposition

(20) Let I be a set, M be a many sorted set indexed by I, and x be a set.
Then x is a many sorted subset indexed by M if and only if x ∈∏

(2M ).

Let R be a non empty poset and let M be an order sorted set of R. The
functor OSbool M yielding a set is defined by:

(Def. 6) For every set x holds x ∈ OSbool M iff x is an order sorted subset of M .

Let S be an order sorted signature, let U0 be an order sorted algebra of S,
and let A be an OSSubset of U0. The functor OSSubSort A yields a set and is
defined as follows:

(Def. 7) OSSubSort A = {x; x ranges over elements of SubSorts(A): x is an order
sorted set of S}.

We now state two propositions:

(21) For every OSSubset A of O0 holds OSSubSort A ⊆ SubSorts(A).
(22) For every OSSubset A of O0 holds the sorts of O0 ∈ OSSubSort A.

Let us consider S1, O0 and let A be an OSSubset of O0. One can check that
OSSubSort A is non empty.

Let us consider S1, O0. The functor OSSubSort O0 yielding a set is defined
by:

(Def. 8) OSSubSort O0 = {x; x ranges over elements of SubSorts(O0):
x is an order sorted set of S1}.

The following proposition is true

(23) For every OSSubset A of O0 holds OSSubSort A ⊆ OSSubSort O0.

Let us consider S1, O0. One can check that OSSubSort O0 is non empty.
Let us consider S1, O0 and let e be an element of OSSubSort O0. The functor

@e yielding an OSSubset of O0 is defined by:

(Def. 9) @e = e.

Next we state two propositions:

(24) For all OSSubsets A, B of O0 holds B ∈ OSSubSort A iff B is operations
closed and OSConstants O0 ⊆ B and A ⊆ B.

(25) For every OSSubset B of O0 holds B ∈ OSSubSort O0 iff B is operations
closed.

Let us consider S1, O0, let A be an OSSubset of O0, and let s be an element
of the carrier of S1. The functor OSSubSort(A, s) yields a set and is defined by:

(Def. 10) For every set x holds x ∈ OSSubSort(A, s) iff there exists an OSSubset
B of O0 such that B ∈ OSSubSort A and x = B(s).

We now state three propositions:
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(26) For every OSSubset A of O0 and for all sort symbols s1, s2 of S1 such
that s1 ¬ s2 holds OSSubSort(A, s2) is coarser than OSSubSort(A, s1).

(27) For every OSSubset A of O0 and for every sort symbol s of S1 holds
OSSubSort(A, s) ⊆ SubSort(A, s).

(28) For every OSSubset A of O0 and for every sort symbol s of S1 holds (the
sorts of O0)(s) ∈ OSSubSort(A, s).

Let us consider S1, O0, let A be an OSSubset of O0, and let s be a sort
symbol of S1. Note that OSSubSort(A, s) is non empty.

Let us consider S1, O0 and let A be an OSSubset of O0. The functor
OSMSubSort A yields an OSSubset of O0 and is defined by:

(Def. 11) For every sort symbol s of S1 holds (OSMSubSort A)(s) =⋂
OSSubSort(A, s).

Let us consider S1, O0 and let A be an OSSubset of O0. We say that A is
os-opers closed if and only if:

(Def. 12) A is operations closed.

Let us consider S1, O0. One can verify that there exists an OSSubset of O0

which is os-opers closed.
Next we state several propositions:

(29) For every OSSubset A of O0 holds OSConstants O0 ∪ A ⊆
OSMSubSort A.

(30) For every OSSubset A of O0 such that OSConstants O0∪A is non-empty
holds OSMSubSort A is non-empty.

(31) Let o be an operation symbol of S1, A be an OSSubset of O0, and B be
an OSSubset of O0. If B ∈ OSSubSort A, then ((OSMSubSort A)# · the
arity of S1)(o) ⊆ (B# · the arity of S1)(o).

(32) Let o be an operation symbol of S1, A be an OSSubset of O0, and
B be an OSSubset of O0. Suppose B ∈ OSSubSort A. Then rng(Den(o,
O0)¹((OSMSubSort A)#·the arity of S1)(o)) ⊆ (B·the result sort of S1)(o).

(33) Let o be an operation symbol of S1 and A be an OSSubset of
O0. Then rng(Den(o, O0)¹((OSMSubSort A)# · the arity of S1)(o)) ⊆
(OSMSubSort A · the result sort of S1)(o).

(34) For every OSSubset A of O0 holds OSMSubSort A is operations closed
and A ⊆ OSMSubSort A.

Let us consider S1, O0 and let A be an OSSubset of O0. Note that
OSMSubSort A is os-opers closed.

5. Operations on Subalgebras of an Order Sorted Algebra

Let us consider S1, O0 and let A be an os-opers closed OSSubset of O0. Note
that O0¹A is order-sorted.
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Let us consider S1, O0 and let O1, O2 be OSSubAlgebras of O0. One can
check that O1 ∩O2 is order-sorted.

Let us consider S1, O0 and let A be an OSSubset of O0. The functor OSGen A

yields a strict OSSubAlgebra of O0 and is defined by the conditions (Def. 13).

(Def. 13)(i) A is an OSSubset of OSGen A, and
(ii) for every OSSubAlgebra O1 of O0 such that A is an OSSubset of O1

holds OSGen A is an OSSubAlgebra of O1.

We now state several propositions:

(35) For every OSSubset A of O0 holds OSGen A = O0¹ OSMSubSort A and
the sorts of OSGen A = OSMSubSort A.

(36) Let S be a non void non empty many sorted signature, U0 be an algebra
over S, and A be a subset of U0. Then Gen(A) = U0¹ MSSubSort(A) and
the sorts of Gen(A) = MSSubSort(A).

(37) For every OSSubset A of O0 holds the sorts of Gen(A) ⊆ the sorts of
OSGen A.

(38) For every OSSubset A of O0 holds Gen(A) is a subalgebra of OSGen A.

(39) Let O0 be a strict order sorted algebra of S1 and B be an OSSubset of
O0. If B = the sorts of O0, then OSGen B = O0.

(40) For every strict OSSubAlgebra O1 of O0 and for every OSSubset B of
O0 such that B = the sorts of O1 holds OSGen B = O1.

(41) For every non-empty order sorted algebra U0 of S1 and for
every OSSubAlgebra U1 of U0 holds OSGen OSConstants U0 ∩ U1 =
OSGen OSConstants U0.

Let us consider S1, let U0 be a non-empty order sorted algebra of S1, and
let U1, U2 be OSSubAlgebras of U0. The functor U1 tos U2 yielding a strict
OSSubAlgebra of U0 is defined by:

(Def. 14) For every OSSubset A of U0 such that A = (the sorts of U1)∪ (the sorts
of U2) holds U1 tos U2 = OSGen A.

One can prove the following propositions:

(42) Let U0 be a non-empty order sorted algebra of S1, U1 be an OSSubAl-
gebra of U0, and A, B be OSSubsets of U0. If B = A ∪ the sorts of U1,
then OSGen A tos U1 = OSGen B.

(43) Let U0 be a non-empty order sorted algebra of S1, U1 be an OSSubAl-
gebra of U0, and B be an OSSubset of U0. If B = the sorts of U0, then
OSGen B tos U1 = OSGen B.

(44) For every non-empty order sorted algebra U0 of S1 and for all OSSubAl-
gebras U1, U2 of U0 holds U1 tos U2 = U2 tos U1.

(45) For every non-empty order sorted algebra U0 of S1 and for all strict
OSSubAlgebras U1, U2 of U0 holds U1 ∩ (U1 tos U2) = U1.
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(46) For every non-empty order sorted algebra U0 of S1 and for all strict
OSSubAlgebras U1, U2 of U0 holds U1 ∩ U2 tos U2 = U2.

6. The Lattice of Subalgebras of an Order Sorted Algebra

Let us consider S1, O0. The functor OSSub O0 yields a set and is defined by:

(Def. 15) For every x holds x ∈ OSSub O0 iff x is a strict OSSubAlgebra of O0.

We now state the proposition

(47) OSSub O0 ⊆ Subalgebras(O0).

Let S be an order sorted signature and let U0 be an order sorted algebra of
S. Note that OSSub U0 is non empty.

Let us consider S1, O0. Then OSSub O0 is a subset of Subalgebras(O0).
Let us consider S1 and let U0 be a non-empty order sorted algebra of S1.

The functor OSAlgJoin U0 yields a binary operation on OSSub U0 and is defined
as follows:

(Def. 16) For all elements x, y of OSSub U0 and for all strict OSSubAlgebras U1, U2

of U0 such that x = U1 and y = U2 holds (OSAlgJoin U0)(x, y) = U1tosU2.

Let us consider S1 and let U0 be a non-empty order sorted algebra of S1. The
functor OSAlgMeet U0 yields a binary operation on OSSub U0 and is defined as
follows:

(Def. 17) For all elements x, y of OSSub U0 and for all strict OSSubAlgebras U1, U2

of U0 such that x = U1 and y = U2 holds (OSAlgMeet U0)(x, y) = U1∩U2.

The following proposition is true

(48) For every non-empty order sorted algebra U0 of S1 and for all elements
x, y of OSSub U0 holds (OSAlgMeet U0)(x, y) = (MSAlgMeet(U0))(x, y).

In the sequel U0 denotes a non-empty order sorted algebra of S1.
We now state four propositions:

(49) OSAlgJoin U0 is commutative.

(50) OSAlgJoin U0 is associative.

(51) OSAlgMeet U0 is commutative.

(52) OSAlgMeet U0 is associative.

Let us consider S1 and let U0 be a non-empty order sorted algebra of S1.
The functor OSSubAlLattice U0 yielding a strict lattice is defined by:

(Def. 18) OSSubAlLattice U0 = 〈OSSub U0, OSAlgJoin U0, OSAlgMeet U0〉.
Next we state the proposition

(53) For every non-empty order sorted algebra U0 of S1 holds
OSSubAlLattice U0 is bounded.
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Let us consider S1 and let U0 be a non-empty order sorted algebra of S1.
Note that OSSubAlLattice U0 is bounded.

The following propositions are true:

(54) For every non-empty order sorted algebra U0 of S1 holds
⊥OSSubAlLattice U0 = OSGen OSConstants U0.

(55) Let U0 be a non-empty order sorted algebra of S1 and B be an OSSubset
of U0. If B = the sorts of U0, then >OSSubAlLattice U0 = OSGen B.

(56) For every strict non-empty order sorted algebra U0 of S1 holds
>OSSubAlLattice U0 = U0.
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following articles: [8], [12], [14], [15], [4], [5], [2], [1], [9], [11], [7], [10], [3], [13],
and [6].

In this paper R denotes a non empty poset and S1 denotes an order sorted
signature.

Let us consider R and let F be a many sorted function indexed by the carrier
of R. We say that F is order-sorted if and only if:

(Def. 1) For all elements s1, s2 of R such that s1 ¬ s2 and for every set a1 such
that a1 ∈ dom F (s1) holds a1 ∈ dom F (s2) and F (s1)(a1) = F (s2)(a1).

Next we state several propositions:

(1) For every set I and for every many sorted set A indexed by I holds idA

is “1-1”.

(2) Let F be a many sorted function indexed by the carrier of R. Suppose F

is order-sorted. Let s1, s2 be elements of R. If s1 ¬ s2, then dom F (s1) ⊆
dom F (s2) and F (s1) ⊆ F (s2).

(3) Let A be an order sorted set of R, B be a non-empty order sorted set of
R, and F be a many sorted function from A into B. Then F is order-sorted
if and only if for all elements s1, s2 of R such that s1 ¬ s2 and for every
set a1 such that a1 ∈ A(s1) holds F (s1)(a1) = F (s2)(a1).

(4) Let F be a many sorted function indexed by the carrier of R. Suppose F

is order-sorted. Let w1, w2 be elements of (the carrier of R)∗. If w1 ¬ w2,

then F#(w1) ⊆ F#(w2).

1This work was done during author’s research visit in Bialystok, funded by the CALCU-
LEMUS grant HPRN-CT-2000-00102.
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(5) For every order sorted set A of R holds idA is order-sorted.

(6) Let A be an order sorted set of R, B, C be non-empty order sorted sets
of R, F be a many sorted function from A into B, and G be a many sorted
function from B into C. If F is order-sorted and G is order-sorted, then
G ◦ F is order-sorted.

(7) Let A, B be order sorted sets of R and F be a many sorted function from
A into B. If F is “1-1”, onto, and order-sorted, then F−1 is order-sorted.

(8) Let A be an order sorted set of R and F be a many sorted function
indexed by the carrier of R. If F is order-sorted, then F ◦ A is an order
sorted set of R.

Let us consider S1 and let U1, U2 be order sorted algebras of S1. We say
that U1 and U2 are os-isomorphic if and only if:

(Def. 2) There exists a many sorted function from U1 into U2 which is an isomor-
phism of U1 and U2 and order-sorted.

The following propositions are true:

(9) For every order sorted algebra U1 of S1 holds U1 and U1 are os-
isomorphic.

(10) Let U1, U2 be non-empty order sorted algebras of S1. If U1 and U2 are
os-isomorphic, then U2 and U1 are os-isomorphic.

Let us consider S1 and let U1, U2 be order sorted algebras of S1. Let us note
that the predicate U1 and U2 are os-isomorphic is reflexive.

One can prove the following propositions:

(11) Let U1, U2, U3 be non-empty order sorted algebras of S1. Suppose U1

and U2 are os-isomorphic and U2 and U3 are os-isomorphic. Then U1 and
U3 are os-isomorphic.

(12) Let U1, U2 be non-empty order sorted algebras of S1 and F be a many
sorted function from U1 into U2. Suppose F is order-sorted and a homo-
morphism of U1 into U2. Then Im F is order-sorted.

(13) Let U1, U2 be non-empty order sorted algebras of S1 and F be a many
sorted function from U1 into U2. Suppose F is order-sorted. Let o1, o2

be operation symbols of S1. Suppose o1 ¬ o2. Let x be an element of
Args(o1, U1) and x1 be an element of Args(o2, U1). If x = x1, then F#x =
F#x1.

(14) Let U1 be a monotone non-empty order sorted algebra of S1, U2 be a
non-empty order sorted algebra of S1, and F be a many sorted function
from U1 into U2. Suppose F is order-sorted and a homomorphism of U1

into U2. Then Im F is order-sorted and Im F is a monotone order sorted
algebra of S1.

(15) For every monotone order sorted algebra U1 of S1 holds every OSSubAl-
gebra of U1 is monotone.
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Let us consider S1 and let U1 be a monotone order sorted algebra of S1. One
can check that there exists an OSSubAlgebra of U1 which is monotone.

Let us consider S1 and let U1 be a monotone order sorted algebra of S1. One
can verify that every OSSubAlgebra of U1 is monotone.

The following propositions are true:

(16) Let U1, U2 be non-empty order sorted algebras of S1 and F be a many
sorted function from U1 into U2. Suppose F is a homomorphism of U1 into
U2 and order-sorted. Then there exists a many sorted function G from U1

into Im F such that F = G and G is order-sorted and an epimorphism of
U1 onto Im F.

(17) Let U1, U2 be non-empty order sorted algebras of S1 and F be a many
sorted function from U1 into U2. Suppose F is a homomorphism of U1 into
U2 and order-sorted. Then there exists a many sorted function F1 from U1

into Im F and there exists a many sorted function F2 from Im F into U2

such that
(i) F1 is an epimorphism of U1 onto Im F,

(ii) F2 is a monomorphism of Im F into U2,
(iii) F = F2 ◦ F1,

(iv) F1 is order-sorted, and
(v) F2 is order-sorted.

Let us consider S1 and let U1 be an order sorted algebra of S1. Note that
〈the sorts of U1, the characteristics of U1〉 is order-sorted.

One can prove the following propositions:

(18) Let U1 be an order sorted algebra of S1. Then U1 is monotone if and
only if 〈the sorts of U1, the characteristics of U1〉 is monotone.

(19) Let U1, U2 be strict non-empty order sorted algebras of S1. Suppose
U1 and U2 are os-isomorphic. Then U1 is monotone if and only if U2 is
monotone.
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The terminology and notation used in this paper are introduced in the following
papers: [7], [16], [21], [24], [4], [25], [6], [15], [9], [19], [8], [14], [5], [3], [1], [20],
[17], [2], [12], [18], [10], [13], [23], [22], and [11].

1. Preliminaries

Let R be a non empty poset. One can verify that there exists an order sorted
set of R which is binary relation yielding.

Let R be a non empty poset, let A, B be many sorted sets indexed by the
carrier of R, and let I1 be a many sorted relation between A and B. We say
that I1 is os-compatible if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let s1, s2 be elements of the carrier of R. Suppose s1 ¬ s2. Let x, y be
sets. If x ∈ A(s1) and y ∈ B(s1), then 〈〈x, y〉〉 ∈ I1(s1) iff 〈〈x, y〉〉 ∈ I1(s2).

Let R be a non empty poset and let A, B be many sorted sets indexed by
the carrier of R. A many sorted relation between A and B is said to be an order
sorted relation of A, B if:

(Def. 2) It is os-compatible.

The following proposition is true

(1) Let R be a non empty poset, A, B be many sorted sets indexed by the
carrier of R, and O1 be a many sorted relation between A and B. If O1 is
os-compatible, then O1 is an order sorted set of R.

1This work was done during author’s research visit in Bialystok, funded by the CALCU-
LEMUS grant HPRN-CT-2000-00102.
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Let R be a non empty poset and let A be a many sorted set indexed by the
carrier of R. An order sorted relation of A is an order sorted relation of A, A.

Let S be an order sorted signature and let U1 be an order sorted algebra of
S. A many sorted relation indexed by U1 is said to be an order sorted relation
of U1 if:

(Def. 3) It is os-compatible.

Let S be an order sorted signature and let U1 be an order sorted algebra
of S. One can check that there exists an order sorted relation of U1 which is
equivalence.

Let S be an order sorted signature and let U1 be a non-empty order sorted
algebra of S. Note that there exists an equivalence order sorted relation of U1

which is MSCongruence-like.
Let S be an order sorted signature and let U1 be a non-empty order sor-

ted algebra of S. An order sorted congruence of U1 is a MSCongruence-like
equivalence order sorted relation of U1.

Let R be a non empty poset. The functor PathRel R yields an equivalence
relation of the carrier of R and is defined by the condition (Def. 4).

(Def. 4) Let x, y be sets. Then 〈〈x, y〉〉 ∈ PathRel R if and only if the following
conditions are satisfied:

(i) x ∈ the carrier of R,
(ii) y ∈ the carrier of R, and
(iii) there exists a finite sequence p of elements of the carrier of R such that

1 < len p and p(1) = x and p(len p) = y and for every natural number
n such that 2 ¬ n and n ¬ len p holds 〈〈p(n), p(n − 1)〉〉 ∈ the internal
relation of R or 〈〈p(n− 1), p(n)〉〉 ∈ the internal relation of R.

One can prove the following proposition

(2) For every non empty poset R and for all elements s1, s2 of the carrier of
R such that s1 ¬ s2 holds 〈〈s1, s2〉〉 ∈ PathRel R.

Let R be a non empty poset and let s1, s2 be elements of the carrier of R.
The predicate s1

∼= s2 is defined as follows:

(Def. 5) 〈〈s1, s2〉〉 ∈ PathRel R.

Let us notice that the predicate s1
∼= s2 is reflexive and symmetric.

One can prove the following proposition

(3) For every non empty poset R and for all elements s1, s2, s3 of the carrier
of R such that s1

∼= s2 and s2
∼= s3 holds s1

∼= s3.

Let R be a non empty poset. The functor Components R yields a non empty
family of subsets of the carrier of R and is defined by:

(Def. 6) Components R = Classes PathRel R.

Let R be a non empty poset. Note that every element of Components R is
non empty.
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Let R be a non empty poset. A subset of R is called a component of R if:

(Def. 7) It ∈ Components R.

Let R be a non empty poset and let s1 be an element of the carrier of R.
The functor ·CSp s1 yielding a component of R is defined by:

(Def. 8) ·CSp s1 = [s1]PathRel R.

The following two propositions are true:

(4) For every non empty poset R and for every element s1 of the carrier of
R holds s1 ∈ ·CSp s1.

(5) For every non empty poset R and for all elements s1, s2 of the carrier of
R such that s1 ¬ s2 holds ·CSp s1 = ·CSp s2.

Let R be a non empty poset, let A be a many sorted set indexed by the
carrier of R, and let C be a component of R. A-carrier of C is defined as follows:

(Def. 9) A-carrier of C =
⋃{A(s); s ranges over elements of the carrier of R:

s ∈ C}.
We now state the proposition

(6) Let R be a non empty poset, A be a many sorted set indexed by the
carrier of R, s be an element of the carrier of R, and x be a set. If x ∈ A(s),
then x ∈ A-carrier of ·CSp s.

Let R be a non empty poset. We say that R is locally directed if and only
if:

(Def. 10) Every component of R is directed.

The following three propositions are true:

(7) For every discrete non empty poset R and for all elements x, y of the
carrier of R such that 〈〈x, y〉〉 ∈ PathRel R holds x = y.

(8) Let R be a discrete non empty poset and C be a component of R. Then
there exists an element x of the carrier of R such that C = {x}.

(9) Every discrete non empty poset is locally directed.

Let us observe that there exists a non empty poset which is locally directed.
One can verify that there exists an order sorted signature which is locally

directed.
Let us observe that every non empty poset which is discrete is also locally

directed.
Let S be a locally directed non empty poset. Note that every component of

S is directed.
One can prove the following proposition

(10) ∅ is an equivalence relation of ∅.
Let S be a locally directed order sorted signature, let A be an order sorted

algebra of S, let E be an equivalence order sorted relation of A, and let C be a
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component of S. The functor CompClass(E, C) yielding an equivalence relation
of (the sorts of A)-carrier of C is defined as follows:

(Def. 11) For all sets x, y holds 〈〈x, y〉〉 ∈ CompClass(E, C) iff there exists an
element s1 of the carrier of S such that s1 ∈ C and 〈〈x, y〉〉 ∈ E(s1).

Let S be a locally directed order sorted signature, let A be an order sorted
algebra of S, let E be an equivalence order sorted relation of A, and let s1 be
an element of the carrier of S. The functor OSClass(E, s1) yielding a subset of
Classes CompClass(E, ·CSp s1) is defined by:

(Def. 12) For every set z holds z ∈ OSClass(E, s1) iff there exists a set x such that
x ∈ (the sorts of A)(s1) and z = [x]CompClass(E,·CSp s1).

Let S be a locally directed order sorted signature, let A be a non-empty
order sorted algebra of S, let E be an equivalence order sorted relation of A,
and let s1 be an element of the carrier of S. One can verify that OSClass(E, s1)
is non empty.

The following proposition is true

(11) Let S be a locally directed order sorted signature, A be an order sorted
algebra of S, E be an equivalence order sorted relation of A, and s1,
s2 be elements of the carrier of S. If s1 ¬ s2, then OSClass(E, s1) ⊆
OSClass(E, s2).

Let S be a locally directed order sorted signature, let A be an order sorted
algebra of S, and let E be an equivalence order sorted relation of A. The functor
OSClass E yields an order sorted set of S and is defined as follows:

(Def. 13) For every element s1 of the carrier of S holds (OSClass E)(s1) =
OSClass(E, s1).

Let S be a locally directed order sorted signature, let A be a non-empty
order sorted algebra of S, and let E be an equivalence order sorted relation of
A. One can check that OSClass E is non-empty.

Let S be a locally directed order sorted signature, let U1 be a non-empty
order sorted algebra of S, let E be an equivalence order sorted relation of U1,
let s be an element of the carrier of S, and let x be an element of (the sorts
of U1)(s). The functor OSClass(E, x) yields an element of OSClass(E, s) and is
defined by:

(Def. 14) OSClass(E, x) = [x]CompClass(E,·CSp s).

One can prove the following three propositions:

(12) Let R be a locally directed non empty poset and x, y be elements of the
carrier of R. Given an element z of the carrier of R such that z ¬ x and
z ¬ y. Then there exists an element u of R such that x ¬ u and y ¬ u.

(13) Let S be a locally directed order sorted signature, U1 be a non-empty
order sorted algebra of S, E be an equivalence order sorted relation of U1,
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s be an element of the carrier of S, and x, y be elements of (the sorts of
U1)(s). Then OSClass(E, x) = OSClass(E, y) if and only if 〈〈x, y〉〉 ∈ E(s).

(14) Let S be a locally directed order sorted signature, U1 be a non-empty
order sorted algebra of S, E be an equivalence order sorted relation of U1,
s1, s2 be elements of the carrier of S, and x be an element of (the sorts of
U1)(s1). Suppose s1 ¬ s2. Let y be an element of (the sorts of U1)(s2). If
y = x, then OSClass(E, x) = OSClass(E, y).

2. Order Sorted Quotient Algebra

In the sequel S denotes a locally directed order sorted signature and o de-
notes an element of the operation symbols of S.

Let us consider S, o, let A be a non-empty order sorted algebra of S, let R

be an order sorted congruence of A, and let x be an element of Args(o,A). The
functor Rosx yields an element of

∏
(OSClass R ·Arity(o)) and is defined by the

condition (Def. 15).

(Def. 15) Let n be a natural number. Suppose n ∈ dom Arity(o). Then there exi-
sts an element y of (the sorts of A)(Arity(o)n) such that y = x(n) and
(Rosx)(n) = OSClass(R, y).

Let us consider S, o, let A be a non-empty order sorted algebra of S, and let
R be an order sorted congruence of A. The functor OSQuotRes(R, o) yielding a
function from ((the sorts of A) · (the result sort of S))(o) into (OSClass R · the
result sort of S)(o) is defined as follows:

(Def. 16) For every element x of (the sorts of A)(the result sort of o) holds
(OSQuotRes(R, o))(x) = OSClass(R, x).

The functor OSQuotArgs(R, o) yielding a function from ((the sorts of A)# · the
arity of S)(o) into ((OSClass R)# · the arity of S)(o) is defined by:

(Def. 17) For every element x of Args(o,A) holds (OSQuotArgs(R, o))(x) = Rosx.

Let us consider S, let A be a non-empty order sorted algebra of S, and let
R be an order sorted congruence of A. The functor OSQuotRes R yields a many
sorted function from (the sorts of A) · (the result sort of S) into OSClass R · the
result sort of S and is defined by:

(Def. 18) For every operation symbol o of S holds (OSQuotRes R)(o) =
OSQuotRes(R, o).

The functor OSQuotArgs R yields a many sorted function from (the sorts of
A)# · the arity of S into (OSClass R)# · the arity of S and is defined as follows:

(Def. 19) For every operation symbol o of S holds (OSQuotArgs R)(o) =
OSQuotArgs(R, o).

One can prove the following proposition
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(15) Let A be a non-empty order sorted algebra of S, R be an order sorted
congruence of A, and x be a set. Suppose x ∈ ((OSClass R)# · the arity of
S)(o). Then there exists an element a of Args(o,A) such that x = Rosa.

Let us consider S, o, let A be a non-empty order sorted algebra of S, and
let R be an order sorted congruence of A. The functor OSQuotCharact(R, o)
yielding a function from ((OSClass R)# · the arity of S)(o) into (OSClass R · the
result sort of S)(o) is defined as follows:

(Def. 20) For every element a of Args(o,A) such that Rosa ∈ ((OSClass R)# · the
arity of S)(o) holds (OSQuotCharact(R, o))(Rosa) = (OSQuotRes(R, o) ·
Den(o,A))(a).

Let us consider S, let A be a non-empty order sorted algebra of S, and let
R be an order sorted congruence of A. The functor OSQuotCharact R yielding
a many sorted function from (OSClass R)# · the arity of S into OSClass R · the
result sort of S is defined as follows:

(Def. 21) For every operation symbol o of S holds (OSQuotCharact R)(o) =
OSQuotCharact(R, o).

Let us consider S, let U1 be a non-empty order sorted algebra of S, and let
R be an order sorted congruence of U1. The functor QuotOSAlg(U1, R) yields
an order sorted algebra of S and is defined by:

(Def. 22) QuotOSAlg(U1, R) = 〈OSClass R, OSQuotCharact R〉.
Let us consider S, let U1 be a non-empty order sorted algebra of S, and let

R be an order sorted congruence of U1. One can check that QuotOSAlg(U1, R)
is strict and non-empty.

Let us consider S, let U1 be a non-empty order sorted algebra of S, let R be
an order sorted congruence of U1, and let s be an element of the carrier of S.
The functor OSNatHom(U1, R, s) yielding a function from (the sorts of U1)(s)
into OSClass(R, s) is defined by:

(Def. 23) For every element x of (the sorts of U1)(s) holds (OSNatHom(U1, R, s))(x) =
OSClass(R, x).

Let us consider S, let U1 be a non-empty order sorted algebra of S, and let
R be an order sorted congruence of U1. The functor OSNatHom(U1, R) yielding
a many sorted function from U1 into QuotOSAlg(U1, R) is defined as follows:

(Def. 24) For every element s of the carrier of S holds (OSNatHom(U1, R))(s) =
OSNatHom(U1, R, s).

Next we state two propositions:

(16) Let U1 be a non-empty order sorted algebra of S and R be an order
sorted congruence of U1. Then OSNatHom(U1, R) is an epimorphism of
U1 onto QuotOSAlg(U1, R) and OSNatHom(U1, R) is order-sorted.

(17) Let U1, U2 be non-empty order sorted algebras of S and F be a many
sorted function from U1 into U2. Suppose F is a homomorphism of U1 into
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U2 and order-sorted. Then Congruence(F ) is an order sorted congruence
of U1.

Let us consider S, let U1, U2 be non-empty order sorted algebras of S, and
let F be a many sorted function from U1 into U2. Let us assume that F is a
homomorphism of U1 into U2 and order-sorted. The functor OSCng F yielding
an order sorted congruence of U1 is defined as follows:

(Def. 25) OSCng F = Congruence(F ).

Let us consider S, let U1, U2 be non-empty order sorted algebras of S, let
F be a many sorted function from U1 into U2, and let s be an element of
the carrier of S. Let us assume that F is a homomorphism of U1 into U2 and
order-sorted. The functor OSHomQuot(F, s) yields a function from (the sorts of
QuotOSAlg(U1, OSCng F ))(s) into (the sorts of U2)(s) and is defined as follows:

(Def. 26) For every element x of (the sorts of U1)(s) holds
(OSHomQuot(F, s))(OSClass(OSCng F, x)) = F (s)(x).

Let us consider S, let U1, U2 be non-empty order sorted algebras of S, and
let F be a many sorted function from U1 into U2. The functor OSHomQuot F

yields a many sorted function from QuotOSAlg(U1, OSCng F ) into U2 and is
defined by:

(Def. 27) For every element s of the carrier of S holds (OSHomQuot F )(s) =
OSHomQuot(F, s).

The following three propositions are true:

(18) Let U1, U2 be non-empty order sorted algebras of S and F be a many
sorted function from U1 into U2. Suppose F is a homomorphism of U1

into U2 and order-sorted. Then OSHomQuot F is a monomorphism of
QuotOSAlg(U1, OSCng F ) into U2 and OSHomQuot F is order-sorted.

(19) Let U1, U2 be non-empty order sorted algebras of S and F be a many
sorted function from U1 into U2. Suppose F is an epimorphism of U1

onto U2 and order-sorted. Then OSHomQuot F is an isomorphism of
QuotOSAlg(U1, OSCng F ) and U2.

(20) Let U1, U2 be non-empty order sorted algebras of S and F be a many
sorted function from U1 into U2. Suppose F is an epimorphism of U1

onto U2 and order-sorted. Then QuotOSAlg(U1, OSCng F ) and U2 are
isomorphic.

Let S be an order sorted signature, let U1 be a non-empty order sorted
algebra of S, and let R be an equivalence order sorted relation of U1. We say
that R is monotone if and only if the condition (Def. 28) is satisfied.

(Def. 28) Let o1, o2 be operation symbols of S. Suppose o1 ¬ o2. Let x1 be an ele-
ment of Args(o1, U1) and x2 be an element of Args(o2, U1). Suppose that
for every natural number y such that y ∈ dom x1 holds 〈〈x1(y), x2(y)〉〉 ∈
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R(Arity(o2)y). Then 〈〈(Den(o1, U1))(x1), (Den(o2, U1))(x2)〉〉 ∈ R(the re-
sult sort of o2).

One can prove the following two propositions:

(21) Let S be an order sorted signature and U1 be a non-empty order sorted
algebra of S. Then [[the sorts of U1, the sorts of U1]] is an order sorted
congruence of U1.

(22) Let S be an order sorted signature, U1 be a non-empty order sorted
algebra of S, and R be an order sorted congruence of U1. If R = [[the sorts
of U1, the sorts of U1]], then R is monotone.

Let S be an order sorted signature and let U1 be a non-empty order sorted
algebra of S. One can verify that there exists an order sorted congruence of U1

which is monotone.
Let S be an order sorted signature and let U1 be a non-empty order sorted

algebra of S. Note that there exists an equivalence order sorted relation of U1

which is monotone.
The following proposition is true

(23) Let S be an order sorted signature and U1 be a non-empty order sorted
algebra of S. Then every monotone equivalence order sorted relation of U1

is MSCongruence-like.

Let S be an order sorted signature and let U1 be a non-empty order sorted
algebra of S. Observe that every equivalence order sorted relation of U1 which
is monotone is also MSCongruence-like.

We now state the proposition

(24) Let S be an order sorted signature and U1 be a monotone non-empty
order sorted algebra of S. Then every order sorted congruence of U1 is
monotone.

Let S be an order sorted signature and let U1 be a monotone non-empty
order sorted algebra of S. Observe that every order sorted congruence of U1 is
monotone.

Let us consider S, let U1 be a non-empty order sorted algebra of S, and let
R be a monotone order sorted congruence of U1. Note that QuotOSAlg(U1, R)
is monotone.

We now state two propositions:

(25) Let given S, U1 be a non-empty order sorted algebra of S, and R be
a monotone order sorted congruence of U1. Then QuotOSAlg(U1, R) is a
monotone order sorted algebra of S.

(26) Let U1 be a non-empty order sorted algebra of S, U2 be a monotone non-
empty order sorted algebra of S, and F be a many sorted function from
U1 into U2. Suppose F is a homomorphism of U1 into U2 and order-sorted.
Then OSCng F is monotone.
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Let us consider S, let U1, U2 be non-empty order sorted algebras of S, let F

be a many sorted function from U1 into U2, let R be an order sorted congruence
of U1, and let s be an element of the carrier of S. Let us assume that F is a
homomorphism of U1 into U2 and order-sorted and R ⊆ OSCng F. The functor
OSHomQuot(F, R, s) yields a function from (the sorts of QuotOSAlg(U1, R))(s)
into (the sorts of U2)(s) and is defined as follows:

(Def. 29) For every element x of (the sorts of U1)(s) holds
(OSHomQuot(F, R, s))(OSClass(R, x)) = F (s)(x).

Let us consider S, let U1, U2 be non-empty order sorted algebras of S,
let F be a many sorted function from U1 into U2, and let R be an order sorted
congruence of U1. The functor OSHomQuot(F, R) yields a many sorted function
from QuotOSAlg(U1, R) into U2 and is defined as follows:

(Def. 30) For every element s of the carrier of S holds (OSHomQuot(F, R))(s) =
OSHomQuot(F, R, s).

Next we state the proposition

(27) Let U1, U2 be non-empty order sorted algebras of S, F be a many
sorted function from U1 into U2, and R be an order sorted congruence
of U1. Suppose F is a homomorphism of U1 into U2 and order-sorted
and R ⊆ OSCng F. Then OSHomQuot(F, R) is a homomorphism of
QuotOSAlg(U1, R) into U2 and OSHomQuot(F, R) is order-sorted.
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Summary. Free Order Sorted Universal Algebra — the general construc-
tion for any locally directed signatures.
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The papers [21], [13], [27], [32], [33], [11], [22], [12], [7], [10], [4], [18], [2], [20],
[26], [14], [5], [3], [6], [1], [8], [25], [23], [17], [24], [9], [15], [16], [29], [31], [28],
[30], and [19] provide the terminology and notation for this paper.

1. Preliminaries

In this paper S is an order sorted signature.
Let S be an order sorted signature and let U0 be an order sorted algebra of

S. A subset of U0 is called an order sorted generator set of U0 if:

(Def. 1) For every OSSubset O of U0 such that O = OSCl it holds the sorts of
OSGen O = the sorts of U0.

The following proposition is true

(1) Let S be an order sorted signature, U0 be a strict non-empty order sorted
algebra of S, and A be a subset of U0. Then A is an order sorted generator
set of U0 if and only if for every OSSubset O of U0 such that O = OSCl A
holds OSGen O = U0.

Let us consider S, let U0 be a monotone order sorted algebra of S, and let
I1 be an order sorted generator set of U0. We say that I1 is osfree if and only if
the condition (Def. 2) is satisfied.

1This work was done during author’s research visit in Bialystok, funded by the CALCU-
LEMUS grant HPRN-CT-2000-00102.
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(Def. 2) Let U1 be a monotone non-empty order sorted algebra of S and f be
a many sorted function from I1 into the sorts of U1. Then there exists a
many sorted function h from U0 into U1 such that h is a homomorphism
of U0 into U1 and order-sorted and h ¹ I1 = f.

Let S be an order sorted signature and let I1 be a monotone order sorted
algebra of S. We say that I1 is osfree if and only if:

(Def. 3) There exists an order sorted generator set of I1 which is osfree.

2. Construction of Free Order Sorted Algebras for Given
Signature

Let S be an order sorted signature and let X be a many sor-
ted set indexed by S. The functor OSREL X yields a relation between
[: the operation symbols of S, {the carrier of S} :] ∪ ⋃

coprod(X) and
([: the operation symbols of S, {the carrier of S} :] ∪⋃

coprod(X))∗ and is defi-
ned by the condition (Def. 4).

(Def. 4) Let a be an element of [: the operation symbols of S,
{the carrier of S} :] ∪ ⋃

coprod(X) and b be an element of
([: the operation symbols of S, {the carrier of S} :] ∪⋃

coprod(X))∗. Then
〈〈a, b〉〉 ∈ OSREL X if and only if the following conditions are satisfied:

(i) a ∈ [: the operation symbols of S, {the carrier of S} :], and
(ii) for every operation symbol o of S such that 〈〈o, the carrier of S〉〉 = a

holds len b = len Arity(o) and for every set x such that x ∈ dom b holds
if b(x) ∈ [: the operation symbols of S, {the carrier of S} :], then for every
operation symbol o1 of S such that 〈〈o1, the carrier of S〉〉 = b(x) holds
the result sort of o1 ¬ Arity(o)x and if b(x) ∈ ⋃

coprod(X), then there
exists an element i of the carrier of S such that i ¬ Arity(o)x and b(x) ∈
coprod(i,X).

In the sequel S is an order sorted signature, X is a many sorted set
indexed by S, o is an operation symbol of S, and b is an element of
([: the operation symbols of S, {the carrier of S} :] ∪⋃

coprod(X))∗.
One can prove the following proposition

(2) 〈〈〈〈o, the carrier of S〉〉, b〉〉 ∈ OSREL X if and only if the following condi-
tions are satisfied:

(i) len b = len Arity(o), and
(ii) for every set x such that x ∈ dom b holds if b(x) ∈ [: the operation

symbols of S, {the carrier of S} :], then for every operation symbol o1 of
S such that 〈〈o1, the carrier of S〉〉 = b(x) holds the result sort of o1 ¬
Arity(o)x and if b(x) ∈ ⋃

coprod(X), then there exists an element i of the
carrier of S such that i ¬ Arity(o)x and b(x) ∈ coprod(i,X).
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Let S be an order sorted signature and let X be a many sorted set indexed by
S. The functor DTConOSA X yielding a tree construction structure is defined
by:

(Def. 5) DTConOSA X = 〈[: the operation symbols of S, {the carrier of S} :] ∪⋃
coprod(X), OSREL X〉.

Let S be an order sorted signature and let X be a many sorted set indexed
by S. Note that DTConOSA X is strict and non empty.

The following proposition is true

(3) Let S be an order sorted signature and X be a non-empty many
sorted set indexed by S. Then the nonterminals of DTConOSA X =
[: the operation symbols of S, {the carrier of S} :] and the terminals of
DTConOSA X =

⋃
coprod(X).

Let S be an order sorted signature and let X be a non-empty many sorted
set indexed by S. Note that DTConOSA X has terminals, nonterminals, and
useful nonterminals.

The following proposition is true

(4) Let S be an order sorted signature, X be a non-empty many sorted set
indexed by S, and t be a set. Then t ∈ the terminals of DTConOSA X if
and only if there exists an element s of the carrier of S and there exists a
set x such that x ∈ X(s) and t = 〈〈x, s〉〉.

Let S be an order sorted signature, let X be a non-empty many sorted set
indexed by S, and let o be an operation symbol of S. The functor OSSym(o,X)
yielding a symbol of DTConOSA X is defined as follows:

(Def. 6) OSSym(o,X) = 〈〈o, the carrier of S〉〉.
Let S be an order sorted signature, let X be a non-empty many sorted

set indexed by S, and let s be an element of the carrier of S. The functor
ParsedTerms(X, s) yielding a subset of TS(DTConOSA X) is defined by the
condition (Def. 7).

(Def. 7) ParsedTerms(X, s) = {a; a ranges over elements of TS(DTConOSA X):∨
s1 : element of the carrier of S

∨
x : set (s1 ¬ s ∧ x ∈ X(s1) ∧ a = the root tree

of 〈〈x, s1〉〉) ∨
∨

o : operation symbol of S (〈〈o, the carrier of S〉〉 = a(∅) ∧ the
result sort of o ¬ s)}.

Let S be an order sorted signature, let X be a non-empty many sorted
set indexed by S, and let s be an element of the carrier of S. Note that
ParsedTerms(X, s) is non empty.

Let S be an order sorted signature and let X be a non-empty many sorted
set indexed by S. The functor ParsedTerms X yields an order sorted set of S

and is defined by:

(Def. 8) For every element s of the carrier of S holds (ParsedTerms X)(s) =
ParsedTerms(X, s).



214 josef urban

Let S be an order sorted signature and let X be a non-empty many sorted
set indexed by S. One can verify that ParsedTerms X is non-empty.

The following four propositions are true:

(5) Let S be an order sorted signature, X be a non-empty many sorted set
indexed by S, o be an operation symbol of S, and x be a set. Suppose
x ∈ ((ParsedTerms X)# · the arity of S)(o). Then x is a finite sequence of
elements of TS(DTConOSA X).

(6) Let S be an order sorted signature, X be a non-empty many sorted set
indexed by S, o be an operation symbol of S, and p be a finite sequence of
elements of TS(DTConOSA X). Then p ∈ ((ParsedTerms X)# · the arity
of S)(o) if and only if dom p = dom Arity(o) and for every natural number
n such that n ∈ dom p holds p(n) ∈ ParsedTerms(X, Arity(o)n).

(7) Let S be an order sorted signature, X be a non-empty many sorted set
indexed by S, o be an operation symbol of S, and p be a finite sequence
of elements of TS(DTConOSA X). Then OSSym(o,X)⇒ the roots of p if
and only if p ∈ ((ParsedTerms X)# · the arity of S)(o).

(8) For every order sorted signature S and for every non-empty many sorted
set X indexed by S holds

⋃
rng ParsedTerms X = TS(DTConOSA X).

Let S be an order sorted signature, let X be a non-empty many sor-
ted set indexed by S, and let o be an operation symbol of S. The functor
PTDenOp(o,X) yields a function from ((ParsedTerms X)# · the arity of S)(o)
into (ParsedTerms X · the result sort of S)(o) and is defined as follows:

(Def. 9) For every finite sequence p of elements of TS(DTConOSA X) such
that OSSym(o,X) ⇒ the roots of p holds (PTDenOp(o,X))(p) =
OSSym(o, X)-tree(p).

Let S be an order sorted signature and let X be a non-empty many sorted
set indexed by S. The functor PTOper X yields a many sorted function from
(ParsedTerms X)# · the arity of S into ParsedTerms X · the result sort of S and
is defined by:

(Def. 10) For every operation symbol o of S holds (PTOper X)(o) =
PTDenOp(o,X).

Let S be an order sorted signature and let X be a non-empty many sorted set
indexed by S. The functor ParsedTermsOSA X yielding an order sorted algebra
of S is defined as follows:

(Def. 11) ParsedTermsOSA X = 〈ParsedTerms X, PTOper X〉.
Let S be an order sorted signature and let X be a non-empty many sorted set

indexed by S. One can check that ParsedTermsOSA X is strict and non-empty.
Let S be an order sorted signature, let X be a non-empty many sorted set

indexed by S, and let o be an operation symbol of S. Then OSSym(o,X) is a
nonterminal of DTConOSA X.
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Next we state several propositions:

(9) Let S be an order sorted signature, X be a non-empty many sor-
ted set indexed by S, and s be an element of the carrier of S. Then
(the sorts of ParsedTermsOSA X)(s) = {a; a ranges over elements of
TS(DTConOSA X):

∨
s1 : element of the carrier of S

∨
x : set (s1 ¬ s ∧ x ∈

X(s1) ∧ a = the root tree of 〈〈x, s1〉〉) ∨
∨

o : operation symbol of S (〈〈o, the
carrier of S〉〉 = a(∅) ∧ the result sort of o ¬ s)}.

(10) Let S be an order sorted signature, X be a non-empty many sorted set
indexed by S, s, s1 be elements of the carrier of S, and x be a set. Suppose
x ∈ X(s). Then

(i) the root tree of 〈〈x, s〉〉 is an element of TS(DTConOSA X),
(ii) for every set z holds 〈〈z, the carrier of S〉〉 6= (the root tree of 〈〈x, s〉〉)(∅),

and
(iii) the root tree of 〈〈x, s〉〉 ∈ (the sorts of ParsedTermsOSA X)(s1) iff s ¬ s1.

(11) Let S be an order sorted signature, X be a non-empty many sorted
set indexed by S, t be an element of TS(DTConOSA X), and o be an
operation symbol of S. Suppose t(∅) = 〈〈o, the carrier of S〉〉. Then

(i) there exists a subtree sequence p joinable by OSSym(o,X) such that
t = OSSym(o,X)-tree(p) and OSSym(o,X) ⇒ the roots of p and p ∈
Args(o, ParsedTermsOSA X) and t = (Den(o, ParsedTermsOSA X))(p),

(ii) for every element s2 of the carrier of S and for every set x holds t 6= the
root tree of 〈〈x, s2〉〉, and

(iii) for every element s1 of the carrier of S holds t ∈ (the sorts of
ParsedTermsOSA X)(s1) iff the result sort of o ¬ s1.

(12) Let S be an order sorted signature, X be a non-empty many sorted set
indexed by S, n1 be a symbol of DTConOSA X, and t1 be a finite sequence
of elements of TS(DTConOSA X). Suppose n1 ⇒ the roots of t1. Then

(i) n1 ∈ the nonterminals of DTConOSA X,

(ii) n1-tree(t1) ∈ TS(DTConOSA X), and
(iii) there exists an operation symbol o of S such that n1 = 〈〈o, the carrier

of S〉〉 and t1 ∈ Args(o, ParsedTermsOSA X) and n1-tree(t1) = (Den(o,
ParsedTermsOSA X))(t1) and for every element s1 of the carrier of S holds
n1-tree(t1) ∈ (the sorts of ParsedTermsOSA X)(s1) iff the result sort of
o ¬ s1.

(13) Let S be an order sorted signature, X be a non-empty many sorted set
indexed by S, o be an operation symbol of S, and x be a finite sequ-
ence. Then x ∈ Args(o, ParsedTermsOSA X) if and only if the following
conditions are satisfied:

(i) x is a finite sequence of elements of TS(DTConOSA X), and
(ii) OSSym(o, X)⇒ the roots of x.

(14) Let S be an order sorted signature, X be a non-empty many sorted set
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indexed by S, and t be an element of TS(DTConOSA X). Then there exists
a sort symbol s of S such that t ∈ (the sorts of ParsedTermsOSA X)(s)
and for every element s1 of the carrier of S such that t ∈ (the sorts of
ParsedTermsOSA X)(s1) holds s ¬ s1.

Let S be an order sorted signature, let X be a non-empty many sorted
set indexed by S, and let t be an element of TS(DTConOSA X). The functor
LeastSort t yields a sort symbol of S and is defined by the conditions (Def. 12).

(Def. 12)(i) t ∈ (the sorts of ParsedTermsOSA X)(LeastSort t), and
(ii) for every element s1 of the carrier of S such that t ∈ (the sorts of

ParsedTermsOSA X)(s1) holds LeastSort t ¬ s1.

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S.

(Def. 13) An element of
⋃

(the sorts of A) is said to be an element of A.

We now state four propositions:

(15) Let S be an order sorted signature, X be a non-empty many sorted set
indexed by S, and x be a set. Then x is an element of ParsedTermsOSA X

if and only if x is an element of TS(DTConOSA X).
(16) Let S be an order sorted signature, X be a non-empty many sorted

set indexed by S, s be an element of the carrier of S, and x be a set.
If x ∈ (the sorts of ParsedTermsOSA X)(s), then x is an element of
TS(DTConOSA X).

(17) Let S be an order sorted signature, X be a non-empty many sorted set
indexed by S, s be an element of the carrier of S, and x be a set. Suppose
x ∈ X(s). Let t be an element of TS(DTConOSA X). If t = the root tree
of 〈〈x, s〉〉, then LeastSort t = s.

(18) Let S be an order sorted signature, X be a non-empty many sorted
set indexed by S, o be an operation symbol of S, x be an element of
Args(o, ParsedTermsOSA X), and t be an element of TS(DTConOSA X).
If t = (Den(o, ParsedTermsOSA X))(x), then LeastSort t = the result sort
of o.

Let S be an order sorted signature, let X be a non-empty many sor-
ted set indexed by S, and let o2 be an operation symbol of S. Note that
Args(o2, ParsedTermsOSA X) is non empty.

Let S be a locally directed order sorted signature, let X be a non-
empty many sorted set indexed by S, and let x be a finite sequence of ele-
ments of TS(DTConOSA X). The functor LeastSorts x yielding an element of
(the carrier of S)∗ is defined as follows:

(Def. 14) dom LeastSorts x = dom x and for every natural number y such that y ∈
dom x there exists an element t of TS(DTConOSA X) such that t = x(y)
and (LeastSorts x)(y) = LeastSort t.
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We now state the proposition

(19) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, o be an operation symbol of S, and x be
a finite sequence of elements of TS(DTConOSA X). Then LeastSorts x ¬
Arity(o) if and only if x ∈ Args(o, ParsedTermsOSA X).

Let us note that there exists a monotone order sorted signature which is
locally directed and regular.

Let S be a locally directed regular monotone order sorted signature, let X

be a non-empty many sorted set indexed by S, let o be an operation symbol
of S, and let x be a finite sequence of elements of TS(DTConOSA X). Let us
assume that OSSym(LBound(o, LeastSorts x), X)⇒ the roots of x. The functor
πxo yields an element of TS(DTConOSA X) and is defined by:

(Def. 15) πxo = OSSym(LBound(o, LeastSorts x), X)-tree(x).
Let S be a locally directed order sorted signature, let X be a non-empty

many sorted set indexed by S, and let t be a symbol of DTConOSA X. Let us
assume that there exists a finite sequence p such that t⇒ p. The functor @(X, t)
yields an operation symbol of S and is defined by:

(Def. 16) 〈〈@(X, t), the carrier of S〉〉 = t.

Let S be an order sorted signature, let X be a non-empty many sorted set
indexed by S, and let t be a symbol of DTConOSA X. Let us assume that
t ∈ the terminals of DTConOSA X. The functor

∏
t yielding an element of

TS(DTConOSA X) is defined by:

(Def. 17)
∏

t = the root tree of t.

Let S be a locally directed order sorted signature and let X be a non-empty
many sorted set indexed by S. The functor LCongruence X yielding a monotone
order sorted congruence of ParsedTermsOSA X is defined by:

(Def. 18) For every monotone order sorted congruence R of ParsedTermsOSA X

holds LCongruence X ⊆ R.

Let S be a locally directed order sorted signature and let X be a non-empty
many sorted set indexed by S. The functor FreeOSA X yielding a strict non-
empty monotone order sorted algebra of S is defined by:

(Def. 19) FreeOSA X = QuotOSAlg(ParsedTermsOSA X, LCongruence X).
Let S be an order sorted signature, let X be a non-empty many sorted set

indexed by S, and let t be a symbol of DTConOSA X. The functor @t yields a
subset of [: TS(DTConOSA X), the carrier of S :] and is defined by the condition
(Def. 20).

(Def. 20) @t = {〈〈the root tree of t, s1〉〉; s1 ranges over elements of the carrier of
S:

∨
s : element of the carrier of S

∨
x : set (x ∈ X(s) ∧ t = 〈〈x, s〉〉 ∧ s ¬ s1)}.

Let S be an order sorted signature, let X be a non-empty many sorted set
indexed by S, let n1 be a symbol of DTConOSA X, and let x be a finite sequence
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of elements of 2[: TS(DTConOSA X), the carrier of S :]. The functor @(n1, x) yielding a
subset of [: TS(DTConOSA X), the carrier of S :] is defined by the condition
(Def. 21).

(Def. 21) @(n1, x) = {〈〈(Den(o2, ParsedTermsOSA X))(x2), s3〉〉; o2 ranges over
operation symbols of S, x2 ranges over elements of
Args(o2, ParsedTermsOSA X), s3 ranges over elements of the carrier of
S:

∨
o1 : operation symbol of S (n1 = 〈〈o1, the carrier of S〉〉 ∧ o1

∼= o2 ∧
len Arity(o1) = len Arity(o2) ∧ the result sort of o1 ¬ s3 ∧ the result
sort of o2 ¬ s3) ∧

∨
w3 : element of (the carrier of S)∗ (dom w3 = dom x ∧∧

y : natural number (y ∈ dom x ⇒ 〈〈x2(y), (w3)y〉〉 ∈ x(y)))}.
Let S be a locally directed order sorted signature and let X be a non-empty

many sorted set indexed by S. The functor PTClasses X yielding a function
from TS(DTConOSA X) into 2[: TS(DTConOSA X), the carrier of S :] is defined by the
conditions (Def. 22).

(Def. 22)(i) For every symbol t of DTConOSA X such that t ∈ the terminals of
DTConOSA X holds (PTClasses X)(the root tree of t) = @t, and

(ii) for every symbol n1 of DTConOSA X and for every finite sequence t1
of elements of TS(DTConOSA X) and for every finite sequence r1 such
that r1 = the roots of t1 and n1 ⇒ r1 and for every finite sequence x of
elements of 2[: TS(DTConOSA X), the carrier of S :] such that x = PTClasses X ·t1
holds (PTClasses X)(n1-tree(t1)) = @(n1, x).

One can prove the following four propositions:

(20) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, and t be an element of TS(DTConOSA X).
Then

(i) for every element s of the carrier of S holds t ∈ (the sorts of
ParsedTermsOSA X)(s) iff 〈〈t, s〉〉 ∈ (PTClasses X)(t), and

(ii) for every element s of the carrier of S and for every element y of
TS(DTConOSA X) such that 〈〈y, s〉〉 ∈ (PTClasses X)(t) holds 〈〈t, s〉〉 ∈
(PTClasses X)(y).

(21) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, t be an element of TS(DTConOSA X),
and s be an element of the carrier of S. If there exists an element y of
TS(DTConOSA X) such that 〈〈y, s〉〉 ∈ (PTClasses X)(t), then 〈〈t, s〉〉 ∈
(PTClasses X)(t).

(22) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, x, y be elements of TS(DTConOSA X),
and s1, s2 be elements of the carrier of S. Suppose s1 ¬ s2 and
x ∈ (the sorts of ParsedTermsOSA X)(s1) and y ∈ (the sorts of
ParsedTermsOSA X)(s1). Then 〈〈y, s1〉〉 ∈ (PTClasses X)(x) if and only
if 〈〈y, s2〉〉 ∈ (PTClasses X)(x).
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(23) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, x, y, z be elements of TS(DTConOSA X),
and s be an element of the carrier of S. If 〈〈y, s〉〉 ∈ (PTClasses X)(x) and
〈〈z, s〉〉 ∈ (PTClasses X)(y), then 〈〈x, s〉〉 ∈ (PTClasses X)(z).

Let S be a locally directed order sorted signature and let X be a non-
empty many sorted set indexed by S. The functor PTCongruence X yielding
an equivalence order sorted relation of ParsedTermsOSA X is defined by the
condition (Def. 23).

(Def. 23) Let i be a set. Suppose i ∈ the carrier of S. Then (PTCongruence X)(i) =
{〈〈x, y〉〉; x ranges over elements of TS(DTConOSA X), y ranges over ele-
ments of TS(DTConOSA X): 〈〈x, i〉〉 ∈ (PTClasses X)(y)}.

One can prove the following propositions:

(24) Let S be a locally directed order sorted signature, X be a non-
empty many sorted set indexed by S, and x, y, s be sets. If 〈〈x,

s〉〉 ∈ (PTClasses X)(y), then x ∈ TS(DTConOSA X) and y ∈
TS(DTConOSA X) and s ∈ the carrier of S.

(25) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, C be a component of S, and x, y be
sets. Then 〈〈x, y〉〉 ∈ CompClass(PTCongruence X, C) if and only if there
exists an element s1 of the carrier of S such that s1 ∈ C and 〈〈x, s1〉〉 ∈
(PTClasses X)(y).

(26) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, s be an element of the carrier of S,
and x be an element of (the sorts of ParsedTermsOSA X)(s). Then
OSClass(PTCongruence X,x) = π1((PTClasses X)(x)).

(27) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, and R be a many sorted relation indexed
by ParsedTermsOSA X. Then R = PTCongruence X if and only if the
following conditions are satisfied:

(i) for all elements s1, s2 of the carrier of S and for every set x such that
x ∈ X(s1) holds if s1 ¬ s2, then 〈〈the root tree of 〈〈x, s1〉〉, the root tree
of 〈〈x, s1〉〉〉〉 ∈ R(s2) and for every set y such that 〈〈the root tree of 〈〈x,

s1〉〉, y〉〉 ∈ R(s2) or 〈〈y, the root tree of 〈〈x, s1〉〉〉〉 ∈ R(s2) holds s1 ¬ s2 and
y = the root tree of 〈〈x, s1〉〉, and

(ii) for all operation symbols o1, o2 of S and for every ele-
ment x1 of Args(o1, ParsedTermsOSA X) and for every element
x2 of Args(o2, ParsedTermsOSA X) and for every element s3 of
the carrier of S holds 〈〈(Den(o1, ParsedTermsOSA X))(x1), (Den(o2,

ParsedTermsOSA X))(x2)〉〉 ∈ R(s3) iff o1
∼= o2 and len Arity(o1) =

len Arity(o2) and the result sort of o1 ¬ s3 and the result sort of
o2 ¬ s3 and there exists an element w3 of (the carrier of S)∗ such that
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dom w3 = dom x1 and for every natural number y such that y ∈ dom w3

holds 〈〈x1(y), x2(y)〉〉 ∈ R((w3)y).

(28) Let S be a locally directed order sorted signature and X be a non-empty
many sorted set indexed by S. Then PTCongruence X is monotone.

Let S be a locally directed order sorted signature and let X be a non-empty
many sorted set indexed by S. Observe that PTCongruence X is monotone.

Let S be a locally directed order sorted signature, let X be a non-empty
many sorted set indexed by S, and let s be an element of the carrier of S. The
functor PTVars(s,X) yields a subset of (the sorts of ParsedTermsOSA X)(s)
and is defined by:

(Def. 24) For every set x holds x ∈ PTVars(s,X) iff there exists a set a such that
a ∈ X(s) and x = the root tree of 〈〈a, s〉〉.

Let S be a locally directed order sorted signature, let X be a non-empty
many sorted set indexed by S, and let s be an element of the carrier of S. One
can check that PTVars(s,X) is non empty.

We now state the proposition

(29) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, and s be an element of the carrier of
S. Then PTVars(s,X) = {the root tree of t; t ranges over symbols of
DTConOSA X : t ∈ the terminals of DTConOSA X ∧ t2 = s}.

Let S be a locally directed order sorted signature and let X be a non-
empty many sorted set indexed by S. The functor PTVars X yielding a subset
of ParsedTermsOSA X is defined by:

(Def. 25) For every element s of the carrier of S holds (PTVars X)(s) =
PTVars(s,X).

The following proposition is true

(30) Let S be a locally directed order sorted signature and X be a non-empty
many sorted set indexed by S. Then PTVars X is non-empty.

Let S be a locally directed order sorted signature, let X be a non-empty
many sorted set indexed by S, and let s be an element of the carrier of S. The
functor OSFreeGen(s,X) yields a subset of (the sorts of FreeOSA X)(s) and is
defined by:

(Def. 26) For every set x holds x ∈ OSFreeGen(s,X) iff there exists a set a such
that a ∈ X(s) and x = (OSNatHom(ParsedTermsOSA X, LCongruence X))
(s)(the root tree of 〈〈a, s〉〉).

Let S be a locally directed order sorted signature, let X be a non-empty
many sorted set indexed by S, and let s be an element of the carrier of S. Note
that OSFreeGen(s,X) is non empty.

We now state the proposition
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(31) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, and s be an element of the carrier of S. Then
OSFreeGen(s,X) = {(OSNatHom(ParsedTermsOSA X, LCongruence X))
(s)(the root tree of t); t ranges over symbols of DTConOSA X : t ∈ the
terminals of DTConOSA X ∧ t2 = s}.

Let S be a locally directed order sorted signature and let X be a non-empty
many sorted set indexed by S. The functor OSFreeGen X yielding an order
sorted generator set of FreeOSA X is defined by:

(Def. 27) For every element s of the carrier of S holds (OSFreeGen X)(s) =
OSFreeGen(s,X).

The following proposition is true

(32) Let S be a locally directed order sorted signature and X be a non-empty
many sorted set indexed by S. Then OSFreeGen X is non-empty.

Let S be a locally directed order sorted signature and let X be a non-empty
many sorted set indexed by S. Observe that OSFreeGen X is non-empty.

Let S be a locally directed order sorted signature, let X be a non-
empty many sorted set indexed by S, let R be an order sorted congruence of
ParsedTermsOSA X, and let t be an element of TS(DTConOSA X). The functor
OSClass(R, t) yielding an element of OSClass(R, LeastSort t) is defined by the
condition (Def. 28).

(Def. 28) Let s be an element of the carrier of S and x be an element of (the sorts
of ParsedTermsOSA X)(s). If t = x, then OSClass(R, t) = OSClass(R, x).

We now state several propositions:

(33) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, R be an order sorted congruence of
ParsedTermsOSA X, and t be an element of TS(DTConOSA X). Then
t ∈ OSClass(R, t).

(34) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, s be an element of the carrier of S, t be an
element of TS(DTConOSA X), and x, x1 be sets. Suppose x ∈ X(s) and
t = the root tree of 〈〈x, s〉〉. Then x1 ∈ OSClass(PTCongruence X, t) if and
only if x1 = t.

(35) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, R be an order sorted congruence of
ParsedTermsOSA X, and t2, t3 be elements of TS(DTConOSA X). Then
t3 ∈ OSClass(R, t2) if and only if OSClass(R, t2) = OSClass(R, t3).

(36) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, R1, R2 be order sorted congruences of
ParsedTermsOSA X, and t be an element of TS(DTConOSA X). If R1 ⊆
R2, then OSClass(R1, t) ⊆ OSClass(R2, t).
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(37) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, s be an element of the carrier of S, t be an
element of TS(DTConOSA X), and x, x1 be sets. Suppose x ∈ X(s) and
t = the root tree of 〈〈x, s〉〉. Then x1 ∈ OSClass(LCongruence X, t) if and
only if x1 = t.

Let S be a locally directed order sorted signature, let X be a non-empty
many sorted set indexed by S, let A be a non-empty many sorted set indexed
by the carrier of S, let F be a many sorted function from PTVars X into A,
and let t be a symbol of DTConOSA X. Let us assume that t ∈ the terminals of
DTConOSA X. The functor π(F, A, t) yields an element of

⋃
A and is defined

as follows:

(Def. 29) For every function f such that f = F (t2) holds π(F, A, t) = f(the root
tree of t).

Next we state the proposition

(38) Let S be a locally directed order sorted signature, X be a non-empty
many sorted set indexed by S, U1 be a monotone non-empty order sor-
ted algebra of S, and f be a many sorted function from PTVars X

into the sorts of U1. Then there exists a many sorted function h

from ParsedTermsOSA X into U1 such that h is a homomorphism of
ParsedTermsOSA X into U1 and order-sorted and h ¹ PTVars X = f.

Let S be a locally directed order sorted signature, let X be a non-empty many
sorted set indexed by S, and let s be an element of the carrier of S. The functor
NHReverse(s,X) yields a function from OSFreeGen(s,X) into PTVars(s,X)
and is defined by the condition (Def. 30).

(Def. 30) Let t be a symbol of DTConOSA X.

Suppose (OSNatHom(ParsedTermsOSA X, LCongruence X))(s)(the root
tree of t) ∈ OSFreeGen(s, X). Then (NHReverse(s,X))((OSNatHom
(ParsedTermsOSA X, LCongruence X))(s)(the root tree of t)) = the root
tree of t.

Let S be a locally directed order sorted signature and let X be a non-empty
many sorted set indexed by S. The functor NHReverse X yielding a many sorted
function from OSFreeGen X into PTVars X is defined as follows:

(Def. 31) For every element s of the carrier of S holds (NHReverse X)(s) =
NHReverse(s, X).

Next we state two propositions:

(39) Let S be a locally directed order sorted signature and X be a non-empty
many sorted set indexed by S. Then OSFreeGen X is osfree.

(40) Let S be a locally directed order sorted signature and X be a non-empty
many sorted set indexed by S. Then FreeOSA X is osfree.
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Let S be a locally directed order sorted signature. Note that there exists a
non-empty monotone order sorted algebra of S which is osfree and strict.

3. Minimal Terms

Let S be a locally directed regular monotone order sorted signature and let
X be a non-empty many sorted set indexed by S. The functor PTMin X yields
a function from TS(DTConOSA X) into TS(DTConOSA X) and is defined by
the conditions (Def. 32).

(Def. 32)(i) For every symbol t of DTConOSA X such that t ∈ the terminals of
DTConOSA X holds (PTMin X)(the root tree of t) =

∏
t, and

(ii) for every symbol n1 of DTConOSA X and for every finite sequence t1
of elements of TS(DTConOSA X) and for every finite sequence r1 such
that r1 = the roots of t1 and n1 ⇒ r1 and for every finite sequence
x of elements of TS(DTConOSA X) such that x = PTMin X · t1 holds
(PTMin X)(n1-tree(t1)) = πx(@(X,n1)).

Next we state several propositions:

(41) Let S be a locally directed regular monotone order sorted signature, X

be a non-empty many sorted set indexed by S, and t be an element of
TS(DTConOSA X). Then

(i) (PTMin X)(t) ∈ OSClass(PTCongruence X, t),
(ii) LeastSort(PTMin X)(t) ¬ LeastSort t,

(iii) for every element s of the carrier of S and for every set x such that
x ∈ X(s) and t = the root tree of 〈〈x, s〉〉 holds (PTMin X)(t) = t, and

(iv) for every operation symbol o of S and for every finite sequence t1
of elements of TS(DTConOSA X) such that OSSym(o,X) ⇒ the ro-
ots of t1 and t = OSSym(o,X)-tree(t1) holds LeastSorts PTMin X ·
t1 ¬ Arity(o) and OSSym(o,X) ⇒ the roots of PTMin X · t1 and
OSSym(LBound(o, LeastSorts PTMin X ·t1), X)⇒ the roots of PTMin X ·
t1 and (PTMin X)(t) = OSSym(LBound(o, LeastSorts PTMin X ·
t1), X)-tree(PTMin X · t1).

(42) Let S be a locally directed regular monotone order sorted signature,
X be a non-empty many sorted set indexed by S, and t, t2 be ele-
ments of TS(DTConOSA X). If t2 ∈ OSClass(PTCongruence X, t), then
(PTMin X)(t2) = (PTMin X)(t).

(43) Let S be a locally directed regular monotone order sorted signature, X

be a non-empty many sorted set indexed by S, and t2, t3 be elements of
TS(DTConOSA X). Then t3 ∈ OSClass(PTCongruence X, t2) if and only
if (PTMin X)(t3) = (PTMin X)(t2).

(44) Let S be a locally directed regular monotone order sorted signa-
ture, X be a non-empty many sorted set indexed by S, and t2 be
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an element of TS(DTConOSA X). Then (PTMin X)((PTMin X)(t2)) =
(PTMin X)(t2).

(45) Let S be a locally directed regular monotone order sorted signature, X

be a non-empty many sorted set indexed by S, R be a monotone equiva-
lence order sorted relation of ParsedTermsOSA X, and t be an element of
TS(DTConOSA X). Then 〈〈t, (PTMin X)(t)〉〉 ∈ R(LeastSort t).

(46) Let S be a locally directed regular monotone order sorted signature,
X be a non-empty many sorted set indexed by S, and R be a mo-
notone equivalence order sorted relation of ParsedTermsOSA X. Then
PTCongruence X ⊆ R.

(47) Let S be a locally directed regular monotone order sorted signature and
X be a non-empty many sorted set indexed by S. Then LCongruence X =
PTCongruence X.

Let S be a locally directed regular monotone order sorted signature and let X

be a non-empty many sorted set indexed by S. An element of TS(DTConOSA X)
is called a minimal term of S, X if:

(Def. 33) (PTMin X)(it) = it.

Let S be a locally directed regular monotone order sorted signature and let
X be a non-empty many sorted set indexed by S. The functor MinTerms X

yields a subset of TS(DTConOSA X) and is defined by:

(Def. 34) MinTerms X = rng PTMin X.

The following proposition is true

(48) Let S be a locally directed regular monotone order sorted signature, X

be a non-empty many sorted set indexed by S, and x be a set. Then x is
a minimal term of S, X if and only if x ∈ MinTerms X.
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