Fibonacci Numbers

Robert M. Solovay P. O. Box 5949 Eugene OR 97405 U. S. A.

Summary. We show that Fibonacci commutes with g.c.d.; we then derive the formula connecting the Fibonacci sequence with the roots of the polynomial $x^2 - x - 1$.

MML Identifier: FIB_NUM.

The terminology and notation used here are introduced in the following articles: [3], [9], [5], [1], [2], [4], [7], [6], and [8].

1. FIBONACCI COMMUTES WITH GCD

One can prove the following three propositions:

- (1) For all natural numbers m, n holds gcd(m, n) = gcd(m, n+m).
- (2) For all natural numbers k, m, n such that gcd(k, m) = 1 holds $gcd(k, m \cdot n) = gcd(k, n)$.
- (3) For every real number s such that s > 0 there exists a natural number n such that n > 0 and $0 < \frac{1}{n}$ and $\frac{1}{n} \leq s$.

In this article we present several logical schemes. The scheme Fib Ind concerns a unary predicate \mathcal{P} , and states that:

For every natural number k holds $\mathcal{P}[k]$

provided the following conditions are met:

- $\mathcal{P}[0],$
- $\mathcal{P}[1]$, and
- For every natural number k such that $\mathcal{P}[k]$ and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k+2]$.

C 2002 University of Białystok ISSN 1426-2630 The scheme Bin Ind concerns a binary predicate \mathcal{P} , and states that: For all natural numbers m, n holds $\mathcal{P}[m, n]$

provided the parameters satisfy the following conditions:

- For all natural numbers m, n such that $\mathcal{P}[m, n]$ holds $\mathcal{P}[n, m]$, and
- Let k be a natural number. Suppose that for all natural numbers m, n such that m < k and n < k holds $\mathcal{P}[m, n]$. Let m be a natural number. If $m \leq k$, then $\mathcal{P}[k, m]$.

We now state two propositions:

- (4) For all natural numbers m, n holds $\operatorname{Fib}(m + (n+1)) = \operatorname{Fib}(n) \cdot \operatorname{Fib}(m) + \operatorname{Fib}(n+1) \cdot \operatorname{Fib}(m+1)$.
- (5) For all natural numbers m, n holds gcd(Fib(m), Fib(n)) = Fib(gcd(m, n)).

2. FIBONACCI NUMBERS AND THE GOLDEN MEAN

Next we state the proposition

(6) Let x, a, b, c be real numbers. Suppose $a \neq 0$ and $\Delta(a, b, c) \ge 0$. Then $a \cdot x^2 + b \cdot x + c = 0$ if and only if $x = \frac{-b - \sqrt{\Delta(a, b, c)}}{2 \cdot a}$ or $x = \frac{-b + \sqrt{\Delta(a, b, c)}}{2 \cdot a}$.

The real number τ is defined by:

(Def. 1)
$$\tau = \frac{1+\sqrt{5}}{2}$$
.

The real number $\overline{\tau}$ is defined as follows:

(Def. 2)
$$\bar{\tau} = \frac{1-\sqrt{5}}{2}$$
.

One can prove the following propositions:

- (7) For every natural number *n* holds $\operatorname{Fib}(n) = \frac{\tau^n \overline{\tau}^n}{\sqrt{5}}$.
- (8) For every natural number *n* holds $|\operatorname{Fib}(n) \frac{\tau^n}{\sqrt{5}}| < 1$.
- (9) For all sequences F, G of real numbers such that for every natural number n holds F(n) = G(n) holds F = G.
- (10) For all sequences f, g, h of real numbers such that g is non-zero holds (f/g)(g/h) = f/h.
- (11) For all sequences f, g of real numbers and for every natural number n holds $(f/g)(n) = \frac{f(n)}{g(n)}$ and $(f/g)(n) = f(n) \cdot g(n)^{-1}$.
- (12) Let F be a sequence of real numbers. Suppose that for every natural number n holds $F(n) = \frac{\operatorname{Fib}(n+1)}{\operatorname{Fib}(n)}$. Then F is convergent and $\lim F = \tau$.

FIBONACCI NUMBERS

Acknowledgments

My thanks to Freek Wiedijk for helping me learn Mizar and to Piotr Rudnicki for instructive comments on an earlier version of this article. This article was finished while I was visiting Bialystok and Adam Naumowicz and Josef Urban helped me through some difficult moments.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I preliminaries. Formalized Mathematics, 4(1):69–72, 1993.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(1):35–40, 1990.
- [4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [5] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [6] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [7] Jan Popiołek. Quadratic inequalities. Formalized Mathematics, 2(4):507–509, 1991.
- [8] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
- [9] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received April 19, 2002