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Summary.We show that Fibonacci commutes with g.c.d.; we then derive
the formula connecting the Fibonacci sequence with the roots of the polynomial

x
2
− x− 1.

MML Identifier: FIB NUM.

The terminology and notation used here are introduced in the following articles:

[3], [9], [5], [1], [2], [4], [7], [6], and [8].

1. Fibonacci Commutes with gcd

One can prove the following three propositions:

(1) For all natural numbers m, n holds gcd(m,n) = gcd(m, n + m).

(2) For all natural numbers k, m, n such that gcd(k, m) = 1 holds gcd(k,m ·
n) = gcd(k, n).

(3) For every real number s such that s > 0 there exists a natural number

n such that n > 0 and 0 < 1
n
and 1

n
¬ s.

In this article we present several logical schemes. The scheme Fib Ind con-

cerns a unary predicate P, and states that:

For every natural number k holds P[k]

provided the following conditions are met:

• P[0],

• P[1], and

• For every natural number k such that P[k] and P[k + 1] holds

P[k + 2].
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The scheme Bin Ind concerns a binary predicate P, and states that:

For all natural numbers m, n holds P[m,n]

provided the parameters satisfy the following conditions:

• For all natural numbers m, n such that P[m,n] holds P[n,m],

and

• Let k be a natural number. Suppose that for all natural numbers

m, n such that m < k and n < k holds P[m,n]. Let m be a

natural number. If m ¬ k, then P[k,m].

We now state two propositions:

(4) For all natural numbers m, n holds Fib(m+(n+1)) = Fib(n) ·Fib(m)+

Fib(n + 1) · Fib(m + 1).

(5) For all natural numbers m, n holds gcd(Fib(m),Fib(n)) =

Fib(gcd(m,n)).

2. Fibonacci Numbers and the Golden Mean

Next we state the proposition

(6) Let x, a, b, c be real numbers. Suppose a 6= 0 and ∆(a, b, c) ­ 0. Then

a · x2 + b · x + c = 0 if and only if x =
−b−
√

∆(a,b,c)

2·a or x =
−b+
√

∆(a,b,c)

2·a .

The real number τ is defined by:

(Def. 1) τ = 1+
√

5
2 .

The real number τ is defined as follows:

(Def. 2) τ = 1−
√

5
2 .

One can prove the following propositions:

(7) For every natural number n holds Fib(n) = τn
−τn

√

5
.

(8) For every natural number n holds |Fib(n)− τn

√

5
| < 1.

(9) For all sequences F , G of real numbers such that for every natural num-

ber n holds F (n) = G(n) holds F = G.

(10) For all sequences f , g, h of real numbers such that g is non-zero holds

(f/g) (g/h) = f/h.

(11) For all sequences f , g of real numbers and for every natural number n

holds (f/g)(n) = f(n)
g(n) and (f/g)(n) = f(n) · g(n)−1.

(12) Let F be a sequence of real numbers. Suppose that for every natural

number n holds F (n) = Fib(n+1)
Fib(n) . Then F is convergent and limF = τ.
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