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Summary. Outside and inside Fashoda theorems are proven for points in
general position on unit circle. Four points must be ordered in a sense of ordering

for simple closed curve. For preparation of proof, the relation between the order

and condition of coordinates of points on unit circle is discussed.
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The articles [11], [9], [17], [21], [3], [4], [20], [5], [10], [1], [18], [7], [8], [12], [19],

[16], [6], [2], [15], [14], and [13] provide the terminology and notation for this

paper.

1. Preliminaries

In this paper x, a are real numbers.

Next we state a number of propositions:

(1) If a ­ 0 and (x− a) · (x + a) ­ 0, then −a ­ x or x ­ a.

(2) If a ¬ 0 and x < a, then x2 > a2.

(3) For every point p of E2
T
such that |p| ¬ 1 holds −1 ¬ p1 and p1 ¬ 1 and

−1 ¬ p2 and p2 ¬ 1.

(4) For every point p of E2
T
such that |p| ¬ 1 and p1 6= 0 and p2 6= 0 holds

−1 < p1 and p1 < 1 and −1 < p2 and p2 < 1.

(5) Let a, b, d, e, r3 be real numbers, P1, P2 be non empty metric structures,

x be an element of the carrier of P1, and x2 be an element of the carrier of

P2. Suppose d ¬ a and a ¬ b and b ¬ e and P1 = [a, b]M and P2 = [d, e]M
and x = x2 and x ∈ the carrier of P1 and x2 ∈ the carrier of P2. Then

Ball(x, r3) ⊆ Ball(x2, r3).
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(6) Let a, b, d, e be real numbers and B be a subset of [d, e]T. If d ¬ a and

a ¬ b and b ¬ e and B = [a, b], then [a, b]T = [d, e]T↾B.

(7) For all real numbers a, b and for every subset B of I such that 0 ¬ a and

a ¬ b and b ¬ 1 and B = [a, b] holds [a, b]T = I↾B.

(8) Let X be a topological structure, Y , Z be non empty topological struc-

tures, f be a map from X into Y , and h be a map from Y into Z. If h is

a homeomorphism and f is continuous, then h · f is continuous.

(9) Let X, Y , Z be topological structures, f be a map from X into Y , and

h be a map from Y into Z. If h is a homeomorphism and f is one-to-one,

then h · f is one-to-one.

(10) Let X be a topological structure, S, V be non empty topological struc-

tures, B be a non empty subset of S, f be a map from X into S↾B, g be

a map from S into V , and h be a map from X into V . If h = g · f and f

is continuous and g is continuous, then h is continuous.

(11) Let a, b, d, e, s1, s2, t1, t2 be real numbers and h be a map from [a, b]T
into [d, e]T. Suppose h is a homeomorphism and h(s1) = t1 and h(s2) = t2
and h(a) = d and h(b) = e and d ¬ e and t1 ¬ t2 and s1 ∈ [a, b] and

s2 ∈ [a, b]. Then s1 ¬ s2.

(12) Let a, b, d, e, s1, s2, t1, t2 be real numbers and h be a map from [a, b]T
into [d, e]T. Suppose h is a homeomorphism and h(s1) = t1 and h(s2) = t2
and h(a) = e and h(b) = d and e ­ d and t1 ­ t2 and s1 ∈ [a, b] and

s2 ∈ [a, b]. Then s1 ¬ s2.

(13) For every natural number n holds −0En

T
= 0En

T
.

2. Fashoda Meet Theorems for Circle in Special Case

Next we state two propositions:

(14) Let f , g be maps from I into E2
T
, a, b, c, d be real numbers, and O, I

be points of I. Suppose that O = 0 and I = 1 and f is continuous and

one-to-one and g is continuous and one-to-one and a 6= b and c 6= d and

f(O)1 = a and c ¬ f(O)2 and f(O)2 ¬ d and f(I)1 = b and c ¬ f(I)2
and f(I)2 ¬ d and g(O)2 = c and a ¬ g(O)1 and g(O)1 ¬ b and g(I)2 = d

and a ¬ g(I)1 and g(I)1 ¬ b and for every point r of I holds a ­ f(r)1
or f(r)1 ­ b or c ­ f(r)2 or f(r)2 ­ d but a ­ g(r)1 or g(r)1 ­ b or

c ­ g(r)2 or g(r)2 ­ d. Then rng f meets rng g.

(15) Let f be a map from I into E2
T
. Suppose f is continuous and one-to-one.

Then there exists a map f2 from I into E2
T
such that f2(0) = f(1) and

f2(1) = f(0) and rng f2 = rng f and f2 is continuous and one-to-one.

In the sequel p, q denote points of E2
T
.

Next we state several propositions:
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(16) Let f , g be maps from I into E2
T
, C0, K1, K2, K3, K4 be subsets of

E2
T
, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =

{p : |p| ¬ 1} and K1 = {q1; q1 ranges over points of E
2
T
: |q1| = 1 ∧ (q1)2 ¬

(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E
2
T
:

|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over

points of E2
T
: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2
T
: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K2 and f(I) ∈ K1 and g(O) ∈ K3 and g(I) ∈ K4 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(17) Let f , g be maps from I into E2
T
, C0, K1, K2, K3, K4 be subsets of

E2
T
, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =

{p : |p| ­ 1} and K1 = {q1; q1 ranges over points of E
2
T
: |q1| = 1 ∧ (q1)2 ¬

(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E
2
T
:

|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over

points of E2
T
: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2
T
: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K2 and f(I) ∈ K1 and g(O) ∈ K4 and g(I) ∈ K3 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(18) Let f , g be maps from I into E2
T
, C0, K1, K2, K3, K4 be subsets of

E2
T
, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =

{p : |p| ­ 1} and K1 = {q1; q1 ranges over points of E
2
T
: |q1| = 1 ∧ (q1)2 ¬

(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E
2
T
:

|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over

points of E2
T
: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2
T
: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K2 and f(I) ∈ K1 and g(O) ∈ K3 and g(I) ∈ K4 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(19) Let f , g be maps from I into E2
T
and C0 be a subset of E

2
T
. Suppose that

C0 = {q : |q| ­ 1} and f is continuous and one-to-one and g is continuous

and one-to-one and f(0) = [−1, 0] and f(1) = [1, 0] and g(1) = [0, 1] and

g(0) = [0,−1] and rng f ⊆ C0 and rng g ⊆ C0. Then rng f meets rng g.

(20) Let p1, p2, p3, p4 be points of E
2
T
and C0 be a subset of E

2
T
. Suppose that

(i) C0 = {p : |p| ­ 1},

(ii) |p1| = 1,

(iii) |p2| = 1,

(iv) |p3| = 1,

(v) |p4| = 1, and

(vi) there exists a map h from E2
T
into E2

T
such that h is a homeomorphism
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and h◦C0 ⊆ C0 and h(p1) = [−1, 0] and h(p2) = [0, 1] and h(p3) = [1, 0]

and h(p4) = [0,−1].

Let f , g be maps from I into E2
T
. Suppose that f is continuous and one-

to-one and g is continuous and one-to-one and f(0) = p1 and f(1) = p3

and g(0) = p4 and g(1) = p2 and rng f ⊆ C0 and rng g ⊆ C0. Then rng f

meets rng g.

3. Properties of Fan Morphisms

The following propositions are true:

(21) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and

c1 < 1 and q2 > 0. Let p be a point of E2
T
. If p = c1 -FanMorphN(q), then

p2 > 0.

(22) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and

c1 < 1 and q2 ­ 0. Let p be a point of E2
T
. If p = c1 -FanMorphN(q), then

p2 ­ 0.

(23) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and

c1 < 1 and q2 ­ 0 and q1

|q| < c1 and |q| 6= 0. Let p be a point of E2
T
. If

p = c1 -FanMorphN(q), then p2 ­ 0 and p1 < 0.

(24) Let c1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < c1

and c1 < 1 and (q1)2 ­ 0 and (q2)2 ­ 0 and |q1| 6= 0 and |q2| 6= 0 and
(q1)1
|q1|

<
(q2)1
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = c1 -FanMorphN(q1) and

p2 = c1 -FanMorphN(q2), then
(p1)1
|p1|

<
(p2)1
|p2|

.

(25) Let s3 be a real number and q be a point of E2
T
. Suppose −1 < s3 and

s3 < 1 and q1 > 0. Let p be a point of E2
T
. If p = s3 -FanMorphE(q), then

p1 > 0.

(26) Let s3 be a real number and q be a point of E2
T
. Suppose −1 < s3 and

s3 < 1 and q1 ­ 0 and q2

|q| < s3 and |q| 6= 0. Let p be a point of E2
T
. If

p = s3 -FanMorphE(q), then p1 ­ 0 and p2 < 0.

(27) Let s3 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < s3

and s3 < 1 and (q1)1 ­ 0 and (q2)1 ­ 0 and |q1| 6= 0 and |q2| 6= 0 and
(q1)2
|q1|

<
(q2)2
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = s3 -FanMorphE(q1) and

p2 = s3 -FanMorphE(q2), then
(p1)2
|p1|

<
(p2)2
|p2|

.

(28) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and

c1 < 1 and q2 < 0. Let p be a point of E2
T
. If p = c1 -FanMorphS(q), then

p2 < 0.

(29) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and c1 <

1 and q2 < 0 and q1

|q| > c1. Let p be a point of E
2
T
. If p = c1 -FanMorphS(q),

then p2 < 0 and p1 > 0.
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(30) Let c1 be a real number and q1, q2 be points of E
2
T
. Suppose −1 < c1

and c1 < 1 and (q1)2 ¬ 0 and (q2)2 ¬ 0 and |q1| 6= 0 and |q2| 6= 0 and
(q1)1
|q1|

<
(q2)1
|q2|

. Let p1, p2 be points of E
2
T
. If p1 = c1 -FanMorphS(q1) and

p2 = c1 -FanMorphS(q2), then
(p1)1
|p1|

<
(p2)1
|p2|

.

4. Order of Points on Circle

One can prove the following propositions:

(31) For every compact non empty subset P of E2
T
such that P = {q : |q| = 1}

holds W-boundP = −1 and E-boundP = 1 and S-boundP = −1 and

N-boundP = 1.

(32) For every compact non empty subset P of E2
T
such that P = {q : |q| = 1}

holds W-minP = [−1, 0].

(33) For every compact non empty subset P of E2
T
such that P = {q : |q| = 1}

holds E-maxP = [1, 0].

(34) For every map f from E2
T
into R

1 such that for every point p of E2
T
holds

f(p) = proj1(p) holds f is continuous.

(35) For every map f from E2
T
into R

1 such that for every point p of E2
T
holds

f(p) = proj2(p) holds f is continuous.

(36) For every compact non empty subset P of E2
T
such that P = {q; q ranges

over points of E2
T
: |q| = 1} holds UpperArcP ⊆ P and LowerArcP ⊆ P.

(37) Let P be a compact non empty subset of E2
T
. Suppose P = {q; q ranges

over points of E2
T
: |q| = 1}. Then UpperArcP = {p; p ranges over points

of E2
T
: p ∈ P ∧ p2 ­ 0}.

(38) Let P be a compact non empty subset of E2
T
. Suppose P = {q; q ranges

over points of E2
T
: |q| = 1}. Then LowerArcP = {p; p ranges over points

of E2
T
: p ∈ P ∧ p2 ¬ 0}.

(39) Let a, b, d, e be real numbers. Suppose a ¬ b and e > 0. Then there

exists a map f from [a, b]T into [e · a + d, e · b + d]T such that f is a

homeomorphism and for every real number r such that r ∈ [a, b] holds

f(r) = e · r + d.

(40) Let a, b, d, e be real numbers. Suppose a ¬ b and e < 0. Then there

exists a map f from [a, b]T into [e · b + d, e · a + d]T such that f is a

homeomorphism and for every real number r such that r ∈ [a, b] holds

f(r) = e · r + d.

(41) There exists a map f from I into [−1, 1]T such that f is a home-

omorphism and for every real number r such that r ∈ [0, 1] holds

f(r) = (−2) · r + 1 and f(0) = 1 and f(1) = −1.
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(42) There exists a map f from I into [−1, 1]T such that f is a homeomor-

phism and for every real number r such that r ∈ [0, 1] holds f(r) = 2 ·r−1

and f(0) = −1 and f(1) = 1.

(43) Let P be a compact non empty subset of E2
T
. Suppose P = {p; p ranges

over points of E2
T
: |p| = 1}. Then there exists a map f from [−1, 1]T into

(E2
T
)↾LowerArcP such that f is a homeomorphism and for every point q

of E2
T
such that q ∈ LowerArcP holds f(q1) = q and f(−1) = W-minP

and f(1) = E-maxP.

(44) Let P be a compact non empty subset of E2
T
. Suppose P = {p; p ranges

over points of E2
T
: |p| = 1}. Then there exists a map f from [−1, 1]T into

(E2
T
)↾UpperArcP such that f is a homeomorphism and for every point q

of E2
T
such that q ∈ UpperArcP holds f(q1) = q and f(−1) = W-minP

and f(1) = E-maxP.

(45) Let P be a compact non empty subset of E2
T
. Suppose P = {p; p

ranges over points of E2
T
: |p| = 1}. Then there exists a map f from I

into (E2
T
)↾LowerArcP such that

(i) f is a homeomorphism,

(ii) for all points q1, q2 of E
2
T
and for all real numbers r1, r2 such that

f(r1) = q1 and f(r2) = q2 and r1 ∈ [0, 1] and r2 ∈ [0, 1] holds r1 < r2 iff

(q1)1 > (q2)1,

(iii) f(0) = E-maxP, and

(iv) f(1) =W-minP.

(46) Let P be a compact non empty subset of E2
T
. Suppose P = {p; p

ranges over points of E2
T
: |p| = 1}. Then there exists a map f from I

into (E2
T
)↾UpperArcP such that

(i) f is a homeomorphism,

(ii) for all points q1, q2 of E
2
T
and for all real numbers r1, r2 such that

f(r1) = q1 and f(r2) = q2 and r1 ∈ [0, 1] and r2 ∈ [0, 1] holds r1 < r2 iff

(q1)1 < (q2)1,

(iii) f(0) =W-minP, and

(iv) f(1) = E-maxP.

(47) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

If P = {p; p ranges over points of E2
T
: |p| = 1} and p2 ∈ UpperArcP and

LE(p1, p2, P ), then p1 ∈ UpperArcP.

(48) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} and LE(p1, p2, P )

and p1 6= p2 and (p1)1 < 0 and (p2)1 < 0 and (p1)2 < 0 and (p2)2 < 0.

Then (p1)1 > (p2)1 and (p1)2 < (p2)2.

(49) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} and LE(p1, p2, P )

and p1 6= p2 and (p1)1 < 0 and (p2)1 < 0 and (p1)2 ­ 0 and (p2)2 ­ 0.
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Then (p1)1 < (p2)1 and (p1)2 < (p2)2.

(50) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} and LE(p1, p2, P )

and p1 6= p2 and (p1)2 ­ 0 and (p2)2 ­ 0. Then (p1)1 < (p2)1.

(51) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} and LE(p1, p2, P )

and p1 6= p2 and (p1)2 ¬ 0 and (p2)2 ¬ 0 and p1 6= W-minP. Then

(p1)1 > (p2)1.

(52) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} but (p2)2 ­ 0 or

(p2)1 ­ 0 but LE(p1, p2, P ). Then (p1)2 ­ 0 or (p1)1 ­ 0.

(53) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} and LE(p1, p2, P )

and p1 6= p2 and (p1)1 ­ 0 and (p2)1 ­ 0. Then (p1)2 > (p2)2.

(54) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} and p1 ∈ P and

p2 ∈ P and (p1)1 < 0 and (p2)1 < 0 and (p1)2 < 0 and (p2)2 < 0 and

(p1)1 ­ (p2)1 or (p1)2 ¬ (p2)2. Then LE(p1, p2, P ).

(55) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} and p1 ∈ P and

p2 ∈ P and (p1)1 > 0 and (p2)1 > 0 and (p1)2 < 0 and (p2)2 < 0 and

(p1)1 ­ (p2)1 or (p1)2 ­ (p2)2. Then LE(p1, p2, P ).

(56) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} and p1 ∈ P and

p2 ∈ P and (p1)1 < 0 and (p2)1 < 0 and (p1)2 ­ 0 and (p2)2 ­ 0 and

(p1)1 ¬ (p2)1 or (p1)2 ¬ (p2)2. Then LE(p1, p2, P ).

(57) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of

E2
T
. Suppose P = {p; p ranges over points of E2

T
: |p| = 1} and p1 ∈ P and

p2 ∈ P and (p1)2 ­ 0 and (p2)2 ­ 0 and (p1)1 ¬ (p2)1. Then LE(p1, p2, P ).

(58) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of

E2
T
. Suppose P = {p; p ranges over points of E2

T
: |p| = 1} and p1 ∈ P and

p2 ∈ P and (p1)1 ­ 0 and (p2)1 ­ 0 and (p1)2 ­ (p2)2. Then LE(p1, p2, P ).

(59) Let p1, p2 be points of E
2
T
and P be a compact non empty subset of E2

T
.

Suppose P = {p; p ranges over points of E2
T
: |p| = 1} and p1 ∈ P and

p2 ∈ P and (p1)2 ¬ 0 and (p2)2 ¬ 0 and p2 6=W-minP and (p1)1 ­ (p2)1.

Then LE(p1, p2, P ).

(60) Let c1 be a real number and q be a point of E2
T
. Suppose −1 < c1 and

c1 < 1 and q2 ¬ 0. Let p be a point of E2
T
. If p = c1 -FanMorphS(q), then

p2 ¬ 0.

(61) Let c1 be a real number, p1, p2, q1, q2 be points of E
2
T
, and P be a compact
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non empty subset of E2
T
. Suppose −1 < c1 and c1 < 1 and P = {p; p ranges

over points of E2
T
: |p| = 1} and LE(p1, p2, P ) and q1 = c1 -FanMorphS(p1)

and q2 = c1 -FanMorphS(p2). Then LE(q1, q2, P ).

(62) Let p1, p2, p3, p4 be points of E
2
T
and P be a compact non empty sub-

set of E2
T
. Suppose that P = {p; p ranges over points of E2

T
: |p| = 1}

and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)1 < 0 and

(p1)2 ­ 0 and (p2)1 < 0 and (p2)2 ­ 0 and (p3)1 < 0 and (p3)2 ­ 0 and

(p4)1 < 0 and (p4)2 ­ 0. Then there exists a map f from E2
T
into E2

T
and

there exist points q1, q2, q3, q4 of E
2
T
such that

f is a homeomorphism and for every point q of E2
T
holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0

and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0

and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and

LE(q3, q4, P ).

(63) Let p1, p2, p3, p4 be points of E
2
T
and P be a compact non empty subset of

E2
T
. Suppose P = {p; p ranges over points of E2

T
: |p| = 1} and LE(p1, p2, P )

and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)2 ­ 0 and (p2)2 ­ 0 and

(p3)2 ­ 0 and (p4)2 > 0. Then there exists a map f from E2
T
into E2

T
and

there exist points q1, q2, q3, q4 of E
2
T
such that

f is a homeomorphism and for every point q of E2
T
holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0

and (q1)2 ­ 0 and (q2)1 < 0 and (q2)2 ­ 0 and (q3)1 < 0 and (q3)2 ­ 0

and (q4)1 < 0 and (q4)2 ­ 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and

LE(q3, q4, P ).

(64) Let p1, p2, p3, p4 be points of E
2
T
and P be a compact non empty subset of

E2
T
. Suppose P = {p; p ranges over points of E2

T
: |p| = 1} and LE(p1, p2, P )

and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)2 ­ 0 and (p2)2 ­ 0 and

(p3)2 ­ 0 and (p4)2 > 0. Then there exists a map f from E2
T
into E2

T
and

there exist points q1, q2, q3, q4 of E
2
T
such that

f is a homeomorphism and for every point q of E2
T
holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0

and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0

and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and

LE(q3, q4, P ).

(65) Let p1, p2, p3, p4 be points of E
2
T
and P be a compact non empty subset

of E2
T
. Suppose that P = {p; p ranges over points of E2

T
: |p| = 1} and

LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)2 ­ 0 or (p1)1 ­

0 and (p2)2 ­ 0 or (p2)1 ­ 0 and (p3)2 ­ 0 or (p3)1 ­ 0 and (p4)2 > 0

or (p4)1 > 0. Then there exists a map f from E2
T
into E2

T
and there exist

points q1, q2, q3, q4 of E
2
T
such that

f is a homeomorphism and for every point q of E2
T
holds |f(q)| = |q|
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and q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and

(q1)2 ­ 0 and (q2)2 ­ 0 and (q3)2 ­ 0 and (q4)2 > 0 and LE(q1, q2, P )

and LE(q2, q3, P ) and LE(q3, q4, P ).

(66) Let p1, p2, p3, p4 be points of E
2
T
and P be a compact non empty subset

of E2
T
. Suppose that P = {p; p ranges over points of E2

T
: |p| = 1} and

LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ) and (p1)2 ­ 0 or (p1)1 ­

0 and (p2)2 ­ 0 or (p2)1 ­ 0 and (p3)2 ­ 0 or (p3)1 ­ 0 and (p4)2 > 0

or (p4)1 > 0. Then there exists a map f from E2
T
into E2

T
and there exist

points q1, q2, q3, q4 of E
2
T
such that

f is a homeomorphism and for every point q of E2
T
holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0

and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0

and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and

LE(q3, q4, P ).

(67) Let p1, p2, p3, p4 be points of E
2
T
and P be a compact non empty sub-

set of E2
T
. Suppose P = {p; p ranges over points of E2

T
: |p| = 1} and

p4 = W-minP and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ).

Then there exists a map f from E2
T
into E2

T
and there exist points q1,

q2, q3, q4 of E
2
T
such that

f is a homeomorphism and for every point q of E2
T
holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0

and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0

and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and

LE(q3, q4, P ).

(68) Let p1, p2, p3, p4 be points of E
2
T
and P be a compact non empty subset of

E2
T
. Suppose P = {p; p ranges over points of E2

T
: |p| = 1} and LE(p1, p2, P )

and LE(p2, p3, P ) and LE(p3, p4, P ). Then there exists a map f from E2
T

into E2
T
and there exist points q1, q2, q3, q4 of E

2
T
such that

f is a homeomorphism and for every point q of E2
T
holds |f(q)| = |q| and

q1 = f(p1) and q2 = f(p2) and q3 = f(p3) and q4 = f(p4) and (q1)1 < 0

and (q1)2 < 0 and (q2)1 < 0 and (q2)2 < 0 and (q3)1 < 0 and (q3)2 < 0

and (q4)1 < 0 and (q4)2 < 0 and LE(q1, q2, P ) and LE(q2, q3, P ) and

LE(q3, q4, P ).

5. General Fashoda Theorems

One can prove the following propositions:

(69) Let p1, p2, p3, p4 be points of E
2
T
and P be a compact non empty subset

of E2
T
. Suppose that P = {p; p ranges over points of E2

T
: |p| = 1} and

LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ) and p1 6= p2 and p2 6= p3

and p3 6= p4 and (p1)1 < 0 and (p2)1 < 0 and (p3)1 < 0 and (p4)1 < 0 and
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(p1)2 < 0 and (p2)2 < 0 and (p3)2 < 0 and (p4)2 < 0. Then there exists

a map f from E2
T
into E2

T
such that f is a homeomorphism and for every

point q of E2
T
holds |f(q)| = |q| and [−1, 0] = f(p1) and [0, 1] = f(p2) and

[1, 0] = f(p3) and [0,−1] = f(p4).

(70) Let p1, p2, p3, p4 be points of E
2
T
and P be a compact non empty subset of

E2
T
. Suppose P = {p; p ranges over points of E2

T
: |p| = 1} and LE(p1, p2, P )

and LE(p2, p3, P ) and LE(p3, p4, P ) and p1 6= p2 and p2 6= p3 and p3 6= p4.

Then there exists a map f from E2
T
into E2

T
such that f is a homeomorphism

and for every point q of E2
T
holds |f(q)| = |q| and [−1, 0] = f(p1) and [0,

1] = f(p2) and [1, 0] = f(p3) and [0,−1] = f(p4).

(71) Let p1, p2, p3, p4 be points of E
2
T
, P be a compact non empty subset of

E2
T
, and C0 be a subset of E

2
T
. Suppose P = {p; p ranges over points of E2

T
:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T
. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p : |p| ¬ 1} and f(0) = p1 and

f(1) = p3 and g(0) = p2 and g(1) = p4 and rng f ⊆ C0 and rng g ⊆ C0.

Then rng f meets rng g.

(72) Let p1, p2, p3, p4 be points of E
2
T
, P be a compact non empty subset of

E2
T
, and C0 be a subset of E

2
T
. Suppose P = {p; p ranges over points of E2

T
:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T
. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p : |p| ¬ 1} and f(0) = p1 and

f(1) = p3 and g(0) = p4 and g(1) = p2 and rng f ⊆ C0 and rng g ⊆ C0.

Then rng f meets rng g.

(73) Let p1, p2, p3, p4 be points of E
2
T
, P be a compact non empty subset of

E2
T
, and C0 be a subset of E

2
T
. Suppose P = {p; p ranges over points of E2

T
:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T
. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p : |p| ­ 1} and f(0) = p1 and

f(1) = p3 and g(0) = p4 and g(1) = p2 and rng f ⊆ C0 and rng g ⊆ C0.

Then rng f meets rng g.

(74) Let p1, p2, p3, p4 be points of E
2
T
, P be a compact non empty subset of

E2
T
, and C0 be a subset of E

2
T
. Suppose P = {p; p ranges over points of E2

T
:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T
. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p : |p| ­ 1} and f(0) = p1 and

f(1) = p3 and g(0) = p2 and g(1) = p4 and rng f ⊆ C0 and rng g ⊆ C0.

Then rng f meets rng g.



general fashoda meet theorem . . . 109

References

[1] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–
485, 1991.

[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized
Mathematics, 6(3):427–440, 1997.

[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257–261, 1990.

[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - funda-
mental concepts. Formalized Mathematics, 2(4):605–608, 1991.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607–610, 1990.

[13] Yatsuka Nakamura. Fan homeomorphisms in the plane. Formalized Mathematics, 10(1):1–
19, 2002.

[14] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of a simple closed curves and
the order of their points. Formalized Mathematics, 6(4):563–572, 1997.

[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-
bers. Formalized Mathematics, 1(4):777–780, 1990.

[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[18] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,
2(4):535–545, 1991.

[19] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 24, 2002


