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Summary. We present a Mizar formalization of the proof of Dickson’s
lemma following [6], chapters 4.2 and 4.3.

MML Identifier: DICKSON.

The papers [19], [29], [1], [7], [13], [21], [12], [8], [9], [2], [20], [26], [27], [24], [17],

[18], [30], [32], [31], [28], [23], [4], [11], [5], [14], [22], [3], [15], [16], [25], and [10]

provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following two propositions:

(1) For every function g and for every set x such that dom g = {x} holds

g = x7−→. g(x).

(2) For every natural number n holds n ⊆ n + 1.

The scheme FinSegRng2 deals with natural numbers A, B, a unary functor

F yielding a set, and a unary predicate P, and states that:

{F(i); i ranges over natural numbers: A < i ∧ i ¬ B ∧ P[i]} is

finite

for all values of the parameters.

The following proposition is true

(3) For every infinite set X holds there exists a function from N into X

which is one-to-one.

Let R be a relational structure and let f be a sequence of R. We say that f

is ascending if and only if:
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(Def. 1) For every natural number n holds f(n+1) 6= f(n) and 〈〈f(n), f(n+1)〉〉 ∈

the internal relation of R.

Let R be a relational structure and let f be a sequence of R. We say that f

is weakly ascending if and only if:

(Def. 2) For every natural number n holds 〈〈f(n), f(n+1)〉〉 ∈ the internal relation

of R.

The following propositions are true:

(4) Let R be a non empty transitive relational structure and f be a sequence

of R. Suppose f is weakly ascending. Let i, j be natural numbers. If i < j,

then f(i) ¬ f(j).

(5) Let R be a non empty relational structure. Then R is connected if and

only if the internal relation of R is strongly connected in the carrier of R.

(6) Let R be a binary relation and X be a set. Then R is reflexive in X and

connected in X if and only if R is strongly connected in X.

(7) Let L be a relational structure, Y be a set, and a be an element of L.

Then (the internal relation of L)-Seg(a) misses Y and a ∈ Y if and only

if a is minimal w.r.t. Y , the internal relation of L.

(8) Let L be a non empty transitive antisymmetric relational structure, a, x

be elements of L, and N be a set. Suppose a is minimal w.r.t. (the internal

relation of L)-Seg(x) ∩ N, the internal relation of L. Then a is minimal

w.r.t. N , the internal relation of L.

2. More on Ordering Relations

Let R be a relational structure. We say that R is quasi ordered if and only

if:

(Def. 3) R is reflexive and transitive.

Let R be a relational structure. Let us assume that R is quasi ordered. The

functor EqRel(R) yielding an equivalence relation of the carrier of R is defined

as follows:

(Def. 4) EqRel(R) = (the internal relation of R) ∩ (the internal relation of R)`.

The following proposition is true

(9) Let R be a relational structure and x, y be elements of the carrier of R.

If R is quasi ordered, then x ∈ [y]EqRel(R) iff x ¬ y and y ¬ x.

Let R be a relational structure. The functor ¬ER yielding a binary relation

on Classes EqRel(R) is defined as follows:

(Def. 5) For all sets A, B holds 〈〈A, B〉〉 ∈ ¬ER iff there exist elements a, b of R

such that A = [a]EqRel(R) and B = [b]EqRel(R) and a ¬ b.

We now state two propositions:
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(10) For every relational structure R such that R is quasi ordered holds ¬ER

partially orders Classes EqRel(R).

(11) Let R be a non empty relational structure. If R is quasi ordered and

connected, then ¬ER linearly orders Classes EqRel(R).

Let R be a binary relation. The functor R\` yields a binary relation and is

defined by:

(Def. 6) R\` = R \R`.

Let R be a binary relation. Note that R\` is asymmetric.

Let X be a set and let R be a binary relation on X. Then R\` is a binary

relation on X.

Let R be a relational structure. The functor R\` yielding a strict relational

structure is defined as follows:

(Def. 7) R\` = 〈the carrier of R, the internal relation of R\`〉.

Let R be a non empty relational structure. One can check that R\` is non

empty.

Let R be a transitive relational structure. One can check that R\` is trans-

itive.

Let R be a relational structure. One can check that R\` is antisymmetric.

We now state several propositions:

(12) For every non empty poset R and for every element x of the carrier of

R holds [x]EqRel(R) = {x}.

(13) For every binary relation R holds R = R\` iff R is asymmetric.

(14) For every binary relation R such that R is transitive holds R\` is trans-

itive.

(15) Let R be a binary relation and a, b be sets. If R is antisymmetric, then

〈〈a, b〉〉 ∈ R\` iff 〈〈a, b〉〉 ∈ R and a 6= b.

(16) For every relational structure R such that R is well founded holds R\`

is well founded.

(17) For every relational structure R such that R\` is well founded and R is

antisymmetric holds R is well founded.

3. Foundedness Properties

The following two propositions are true:

(18) Let L be a relational structure, N be a set, and x be an element of L\`.

Then x is minimal w.r.t. N , the internal relation of L\` if and only if

x ∈ N and for every element y of L such that y ∈ N and 〈〈y, x〉〉 ∈ the

internal relation of L holds 〈〈x, y〉〉 ∈ the internal relation of L.
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(19) Let R, S be non empty relational structures and m be a map from R

into S. Suppose that

(i) R is quasi ordered,

(ii) S is antisymmetric,

(iii) S\` is well founded, and

(iv) for all elements a, b of R holds if a ¬ b, then m(a) ¬ m(b) and if

m(a) = m(b), then 〈〈a, b〉〉 ∈ EqRel(R).

Then R\` is well founded.

Let R be a non empty relational structure and let N be a subset of the

carrier of R. The functor MinClassesN yields a family of subsets of the carrier

of R and is defined by the condition (Def. 8).

(Def. 8) Let x be a set. Then x ∈ MinClassesN if and only if there exists an

element y of R\` such that y is minimal w.r.t. N , the internal relation of

R\` and x = [y]EqRel(R) ∩N.

Next we state several propositions:

(20) Let R be a non empty relational structure, N be a subset of the carrier

of R, and x be a set. Suppose R is quasi ordered and x ∈ MinClassesN.

Let y be an element of R\`. If y ∈ x, then y is minimal w.r.t. N , the

internal relation of R\`.

(21) Let R be a non empty relational structure. Then R\` is well founded if

and only if for every subset N of the carrier of R such that N 6= ∅ there

exists a set x such that x ∈ MinClassesN.

(22) Let R be a non empty relational structure, N be a subset of the carrier

of R, and y be an element of R\`. If y is minimal w.r.t. N , the internal

relation of R\`, then MinClassesN is non empty.

(23) Let R be a non empty relational structure, N be a subset of the carrier

of R, and x be a set. If R is quasi ordered and x ∈ MinClassesN, then x

is non empty.

(24) Let R be a non empty relational structure. Suppose R is quasi ordered.

Then R is connected and R\` is well founded if and only if for every non

empty subset N of the carrier of R holds MinClassesN = 1.

(25) Let R be a non empty poset. Then the following statements are equiva-

lent

(i) the internal relation of R well orders the carrier of R,

(ii) for every non empty subset N of the carrier of R holds MinClassesN =

1.

Let R be a relational structure, let N be a subset of the carrier of R, and

let B be a set. We say that B is Dickson basis of N , R if and only if:

(Def. 9) B ⊆ N and for every element a of R such that a ∈ N there exists an

element b of R such that b ∈ B and b ¬ a.
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The following two propositions are true:

(26) For every relational structureR holds ∅ is Dickson basis of ∅the carrier of R,

R.

(27) Let R be a non empty relational structure, N be a non empty subset of

the carrier of R, and B be a set. If B is Dickson basis of N , R, then B is

non empty.

Let R be a relational structure. We say that R is Dickson if and only if:

(Def. 10) For every subset N of the carrier of R holds there exists a set which is

Dickson basis of N , R and finite.

The following two propositions are true:

(28) For every non empty relational structureR such that R\` is well founded

and R is connected holds R is Dickson.

(29) Let R, S be relational structures. Suppose that

(i) the internal relation of R ⊆ the internal relation of S,

(ii) R is Dickson, and

(iii) the carrier of R = the carrier of S.

Then S is Dickson.

Let f be a function and let b be a set. Let us assume that dom f = N and

b ∈ rng f. The functor f mindex b yielding a natural number is defined by:

(Def. 11) f(f mindex b) = b and for every natural number i such that f(i) = b

holds f mindex b ¬ i.

Let R be a non empty 1-sorted structure, let f be a sequence of R, let b be

a set, and let m be a natural number. Let us assume that there exists a natural

number j such that m < j and f(j) = b. The functor f mindex(b,m) yielding a

natural number is defined as follows:

(Def. 12) f(f mindex(b,m)) = b and m < f mindex(b,m) and for every natural

number i such that m < i and f(i) = b holds f mindex(b,m) ¬ i.

Next we state several propositions:

(30) Let R be a non empty relational structure. Suppose R is quasi ordered

and Dickson. Let f be a sequence of R. Then there exist natural numbers

i, j such that i < j and f(i) ¬ f(j).

(31) Let R be a relational structure, N be a subset of the carrier of R, and

x be an element of R\`. Suppose R is quasi ordered and x ∈ N and (the

internal relation of R)-Seg(x) ∩N ⊆ [x]EqRel(R). Then x is minimal w.r.t.

N , the internal relation of R\`.

(32) Let R be a non empty relational structure. Suppose R is quasi ordered

and for every sequence f of R there exist natural numbers i, j such that

i < j and f(i) ¬ f(j). Let N be a non empty subset of the carrier of R.

Then MinClassesN is finite and MinClassesN is non empty.
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(33) Let R be a non empty relational structure. Suppose R is quasi ordered

and for every non empty subset N of the carrier of R holds MinClassesN

is finite and MinClassesN is non empty. Then R is Dickson.

(34) For every non empty relational structure R such that R is quasi ordered

and Dickson holds R\` is well founded.

(35) Let R be a non empty poset and N be a non empty subset of the carrier

of R. Suppose R is Dickson. Then there exists a set B such that B is

Dickson basis of N , R and for every set C such that C is Dickson basis of

N , R holds B ⊆ C.

Let R be a non empty relational structure and let N be a subset of the

carrier of R. Let us assume that R is Dickson. The functor Dickson-Bases(N,R)

yields a non empty family of subsets of the carrier of R and is defined as follows:

(Def. 13) For every set B holds B ∈ Dickson-Bases(N, R) iff B is Dickson basis of

N , R.

We now state several propositions:

(36) Let R be a non empty relational structure and s be a sequence of R. If

R is Dickson, then there exists a sequence of R which is a subsequence of

s and weakly ascending.

(37) For every relational structure R such that R is empty holds R is Dickson.

(38) Let M , N be relational structures. Suppose M is Dickson and N is

Dickson and M is quasi ordered and N is quasi ordered. Then [:M, N :] is

quasi ordered and [:M, N :] is Dickson.

(39) Let R, S be relational structures. Suppose R and S are isomorphic and

R is Dickson and quasi ordered. Then S is quasi ordered and Dickson.

(40) Let p be a relational structure yielding many sorted set indexed by 1

and z be an element of 1. Then p(z) and
∏

p are isomorphic.

Let X be a set, let p be a relational structure yielding many sorted set

indexed by X, and let Y be a subset of X. Note that p↾Y is relational structure

yielding.

Next we state three propositions:

(41) Let n be a non empty natural number and p be a relational structure

yielding many sorted set indexed by n. Then
∏

p is non empty if and only

if p is nonempty.

(42) Let n be a non empty natural number, p be a relational structure yielding

many sorted set indexed by n + 1, n1 be a subset of n + 1, and n2 be an

element of n + 1. If n1 = n and n2 = n, then [:
∏

(p↾n1), p(n2) :] and
∏

p

are isomorphic.

(43) Let n be a non empty natural number and p be a relational structure

yielding many sorted set indexed by n. Suppose that for every element
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i of n holds p(i) is Dickson and p(i) is quasi ordered. Then
∏

p is quasi

ordered and
∏

p is Dickson.

Let p be a relational structure yielding many sorted set indexed by ∅. One

can check the following observations:

∗
∏

p is non empty,

∗
∏

p is antisymmetric,

∗
∏

p is quasi ordered, and

∗
∏

p is Dickson.

The binary relation NATOrd on N is defined by:

(Def. 14) NATOrd = {〈〈x, y〉〉; x ranges over elements of N, y ranges over elements

of N: x ¬ y}.

We now state four propositions:

(44) NATOrd is reflexive in N.

(45) NATOrd is antisymmetric in N.

(46) NATOrd is strongly connected in N.

(47) NATOrd is transitive in N.

The non empty relational structure OrderedNAT is defined as follows:

(Def. 15) OrderedNAT = 〈N,NATOrd〉.

One can verify the following observations:

∗ OrderedNAT is connected,

∗ OrderedNAT is Dickson,

∗ OrderedNAT is quasi ordered,

∗ OrderedNAT is antisymmetric,

∗ OrderedNAT is transitive, and

∗ OrderedNAT is well founded.

Let n be a natural number. One can check the following observations:

∗
∏

(n 7−→ OrderedNAT) is non empty,

∗
∏

(n 7−→ OrderedNAT) is Dickson,

∗
∏

(n 7−→ OrderedNAT) is quasi ordered, and

∗
∏

(n 7−→ OrderedNAT) is antisymmetric.

We now state three propositions:

(48) Let M be a relational structure. Suppose M is Dickson and quasi orde-

red. Then [:M, OrderedNAT :] is quasi ordered and [:M, OrderedNAT :] is

Dickson.

(49) Let R, S be non empty relational structures. Suppose that

(i) R is Dickson and quasi ordered,

(ii) S is quasi ordered,

(iii) the internal relation of R ⊆ the internal relation of S, and
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(iv) the carrier of R = the carrier of S.

Then S\` is well founded.

(50) Let R be a non empty relational structure. Suppose R is quasi ordered.

Then R is Dickson if and only if for every non empty relational structure S

such that S is quasi ordered and the internal relation of R ⊆ the internal

relation of S and the carrier of R = the carrier of S holds S\` is well

founded.
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