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Summary. In this paper we introduce technical notions used by a system
which automatically generates Mizar documentation for specified circuits. They

provide a ready for use elements needed to justify correctness of circuits’ con-

struction. We concentrate on the concept of stabilization and analyze one-gate

circuits and their combinations.
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The articles [21], [26], [20], [11], [10], [27], [7], [12], [2], [3], [8], [1], [9], [14], [4],

[6], [22], [25], [23], [5], [17], [16], [15], [18], [19], [13], and [24] provide the notation

and terminology for this paper.

1. Stabilizing Circuits

The following proposition is true

(1) Let S be a non void circuit-like non empty many sorted signature,

A be a non-empty circuit of S, s be a state of A, and x be a

set. If x ∈ InputVertices(S), then for every natural number n holds

(Following(s, n))(x) = s(x).

Let S be a non void circuit-like non empty many sorted signature, let A be

a non-empty circuit of S, and let s be a state of A. We say that s is stabilizing

if and only if:
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JSPS Fellow.
2The paper was prepared during the author’s cooperative research at Shinshu University

’Verification of circuit designs with the aid of the Mizar system’.

117
c© 2002 University of Białystok

ISSN 1426–2630



118 grzegorz bancerek and adam naumowicz

(Def. 1) There exists a natural number n such that Following(s, n) is stable.

Let S be a non void circuit-like non empty many sorted signature and let A

be a non-empty circuit of S. We say that A is stabilizing if and only if:

(Def. 2) Every state of A is stabilizing.

We say that A has a stabilization limit if and only if:

(Def. 3) There exists a natural number n such that for every state s of A holds

Following(s, n) is stable.

Let S be a non void circuit-like non empty many sorted signature. Note that

every non-empty circuit of S which has a stabilization limit is also stabilizing.

Let S be a non void circuit-like non empty many sorted signature, let A be

a non-empty circuit of S, and let s be a state of A. Let us assume that s is

stabilizing. The functor Result(s) yields a state of A and is defined as follows:

(Def. 4) Result(s) is stable and there exists a natural number n such that

Result(s) = Following(s, n).

Let S be a non void circuit-like non empty many sorted signature, let A be

a non-empty circuit of S, and let s be a state of A. Let us assume that s is

stabilizing. The stabilization time of s is a natural number and is defined by the

conditions (Def. 5).

(Def. 5)(i) Following(s, the stabilization time of s) is stable, and

(ii) for every natural number n such that n < the stabilization time of s

holds Following(s, n) is not stable.

The following propositions are true:

(2) Let S be a non void circuit-like non empty many sorted signature, A be

a non-empty circuit of S, and s be a state of A. If s is stabilizing, then

Result(s) = Following(s, the stabilization time of s).

(3) Let S be a non void circuit-like non empty many sorted signature, A be

a non-empty circuit of S, s be a state of A, and n be a natural number. If

Following(s, n) is stable, then the stabilization time of s ¬ n.

(4) Let S be a non void circuit-like non empty many sorted signature, A be

a non-empty circuit of S, s be a state of A, and n be a natural number. If

Following(s, n) is stable, then Result(s) = Following(s, n).

(5) Let S be a non void circuit-like non empty many sorted signature, A

be a non-empty circuit of S, s be a state of A, and n be a natural num-

ber. Suppose s is stabilizing and n  the stabilization time of s. Then

Result(s) = Following(s, n).

(6) Let S be a non void circuit-like non empty many sorted signature, A be

a non-empty circuit of S, and s be a state of A. If s is stabilizing, then for

every set x such that x ∈ InputVertices(S) holds (Result(s))(x) = s(x).

(7) Let S1, S be non void circuit-like non empty many sorted signatures, A1

be a non-empty circuit of S1, A be a non-empty circuit of S, s be a state
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of A, and s1 be a state of A1. If s1 = s↾the carrier of S1, then for every

vertex v1 of S1 holds s1(v1) = s(v1).

(8) Let S1, S2 be non void circuit-like non empty many sorted

signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and

InputVertices(S2) misses InnerVertices(S1). Let S be a non void circuit-

like non empty many sorted signature. Suppose S = S1+·S2. Let A1 be

a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose

A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let

s be a state of A, s1 be a state of A1, and s2 be a state of A2. Suppose

s1 = s↾the carrier of S1 and s2 = s↾the carrier of S2 and s1 is stabilizing

and s2 is stabilizing. Then s is stabilizing.

(9) Let S1, S2 be non void circuit-like non empty many sorted

signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and

InputVertices(S2) misses InnerVertices(S1). Let S be a non void circuit-

like non empty many sorted signature. Suppose S = S1+·S2. Let A1 be

a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose

A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s↾the carrier of S1

and s1 is stabilizing. Let s2 be a state of A2. Suppose s2 = s↾the carrier

of S2 and s2 is stabilizing. Then the stabilization time of s = max(the

stabilization time of s1, the stabilization time of s2).

(10) Let S1, S2 be non void circuit-like non empty many sorted signatures.

Suppose InputVertices(S1) misses InnerVertices(S2). Let S be a non void

circuit-like non empty many sorted signature. Suppose S = S1+·S2. Let A1

be a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose

A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s↾the carrier of S1

and s1 is stabilizing. Let s2 be a state of A2. Suppose s2 = Following(s, the

stabilization time of s1)↾the carrier of S2 and s2 is stabilizing. Then s is

stabilizing.

(11) Let S1, S2 be non void circuit-like non empty many sorted signatures.

Suppose InputVertices(S1) misses InnerVertices(S2). Let S be a non void

circuit-like non empty many sorted signature. Suppose S = S1+·S2. Let A1

be a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose

A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s↾the carrier of S1

and s1 is stabilizing. Let s2 be a state of A2. Suppose s2 = Following(s, the

stabilization time of s1)↾the carrier of S2 and s2 is stabilizing. Then the

stabilization time of s = (the stabilization time of s1) + (the stabilization

time of s2).

(12) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
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Suppose InputVertices(S1) misses InnerVertices(S2) and S = S1+·S2. Let

A1 be a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A be

a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let s be a

state of A and s1 be a state of A1. Suppose s1 = s↾the carrier of S1 and s1

is stabilizing. Let s2 be a state of A2. Suppose s2 = Following(s, the stabili-

zation time of s1)↾the carrier of S2 and s2 is stabilizing. Then Result(s)↾the

carrier of S1 = Result(s1).

2. One-gate Circuits

We now state three propositions:

(13) Let x be a set, X be a non empty finite set, n be a natural number, p

be a finite sequence with length n, g be a function from Xn into X, and

s be a state of 1GateCircuit(p, g). Then s · p is an element of Xn.

(14) For all sets x1, x2, x3, x4 holds rng〈x1, x2, x3, x4〉 = {x1, x2, x3, x4}.

(15) For all sets x1, x2, x3, x4, x5 holds rng〈x1, x2, x3, x4, x5〉 =

{x1, x2, x3, x4, x5}.

Let x1, x2, x3, x4 be sets. Then 〈x1, x2, x3, x4〉 is a finite sequence with length

4. Let x5 be a set. Then 〈x1, x2, x3, x4, x5〉 is a finite sequence with length 5.

Let S be a many sorted signature. We say that S is one-gate if and only if

the condition (Def. 6) is satisfied.

(Def. 6) There exists a non empty finite set X and there exists a natural number

n and there exists a finite sequence p with length n and there exists a

function f from Xn into X such that S = 1GateCircStr(p, f).

Let S be a non empty many sorted signature and let A be an algebra over

S. We say that A is one-gate if and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists a non empty finite set X and there exists a natural number

n and there exists a finite sequence p with length n and there exists a

function f from Xn into X such that S = 1GateCircStr(p, f) and A =

1GateCircuit(p, f).

Let p be a finite sequence and let x be a set. Observe that 1GateCircStr(p, x)

is finite.

Let us note that every many sorted signature which is one-gate is also strict,

non void, non empty, unsplit, and finite and has arity held in gates.

One can check that every non empty many sorted signature which is one-gate

has also denotation held in gates.

Let X be a non empty finite set, let n be a natural number, let p be a finite

sequence with length n, and let f be a function from Xn into X. Note that

1GateCircStr(p, f) is one-gate.

One can check that there exists a many sorted signature which is one-gate.
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Let S be an one-gate many sorted signature. Observe that every circuit of

S which is one-gate is also strict and non-empty.

Let X be a non empty finite set, let n be a natural number, let p be a finite

sequence with length n, and let f be a function from Xn into X. One can check

that 1GateCircuit(p, f) is one-gate.

Let S be an one-gate many sorted signature. Observe that there exists a

circuit of S which is one-gate and non-empty.

Let S be an one-gate many sorted signature. The functor OutputS yields a

vertex of S and is defined as follows:

(Def. 8) OutputS =
⋃
(the operation symbols of S).

Let S be an one-gate many sorted signature. Observe that OutputS is pair.

Next we state several propositions:

(16) Let S be an one-gate many sorted signature, p be a finite sequence, and

x be a set. If S = 1GateCircStr(p, x), then OutputS = 〈〈p, x〉〉.

(17) For every one-gate many sorted signature S holds InnerVertices(S) =

{OutputS}.

(18) Let S be an one-gate many sorted signature, A be an one-gate cir-

cuit of S, n be a natural number, X be a finite non empty set, f be a

function from Xn into X, and p be a finite sequence with length n. If

A = 1GateCircuit(p, f), then S = 1GateCircStr(p, f).

(19) Let n be a natural number, X be a finite non empty set, f be a function

from Xn into X, p be a finite sequence with length n, and s be a state

of 1GateCircuit(p, f). Then (Following(s))(Output 1GateCircStr(p, f)) =

f(s · p).

(20) Let S be an one-gate many sorted signature, A be an one-gate circuit of

S, and s be a state of A. Then Following(s) is stable.

Let S be a non void circuit-like non empty many sorted signature. Observe

that every non-empty circuit of S which is one-gate has also a stabilization limit.

We now state two propositions:

(21) Let S be an one-gate many sorted signature, A be an one-gate circuit of

S, and s be a state of A. Then Result(s) = Following(s).

(22) Let S be an one-gate many sorted signature, A be an one-gate circuit of

S, and s be a state of A. Then the stabilization time of s ¬ 1.

In this article we present several logical schemes. The scheme OneGate1Ex

deals with a set A, a non empty finite set B, and a unary functor F yielding an

element of B, and states that:

There exists an one-gate many sorted signature S and there exists

an one-gate circuit A of S such that InputVertices(S) = {A} and

for every state s of A holds (Result(s))(OutputS) = F(s(A))

for all values of the parameters.
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The scheme OneGate2Ex deals with sets A, B, a non empty finite set C, and

a binary functor F yielding an element of C, and states that:

There exists an one-gate many sorted signature S and there exi-

sts an one-gate circuit A of S such that InputVertices(S) = {A,B}

and for every state s ofA holds (Result(s))(OutputS) = F(s(A), s(B))

for all values of the parameters.

The scheme OneGate3Ex deals with sets A, B, C, a non empty finite set D,

and a ternary functor F yielding an element of D, and states that:

There exists an one-gate many sorted signature S and there exists

an one-gate circuit A of S such that InputVertices(S) = {A,B, C}

and for every state s of A holds (Result(s))(OutputS)

= F(s(A), s(B), s(C))

for all values of the parameters.

The scheme OneGate4Ex deals with sets A, B, C, D, a non empty finite set

E , and a 4-ary functor F yielding an element of E , and states that:

There exists an one-gate many sorted signature S and there exists

an one-gate circuitA of S such that InputVertices(S) = {A,B, C,D}

and for every state s of A holds (Result(s))(OutputS)

= F(s(A), s(B), s(C), s(D))

for all values of the parameters.

The scheme OneGate5Ex deals with sets A, B, C, D, E , a non empty finite

set F , and a 5-ary functor F yielding an element of F , and states that:

There exists an one-gate many sorted signature S and there exists

an one-gate circuitA of S such that InputVertices(S) = {A,B, C,D, E}

and for every state s of A holds (Result(s))(OutputS)

= F(s(A), s(B), s(C), s(D), s(E))

for all values of the parameters.

3. Mono-sorted Circuits

One can prove the following propositions:

(23) For every constant function f holds f = dom f 7−→ the value of f .

(24) For all non empty sets X, Y and for all natural numbers n, m such that

n 6= 0 and Xn = Y m holds X = Y and n = m.

(25) For all non empty many sorted signatures S1, S2 holds every vertex of

S1 is a vertex of S1+·S2.

(26) For all non empty many sorted signatures S1, S2 holds every vertex of

S2 is a vertex of S1+·S2.

Let X be a non empty finite set. A non void non empty unsplit many sorted

signature with arity held in gates with denotation held in gates is said to be a

signature over X if it satisfies the condition (Def. 9).
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(Def. 9) There exists a circuit A of it such that the sorts of A are constant and

the value of the sorts of A = X and A has denotation held in gates.

Next we state the proposition

(27) Let n be a natural number, X be a non empty finite set, f be a func-

tion from Xn into X, and p be a finite sequence with length n. Then

1GateCircStr(p, f) is a signature over X.

Let X be a non empty finite set. Observe that there exists a signature over

X which is strict and one-gate.

Let n be a natural number, let X be a non empty finite set, let f be a

function from Xn into X, and let p be a finite sequence with length n. Then

1GateCircStr(p, f) is a strict signature over X.

Let X be a non empty finite set and let S be a signature over X. A circuit

of S is called a circuit over X and S if:

(Def. 10) It has denotation held in gates and the sorts of it are constant and the

value of the sorts of it = X.

Let X be a non empty finite set and let S be a signature over X. One can

check that every circuit over X and S is non-empty and has denotation held in

gates.

Next we state the proposition

(28) Let n be a natural number, X be a non empty finite set, f be a func-

tion from Xn into X, and p be a finite sequence with length n. Then

1GateCircuit(p, f) is a circuit over X and 1GateCircStr(p, f).

Let X be a non empty finite set and let S be an one-gate signature over

X. One can check that there exists a circuit over X and S which is strict and

one-gate.

Let X be a non empty finite set and let S be a signature over X. One can

check that there exists a circuit over X and S which is strict.

Let n be a natural number, let X be a non empty finite set, let f be a

function from Xn into X, and let p be a finite sequence with length n. Then

1GateCircuit(p, f) is a strict circuit over X and 1GateCircStr(p, f).

One can prove the following propositions:

(29) For every non empty finite set X and for all signatures S1, S2 over X

holds S1 ≈ S2.

(30) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a

circuit over X and S1, and A2 be a circuit over X and S2. Then A1 ≈ A2.

(31) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a

circuit over X and S1, and A2 be a circuit over X and S2. Then A1+·A2

is a circuit of S1+·S2.

(32) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a

circuit over X and S1, and A2 be a circuit over X and S2. Then A1+·A2
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has denotation held in gates.

(33) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a

circuit over X and S1, and A2 be a circuit over X and S2. Then the sorts

of A1+·A2 are constant and the value of the sorts of A1+·A2 = X.

Let S1, S2 be finite non empty many sorted signatures. Note that S1+·S2 is

finite.

Let X be a non empty finite set and let S1, S2 be signatures over X. One

can verify that S1+·S2 has denotation held in gates.

Let X be a non empty finite set and let S1, S2 be signatures over X. Then

S1+·S2 is a strict signature over X.

Let X be a non empty finite set, let S1, S2 be signatures over X, let A1 be

a circuit over X and S1, and let A2 be a circuit over X and S2. Then A1+·A2

is a strict circuit over X and S1+·S2.

One can prove the following two propositions:

(34) For all sets x, y holds rk(x) ∈ rk(〈〈x, y〉〉) and rk(y) ∈ rk(〈〈x, y〉〉).

(35) Let S be a finite non void non empty unsplit many sorted signature

with arity held in gates with denotation held in gates and A be a non-

empty circuit of S such that A has denotation held in gates. Then A has

a stabilization limit.

Let X be a non empty finite set and let S be a finite signature over X. One

can verify that every circuit over X and S has a stabilization limit.

Now we present three schemes. The scheme 1AryDef deals with a non empty

set A and a unary functor F yielding an element of A, and states that:

(i) There exists a function f from A1 into A such that for

every element x of A holds f(〈x〉) = F(x), and

(ii) for all functions f1, f2 from A
1 into A such that for every

element x of A holds f1(〈x〉) = F(x) and for every element x of

A holds f2(〈x〉) = F(x) holds f1 = f2

for all values of the parameters.

The scheme 2AryDef deals with a non empty set A and a binary functor F

yielding an element of A, and states that:

(i) There exists a function f from A2 into A such that for all

elements x, y of A holds f(〈x, y〉) = F(x, y), and

(ii) for all functions f1, f2 from A
2 into A such that for all

elements x, y of A holds f1(〈x, y〉) = F(x, y) and for all elements

x, y of A holds f2(〈x, y〉) = F(x, y) holds f1 = f2

for all values of the parameters.

The scheme 3AryDef deals with a non empty set A and a ternary functor F

yielding an element of A, and states that:

(i) There exists a function f from A3 into A such that for all

elements x, y, z of A holds f(〈x, y, z〉) = F(x, y, z), and
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(ii) for all functions f1, f2 from A
3 into A such that for all

elements x, y, z of A holds f1(〈x, y, z〉) = F(x, y, z) and for all

elements x, y, z of A holds f2(〈x, y, z〉) = F(x, y, z) holds f1 = f2

for all values of the parameters.

We now state three propositions:

(36) For every function f and for every set x such that x ∈ dom f holds

f · 〈x〉 = 〈f(x)〉.

(37) Let f be a function and x1, x2, x3, x4 be sets. If x1 ∈ dom f and x2 ∈

dom f and x3 ∈ dom f and x4 ∈ dom f, then f · 〈x1, x2, x3, x4〉 = 〈f(x1),

f(x2), f(x3), f(x4)〉.

(38) Let f be a function and x1, x2, x3, x4, x5 be sets. Suppose x1 ∈ dom f

and x2 ∈ dom f and x3 ∈ dom f and x4 ∈ dom f and x5 ∈ dom f. Then

f · 〈x1, x2, x3, x4, x5〉 = 〈f(x1), f(x2), f(x3), f(x4), f(x5)〉.

Now we present several schemes. The scheme OneGate1Result deals with a

set A, a non empty finite set B, a unary functor F yielding an element of B,

and a function C from B1 into B, and states that:

For every state s of 1GateCircuit(〈A〉, C) and for every element a1

of B such that a1 = s(A) holds (Result(s))(Output 1GateCircStr(〈A〉, C)) =

F(a1)

provided the following requirement is met:

• For every function g from B1 into B holds g = C iff for every

element a1 of B holds g(〈a1〉) = F(a1).

The scheme OneGate2Result deals with sets A, B, a non empty finite set C,

a binary functor F yielding an element of C, and a function D from C2 into C,

and states that:

For every state s of 1GateCircuit(〈A,B〉,D) and for all ele-

ments a1, a2 of C such that a1 = s(A) and a2 = s(B) holds

(Result(s))(Output 1GateCircStr(〈A,B〉,D)) = F(a1, a2)

provided the parameters satisfy the following condition:

• For every function g from C2 into C holds g = D iff for all elements

a1, a2 of C holds g(〈a1, a2〉) = F(a1, a2).

The scheme OneGate3Result deals with sets A, B, C, a non empty finite set

D, a ternary functor F yielding an element of D, and a function E from D3 into

D, and states that:

Let s be a state of 1GateCircuit(〈A,B, C〉, E) and a1, a2, a3 be

elements of D. If a1 = s(A) and a2 = s(B) and a3 = s(C), then

(Result(s))(Output 1GateCircStr(〈A,B, C〉, E)) = F(a1, a2, a3)

provided the following requirement is met:

• For every function g from D3 into D holds g = E iff for all elements

a1, a2, a3 of D holds g(〈a1, a2, a3〉) = F(a1, a2, a3).

The scheme OneGate4Result deals with sets A, B, C, D, a non empty finite
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set E , a 4-ary functor F yielding an element of E , and a function F from E4 into

E , and states that:

Let s be a state of 1GateCircuit(〈A,B, C,D〉,F) and a1, a2, a3,

a4 be elements of E . If a1 = s(A) and a2 = s(B) and a3 = s(C)

and a4 = s(D), then (Result(s))(Output 1GateCircStr(〈A,B, C,

D〉,F)) = F(a1, a2, a3, a4)

provided the following condition is met:

• Let g be a function from E4 into E . Then g = F if and only

if for all elements a1, a2, a3, a4 of E holds g(〈a1, a2, a3, a4〉) =

F(a1, a2, a3, a4).

The scheme OneGate5Result deals with sets A, B, C, D, E , a non empty

finite set F , a 5-ary functor F yielding an element of F , and a function G from

F5 into F , and states that:

Let s be a state of 1GateCircuit(〈A,B, C,D, E〉,G) and a1,

a2, a3, a4, a5 be elements of F . Suppose a1 = s(A)

and a2 = s(B) and a3 = s(C) and a4 = s(D) and

a5 = s(E). Then (Result(s))(Output 1GateCircStr(〈A,B, C,D,

E〉,G)) = F(a1, a2, a3, a4, a5)

provided the following requirement is met:

• Let g be a function from F5 into F . Then g = G if and only

if for all elements a1, a2, a3, a4, a5 of F holds g(〈a1, a2, a3, a4,

a5〉) = F(a1, a2, a3, a4, a5).

4. Input of a Compound Circuit

We now state a number of propositions:

(39) Let n be a natural number, X be a non empty finite set,

f be a function from Xn into X, p be a finite sequence with

length n, and S be a signature over X. If rng p ⊆ the car-

rier of S and Output 1GateCircStr(p, f) /∈ InputVertices(S), then

InputVertices(S+· 1GateCircStr(p, f)) = InputVertices(S).

(40) Let X1, X2 be sets, X be a non empty finite set, n be a na-

tural number, f be a function from Xn into X, p be a finite

sequence with length n, and S be a signature over X. Suppose

rng p = X1 ∪ X2 and X1 ⊆ the carrier of S and X2 misses

InnerVertices(S) and Output 1GateCircStr(p, f) /∈ InputVertices(S).

Then InputVertices(S+· 1GateCircStr(p, f)) = InputVertices(S) ∪X2.

(41) Let x1 be a set, X be a non empty finite set, f be a function

from X1 into X, and S be a signature over X. If x1 ∈ the car-

rier of S and Output 1GateCircStr(〈x1〉, f) /∈ InputVertices(S), then

InputVertices(S+· 1GateCircStr(〈x1〉, f)) = InputVertices(S).
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(42) Let x1, x2 be sets, X be a non empty finite set, f be a function

from X2 into X, and S be a signature over X. Suppose x1 ∈ the

carrier of S and x2 /∈ InnerVertices(S) and Output 1GateCircStr(〈x1,

x2〉, f) /∈ InputVertices(S). Then InputVertices(S+· 1GateCircStr(〈x1,

x2〉, f)) = InputVertices(S) ∪ {x2}.

(43) Let x1, x2 be sets, X be a non empty finite set, f be a function

from X2 into X, and S be a signature over X. Suppose x2 ∈ the

carrier of S and x1 /∈ InnerVertices(S) and Output 1GateCircStr(〈x1,

x2〉, f) /∈ InputVertices(S). Then InputVertices(S+· 1GateCircStr(〈x1,

x2〉, f)) = InputVertices(S) ∪ {x1}.

(44) Let x1, x2 be sets, X be a non empty finite set, f be a function

from X2 into X, and S be a signature over X. Suppose x1 ∈ the

carrier of S and x2 ∈ the carrier of S and Output 1GateCircStr(〈x1,

x2〉, f) /∈ InputVertices(S). Then InputVertices(S+· 1GateCircStr(〈x1,

x2〉, f)) = InputVertices(S).

(45) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x1 ∈ the

carrier of S and x2 /∈ InnerVertices(S) and x3 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x2, x3}.

(46) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x2 ∈ the

carrier of S and x1 /∈ InnerVertices(S) and x3 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x1, x3}.

(47) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x3 ∈ the

carrier of S and x1 /∈ InnerVertices(S) and x2 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x1, x2}.

(48) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x1 ∈ the

carrier of S and x2 ∈ the carrier of S and x3 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x3}.

(49) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x1 ∈ the
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carrier of S and x3 ∈ the carrier of S and x2 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x2}.

(50) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x2 ∈ the

carrier of S and x3 ∈ the carrier of S and x1 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x1}.

(51) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x1 ∈

the carrier of S and x2 ∈ the carrier of S and x3 ∈ the carrier

of S and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S).

5. Result of a Compound Circuit

Next we state the proposition

(52) Let X be a non empty finite set, S be a finite signature over X,

A be a circuit over X and S, n be a natural number, f be a func-

tion from Xn into X, and p be a finite sequence with length n. Sup-

pose Output 1GateCircStr(p, f) /∈ InputVertices(S). Let s be a state of

A+· 1GateCircuit(p, f) and s′ be a state of A. Suppose s′ = s↾the carrier

of S. Then the stabilization time of s ¬ 1 + the stabilization time of s′.

Now we present several schemes. The scheme Comb1CircResult deals with a

set A, a non empty finite set B, a unary functor F yielding an element of B, a

finite signature C over B, a circuit D over B and C, and a function E from B1

into B, and states that:

Let s be a state of D+· 1GateCircuit(〈A〉, E) and s′ be a

state of D. Suppose s′ = s↾the carrier of C. Let a1 be an

element of B. Suppose if A ∈ InnerVertices(C), then a1 =

(Result(s′))(A) and if A /∈ InnerVertices(C), then a1 = s(A).

Then (Result(s))(Output 1GateCircStr(〈A〉, E)) = F(a1)

provided the parameters meet the following conditions:

• For every function g from B1 into B holds g = E iff for every

element a1 of B holds g(〈a1〉) = F(a1), and

• Output 1GateCircStr(〈A〉, E) /∈ InputVertices(C).

The scheme Comb2CircResult deals with sets A, B, a non empty finite set

C, a binary functor F yielding an element of C, a finite signature D over C, a

circuit E over C and D, and a function F from C2 into C, and states that:
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Let s be a state of E+· 1GateCircuit(〈A,B〉,F) and s′ be

a state of E . Suppose s′ = s↾the carrier of D. Let a1,

a2 be elements of C. Suppose if A ∈ InnerVertices(D),

then a1 = (Result(s′))(A) and if A /∈ InnerVertices(D),

then a1 = s(A) and if B ∈ InnerVertices(D), then a2 =

(Result(s′))(B) and if B /∈ InnerVertices(D), then a2 = s(B).

Then (Result(s))(Output 1GateCircStr(〈A,B〉,F)) = F(a1, a2)

provided the parameters meet the following requirements:

• For every function g from C2 into C holds g = F iff for all elements

a1, a2 of C holds g(〈a1, a2〉) = F(a1, a2), and

• Output 1GateCircStr(〈A,B〉,F) /∈ InputVertices(D).

The scheme Comb3CircResult deals with sets A, B, C, a non empty finite set

D, a ternary functor F yielding an element of D, a finite signature E over D, a

circuit F over D and E , and a function G from D3 into D, and states that:

Let s be a state of F+· 1GateCircuit(〈A,B, C〉,G) and s′ be a state

of F . Suppose s′ = s↾the carrier of E . Let a1, a2, a3 be elements

of D. Suppose that

(i) if A ∈ InnerVertices(E), then a1 = (Result(s′))(A),

(ii) if A /∈ InnerVertices(E), then a1 = s(A),

(iii) if B ∈ InnerVertices(E), then a2 = (Result(s′))(B),

(iv) if B /∈ InnerVertices(E), then a2 = s(B),

(v) if C ∈ InnerVertices(E), then a3 = (Result(s′))(C), and

(vi) if C /∈ InnerVertices(E), then a3 = s(C).

Then (Result(s))(Output 1GateCircStr(〈A,B, C〉,G)) = F(a1, a2, a3)

provided the parameters meet the following requirements:

• For every function g from D3 into D holds g = G iff for all elements

a1, a2, a3 of D holds g(〈a1, a2, a3〉) = F(a1, a2, a3), and

• Output 1GateCircStr(〈A,B, C〉,G) /∈ InputVertices(E).

The scheme Comb4CircResult deals with sets A, B, C, D, a non empty finite

set E , a 4-ary functor F yielding an element of E , a finite signature F over E , a

circuit G over E and F , and a function H from E4 into E , and states that:

Let s be a state of G+· 1GateCircuit(〈A,B, C,D〉,H) and s′ be

a state of G. Suppose s′ = s↾the carrier of F . Let a1, a2, a3,

a4 be elements of E . Suppose that if A ∈ InnerVertices(F),

then a1 = (Result(s′))(A) and if A /∈ InnerVertices(F),

then a1 = s(A) and if B ∈ InnerVertices(F), then a2 =

(Result(s′))(B) and if B /∈ InnerVertices(F), then a2 = s(B) and

if C ∈ InnerVertices(F), then a3 = (Result(s′))(C) and if C /∈

InnerVertices(F), then a3 = s(C) and if D ∈ InnerVertices(F),

then a4 = (Result(s′))(D) and if D /∈ InnerVertices(F), then a4 =

s(D). Then (Result(s))(Output 1GateCircStr(〈A,B, C,D〉,H)) =

F(a1, a2, a3, a4)
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provided the parameters satisfy the following conditions:

• Let g be a function from E4 into E . Then g = H if and only

if for all elements a1, a2, a3, a4 of E holds g(〈a1, a2, a3, a4〉) =

F(a1, a2, a3, a4), and

• Output 1GateCircStr(〈A,B, C,D〉,H) /∈ InputVertices(F).

The scheme Comb5CircResult deals with sets A, B, C, D, E , a non empty

finite set F , a 5-ary functor F yielding an element of F , a finite signature G

over F , a circuit H over F and G, and a function I from F5 into F , and states

that:

Let s be a state of H+· 1GateCircuit(〈A,B, C,D, E〉, I) and

s′ be a state of H. Suppose s′ = s↾the carrier of G. Let

a1, a2, a3, a4, a5 be elements of F . Suppose that if A ∈

InnerVertices(G), then a1 = (Result(s′))(A) and if A /∈

InnerVertices(G), then a1 = s(A) and if B ∈ InnerVertices(G),

then a2 = (Result(s′))(B) and if B /∈ InnerVertices(G), then

a2 = s(B) and if C ∈ InnerVertices(G), then a3 = (Result(s′))(C)

and if C /∈ InnerVertices(G), then a3 = s(C) and if D ∈

InnerVertices(G), then a4 = (Result(s′))(D) and if D /∈

InnerVertices(G), then a4 = s(D) and if E ∈ InnerVertices(G),

then a5 = (Result(s′))(E) and if E /∈ InnerVertices(G), then

a5 = s(E). Then (Result(s))(Output 1GateCircStr(〈A,B, C,D,

E〉, I)) = F(a1, a2, a3, a4, a5)

provided the parameters meet the following conditions:

• Let g be a function from F5 into F . Then g = I if and only

if for all elements a1, a2, a3, a4, a5 of F holds g(〈a1, a2, a3, a4,

a5〉) = F(a1, a2, a3, a4, a5), and

• Output 1GateCircStr(〈A,B, C,D, E〉, I) /∈ InputVertices(G).

6. Inputs Without Pairs

Let S be a non empty many sorted signature. We say that S has nonpair

inputs if and only if:

(Def. 11) InputVertices(S) has no pairs.

Note that N has no pairs. Let X be a set with no pairs. Note that every

subset of X has no pairs.

Let us observe that every function which is natural-yielding is also nonpair

yielding.

Let us note that every finite sequence of elements of N is natural-yielding.

Let us observe that there exists a finite sequence which is one-to-one and

natural-yielding.

Let n be a natural number. Observe that there exists a finite sequence with

length n which is one-to-one and natural-yielding.
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Let p be a nonpair yielding finite sequence and let f be a set. Observe that

1GateCircStr(p, f) has nonpair inputs.

One can verify that there exists an one-gate many sorted signature which

has nonpair inputs. Let X be a non empty finite set. One can verify that there

exists an one-gate signature over X which has nonpair inputs.

Let S be a non empty many sorted signature with nonpair inputs. One can

check that InputVertices(S) has no pairs.

The following proposition is true

(53) Let S be a non empty many sorted signature with nonpair inputs and x

be a vertex of S. If x is pair, then x ∈ InnerVertices(S).

Let S be an unsplit non empty many sorted signature with arity held in

gates. One can verify that InnerVertices(S) is relation-like.

Let S be an unsplit non empty non void many sorted signature with deno-

tation held in gates. Note that InnerVertices(S) is relation-like.

Let S1, S2 be unsplit non empty many sorted signatures with arity held in

gates with nonpair inputs. One can verify that S1+·S2 has nonpair inputs.

One can prove the following propositions:

(54) For every non pair set x and for every binary relation R holds x /∈ R.

(55) Let x1 be a set, X be a non empty finite set, f be a function from X1

into X, and S be a signature over X with nonpair inputs. If x1 ∈ the

carrier of S or x1 is non pair, then S+· 1GateCircStr(〈x1〉, f) has nonpair

inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1 be a vertex of S, and let f be a function from X1 into X. One

can verify that S+· 1GateCircStr(〈x1〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1 be a non pair set, and let f be a function from X1 into X. One

can verify that S+· 1GateCircStr(〈x1〉, f) has nonpair inputs.

We now state the proposition

(56) Let x1, x2 be sets, X be a non empty finite set, f be a function from

X2 into X, and S be a signature over X with nonpair inputs. Suppose

x1 ∈ the carrier of S or x1 is non pair but x2 ∈ the carrier of S or x2 is

non pair. Then S+· 1GateCircStr(〈x1, x2〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1 be a vertex of S, let n2 be a non pair set, and let f be a function

from X2 into X. Observe that S+· 1GateCircStr(〈x1, n2〉, f) has nonpair inputs

and S+· 1GateCircStr(〈n2, x1〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1, x2 be vertices of S, and let f be a function from X2 into X. One

can verify that S+· 1GateCircStr(〈x1, x2〉, f) has nonpair inputs.

One can prove the following proposition
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(57) Let x1, x2, x3 be sets, X be a non empty finite set, f be a function from

X3 into X, and S be a signature over X with nonpair inputs. Suppose

that

(i) x1 ∈ the carrier of S or x1 is non pair,

(ii) x2 ∈ the carrier of S or x2 is non pair, and

(iii) x3 ∈ the carrier of S or x3 is non pair.

Then S+· 1GateCircStr(〈x1, x2, x3〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1, x2 be vertices of S, let n be a non pair set, and let f be a function

from X3 into X. One can verify the following observations:

∗ S+· 1GateCircStr(〈x1, x2, n〉, f) has nonpair inputs,

∗ S+· 1GateCircStr(〈x1, n, x2〉, f) has nonpair inputs, and

∗ S+· 1GateCircStr(〈n, x1, x2〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x be a vertex of S, let n1, n2 be non pair sets, and let f be a function

from X3 into X. One can check the following observations:

∗ S+· 1GateCircStr(〈x, n1, n2〉, f) has nonpair inputs,

∗ S+· 1GateCircStr(〈n1, x, n2〉, f) has nonpair inputs, and

∗ S+· 1GateCircStr(〈n1, n2, x〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1, x2, x3 be vertices of S, and let f be a function from X3 into X.

Observe that S+· 1GateCircStr(〈x1, x2, x3〉, f) has nonpair inputs.
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