
FORMALIZED MATHEMATICS

Volume 10, Number 3, 2002

University of Białystok

Preliminaries to Automatic Generation

of Mizar Documentation for Circuits

Grzegorz Bancerek1

Białystok Technical University

Adam Naumowicz2

University of Białystok

Summary. In this paper we introduce technical notions used by a system
which automatically generates Mizar documentation for specified circuits. They

provide a ready for use elements needed to justify correctness of circuits’ con-

struction. We concentrate on the concept of stabilization and analyze one-gate

circuits and their combinations.

MML Identifier: CIRCCMB3.

The articles [21], [26], [20], [11], [10], [27], [7], [12], [2], [3], [8], [1], [9], [14], [4],

[6], [22], [25], [23], [5], [17], [16], [15], [18], [19], [13], and [24] provide the notation

and terminology for this paper.

1. Stabilizing Circuits

The following proposition is true

(1) Let S be a non void circuit-like non empty many sorted signature,

A be a non-empty circuit of S, s be a state of A, and x be a

set. If x ∈ InputVertices(S), then for every natural number n holds

(Following(s, n))(x) = s(x).

Let S be a non void circuit-like non empty many sorted signature, let A be

a non-empty circuit of S, and let s be a state of A. We say that s is stabilizing

if and only if:

1This paper was written when the first author visited Shinshu University as a two-year

JSPS Fellow.
2The paper was prepared during the author’s cooperative research at Shinshu University

’Verification of circuit designs with the aid of the Mizar system’.

117
c© 2002 University of Białystok

ISSN 1426–2630



118 grzegorz bancerek and adam naumowicz

(Def. 1) There exists a natural number n such that Following(s, n) is stable.

Let S be a non void circuit-like non empty many sorted signature and let A

be a non-empty circuit of S. We say that A is stabilizing if and only if:

(Def. 2) Every state of A is stabilizing.

We say that A has a stabilization limit if and only if:

(Def. 3) There exists a natural number n such that for every state s of A holds

Following(s, n) is stable.

Let S be a non void circuit-like non empty many sorted signature. Note that

every non-empty circuit of S which has a stabilization limit is also stabilizing.

Let S be a non void circuit-like non empty many sorted signature, let A be

a non-empty circuit of S, and let s be a state of A. Let us assume that s is

stabilizing. The functor Result(s) yields a state of A and is defined as follows:

(Def. 4) Result(s) is stable and there exists a natural number n such that

Result(s) = Following(s, n).

Let S be a non void circuit-like non empty many sorted signature, let A be

a non-empty circuit of S, and let s be a state of A. Let us assume that s is

stabilizing. The stabilization time of s is a natural number and is defined by the

conditions (Def. 5).

(Def. 5)(i) Following(s, the stabilization time of s) is stable, and

(ii) for every natural number n such that n < the stabilization time of s

holds Following(s, n) is not stable.

The following propositions are true:

(2) Let S be a non void circuit-like non empty many sorted signature, A be

a non-empty circuit of S, and s be a state of A. If s is stabilizing, then

Result(s) = Following(s, the stabilization time of s).

(3) Let S be a non void circuit-like non empty many sorted signature, A be

a non-empty circuit of S, s be a state of A, and n be a natural number. If

Following(s, n) is stable, then the stabilization time of s ¬ n.

(4) Let S be a non void circuit-like non empty many sorted signature, A be

a non-empty circuit of S, s be a state of A, and n be a natural number. If

Following(s, n) is stable, then Result(s) = Following(s, n).

(5) Let S be a non void circuit-like non empty many sorted signature, A

be a non-empty circuit of S, s be a state of A, and n be a natural num-

ber. Suppose s is stabilizing and n ­ the stabilization time of s. Then

Result(s) = Following(s, n).

(6) Let S be a non void circuit-like non empty many sorted signature, A be

a non-empty circuit of S, and s be a state of A. If s is stabilizing, then for

every set x such that x ∈ InputVertices(S) holds (Result(s))(x) = s(x).

(7) Let S1, S be non void circuit-like non empty many sorted signatures, A1

be a non-empty circuit of S1, A be a non-empty circuit of S, s be a state



preliminaries to automatic generation . . . 119

of A, and s1 be a state of A1. If s1 = s↾the carrier of S1, then for every

vertex v1 of S1 holds s1(v1) = s(v1).

(8) Let S1, S2 be non void circuit-like non empty many sorted

signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and

InputVertices(S2) misses InnerVertices(S1). Let S be a non void circuit-

like non empty many sorted signature. Suppose S = S1+·S2. Let A1 be

a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose

A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let

s be a state of A, s1 be a state of A1, and s2 be a state of A2. Suppose

s1 = s↾the carrier of S1 and s2 = s↾the carrier of S2 and s1 is stabilizing

and s2 is stabilizing. Then s is stabilizing.

(9) Let S1, S2 be non void circuit-like non empty many sorted

signatures. Suppose InputVertices(S1) misses InnerVertices(S2) and

InputVertices(S2) misses InnerVertices(S1). Let S be a non void circuit-

like non empty many sorted signature. Suppose S = S1+·S2. Let A1 be

a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose

A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s↾the carrier of S1

and s1 is stabilizing. Let s2 be a state of A2. Suppose s2 = s↾the carrier

of S2 and s2 is stabilizing. Then the stabilization time of s = max(the

stabilization time of s1, the stabilization time of s2).

(10) Let S1, S2 be non void circuit-like non empty many sorted signatures.

Suppose InputVertices(S1) misses InnerVertices(S2). Let S be a non void

circuit-like non empty many sorted signature. Suppose S = S1+·S2. Let A1

be a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose

A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s↾the carrier of S1

and s1 is stabilizing. Let s2 be a state of A2. Suppose s2 = Following(s, the

stabilization time of s1)↾the carrier of S2 and s2 is stabilizing. Then s is

stabilizing.

(11) Let S1, S2 be non void circuit-like non empty many sorted signatures.

Suppose InputVertices(S1) misses InnerVertices(S2). Let S be a non void

circuit-like non empty many sorted signature. Suppose S = S1+·S2. Let A1

be a non-empty circuit of S1 and A2 be a non-empty circuit of S2. Suppose

A1 ≈ A2. Let A be a non-empty circuit of S. Suppose A = A1+·A2. Let s

be a state of A and s1 be a state of A1. Suppose s1 = s↾the carrier of S1

and s1 is stabilizing. Let s2 be a state of A2. Suppose s2 = Following(s, the

stabilization time of s1)↾the carrier of S2 and s2 is stabilizing. Then the

stabilization time of s = (the stabilization time of s1) + (the stabilization

time of s2).

(12) Let S1, S2, S be non void circuit-like non empty many sorted signatures.



120 grzegorz bancerek and adam naumowicz

Suppose InputVertices(S1) misses InnerVertices(S2) and S = S1+·S2. Let

A1 be a non-empty circuit of S1, A2 be a non-empty circuit of S2, and A be

a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1+·A2. Let s be a

state of A and s1 be a state of A1. Suppose s1 = s↾the carrier of S1 and s1

is stabilizing. Let s2 be a state of A2. Suppose s2 = Following(s, the stabili-

zation time of s1)↾the carrier of S2 and s2 is stabilizing. Then Result(s)↾the

carrier of S1 = Result(s1).

2. One-gate Circuits

We now state three propositions:

(13) Let x be a set, X be a non empty finite set, n be a natural number, p

be a finite sequence with length n, g be a function from Xn into X, and

s be a state of 1GateCircuit(p, g). Then s · p is an element of Xn.

(14) For all sets x1, x2, x3, x4 holds rng〈x1, x2, x3, x4〉 = {x1, x2, x3, x4}.

(15) For all sets x1, x2, x3, x4, x5 holds rng〈x1, x2, x3, x4, x5〉 =

{x1, x2, x3, x4, x5}.

Let x1, x2, x3, x4 be sets. Then 〈x1, x2, x3, x4〉 is a finite sequence with length

4. Let x5 be a set. Then 〈x1, x2, x3, x4, x5〉 is a finite sequence with length 5.

Let S be a many sorted signature. We say that S is one-gate if and only if

the condition (Def. 6) is satisfied.

(Def. 6) There exists a non empty finite set X and there exists a natural number

n and there exists a finite sequence p with length n and there exists a

function f from Xn into X such that S = 1GateCircStr(p, f).

Let S be a non empty many sorted signature and let A be an algebra over

S. We say that A is one-gate if and only if the condition (Def. 7) is satisfied.

(Def. 7) There exists a non empty finite set X and there exists a natural number

n and there exists a finite sequence p with length n and there exists a

function f from Xn into X such that S = 1GateCircStr(p, f) and A =

1GateCircuit(p, f).

Let p be a finite sequence and let x be a set. Observe that 1GateCircStr(p, x)

is finite.

Let us note that every many sorted signature which is one-gate is also strict,

non void, non empty, unsplit, and finite and has arity held in gates.

One can check that every non empty many sorted signature which is one-gate

has also denotation held in gates.

Let X be a non empty finite set, let n be a natural number, let p be a finite

sequence with length n, and let f be a function from Xn into X. Note that

1GateCircStr(p, f) is one-gate.

One can check that there exists a many sorted signature which is one-gate.



preliminaries to automatic generation . . . 121

Let S be an one-gate many sorted signature. Observe that every circuit of

S which is one-gate is also strict and non-empty.

Let X be a non empty finite set, let n be a natural number, let p be a finite

sequence with length n, and let f be a function from Xn into X. One can check

that 1GateCircuit(p, f) is one-gate.

Let S be an one-gate many sorted signature. Observe that there exists a

circuit of S which is one-gate and non-empty.

Let S be an one-gate many sorted signature. The functor OutputS yields a

vertex of S and is defined as follows:

(Def. 8) OutputS =
⋃
(the operation symbols of S).

Let S be an one-gate many sorted signature. Observe that OutputS is pair.

Next we state several propositions:

(16) Let S be an one-gate many sorted signature, p be a finite sequence, and

x be a set. If S = 1GateCircStr(p, x), then OutputS = 〈〈p, x〉〉.

(17) For every one-gate many sorted signature S holds InnerVertices(S) =

{OutputS}.

(18) Let S be an one-gate many sorted signature, A be an one-gate cir-

cuit of S, n be a natural number, X be a finite non empty set, f be a

function from Xn into X, and p be a finite sequence with length n. If

A = 1GateCircuit(p, f), then S = 1GateCircStr(p, f).

(19) Let n be a natural number, X be a finite non empty set, f be a function

from Xn into X, p be a finite sequence with length n, and s be a state

of 1GateCircuit(p, f). Then (Following(s))(Output 1GateCircStr(p, f)) =

f(s · p).

(20) Let S be an one-gate many sorted signature, A be an one-gate circuit of

S, and s be a state of A. Then Following(s) is stable.

Let S be a non void circuit-like non empty many sorted signature. Observe

that every non-empty circuit of S which is one-gate has also a stabilization limit.

We now state two propositions:

(21) Let S be an one-gate many sorted signature, A be an one-gate circuit of

S, and s be a state of A. Then Result(s) = Following(s).

(22) Let S be an one-gate many sorted signature, A be an one-gate circuit of

S, and s be a state of A. Then the stabilization time of s ¬ 1.

In this article we present several logical schemes. The scheme OneGate1Ex

deals with a set A, a non empty finite set B, and a unary functor F yielding an

element of B, and states that:

There exists an one-gate many sorted signature S and there exists

an one-gate circuit A of S such that InputVertices(S) = {A} and

for every state s of A holds (Result(s))(OutputS) = F(s(A))

for all values of the parameters.



122 grzegorz bancerek and adam naumowicz

The scheme OneGate2Ex deals with sets A, B, a non empty finite set C, and

a binary functor F yielding an element of C, and states that:

There exists an one-gate many sorted signature S and there exi-

sts an one-gate circuit A of S such that InputVertices(S) = {A,B}

and for every state s ofA holds (Result(s))(OutputS) = F(s(A), s(B))

for all values of the parameters.

The scheme OneGate3Ex deals with sets A, B, C, a non empty finite set D,

and a ternary functor F yielding an element of D, and states that:

There exists an one-gate many sorted signature S and there exists

an one-gate circuit A of S such that InputVertices(S) = {A,B, C}

and for every state s of A holds (Result(s))(OutputS)

= F(s(A), s(B), s(C))

for all values of the parameters.

The scheme OneGate4Ex deals with sets A, B, C, D, a non empty finite set

E , and a 4-ary functor F yielding an element of E , and states that:

There exists an one-gate many sorted signature S and there exists

an one-gate circuitA of S such that InputVertices(S) = {A,B, C,D}

and for every state s of A holds (Result(s))(OutputS)

= F(s(A), s(B), s(C), s(D))

for all values of the parameters.

The scheme OneGate5Ex deals with sets A, B, C, D, E , a non empty finite

set F , and a 5-ary functor F yielding an element of F , and states that:

There exists an one-gate many sorted signature S and there exists

an one-gate circuitA of S such that InputVertices(S) = {A,B, C,D, E}

and for every state s of A holds (Result(s))(OutputS)

= F(s(A), s(B), s(C), s(D), s(E))

for all values of the parameters.

3. Mono-sorted Circuits

One can prove the following propositions:

(23) For every constant function f holds f = dom f 7−→ the value of f .

(24) For all non empty sets X, Y and for all natural numbers n, m such that

n 6= 0 and Xn = Y m holds X = Y and n = m.

(25) For all non empty many sorted signatures S1, S2 holds every vertex of

S1 is a vertex of S1+·S2.

(26) For all non empty many sorted signatures S1, S2 holds every vertex of

S2 is a vertex of S1+·S2.

Let X be a non empty finite set. A non void non empty unsplit many sorted

signature with arity held in gates with denotation held in gates is said to be a

signature over X if it satisfies the condition (Def. 9).



preliminaries to automatic generation . . . 123

(Def. 9) There exists a circuit A of it such that the sorts of A are constant and

the value of the sorts of A = X and A has denotation held in gates.

Next we state the proposition

(27) Let n be a natural number, X be a non empty finite set, f be a func-

tion from Xn into X, and p be a finite sequence with length n. Then

1GateCircStr(p, f) is a signature over X.

Let X be a non empty finite set. Observe that there exists a signature over

X which is strict and one-gate.

Let n be a natural number, let X be a non empty finite set, let f be a

function from Xn into X, and let p be a finite sequence with length n. Then

1GateCircStr(p, f) is a strict signature over X.

Let X be a non empty finite set and let S be a signature over X. A circuit

of S is called a circuit over X and S if:

(Def. 10) It has denotation held in gates and the sorts of it are constant and the

value of the sorts of it = X.

Let X be a non empty finite set and let S be a signature over X. One can

check that every circuit over X and S is non-empty and has denotation held in

gates.

Next we state the proposition

(28) Let n be a natural number, X be a non empty finite set, f be a func-

tion from Xn into X, and p be a finite sequence with length n. Then

1GateCircuit(p, f) is a circuit over X and 1GateCircStr(p, f).

Let X be a non empty finite set and let S be an one-gate signature over

X. One can check that there exists a circuit over X and S which is strict and

one-gate.

Let X be a non empty finite set and let S be a signature over X. One can

check that there exists a circuit over X and S which is strict.

Let n be a natural number, let X be a non empty finite set, let f be a

function from Xn into X, and let p be a finite sequence with length n. Then

1GateCircuit(p, f) is a strict circuit over X and 1GateCircStr(p, f).

One can prove the following propositions:

(29) For every non empty finite set X and for all signatures S1, S2 over X

holds S1 ≈ S2.

(30) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a

circuit over X and S1, and A2 be a circuit over X and S2. Then A1 ≈ A2.

(31) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a

circuit over X and S1, and A2 be a circuit over X and S2. Then A1+·A2

is a circuit of S1+·S2.

(32) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a

circuit over X and S1, and A2 be a circuit over X and S2. Then A1+·A2



124 grzegorz bancerek and adam naumowicz

has denotation held in gates.

(33) Let X be a non empty finite set, S1, S2 be signatures over X, A1 be a

circuit over X and S1, and A2 be a circuit over X and S2. Then the sorts

of A1+·A2 are constant and the value of the sorts of A1+·A2 = X.

Let S1, S2 be finite non empty many sorted signatures. Note that S1+·S2 is

finite.

Let X be a non empty finite set and let S1, S2 be signatures over X. One

can verify that S1+·S2 has denotation held in gates.

Let X be a non empty finite set and let S1, S2 be signatures over X. Then

S1+·S2 is a strict signature over X.

Let X be a non empty finite set, let S1, S2 be signatures over X, let A1 be

a circuit over X and S1, and let A2 be a circuit over X and S2. Then A1+·A2

is a strict circuit over X and S1+·S2.

One can prove the following two propositions:

(34) For all sets x, y holds rk(x) ∈ rk(〈〈x, y〉〉) and rk(y) ∈ rk(〈〈x, y〉〉).

(35) Let S be a finite non void non empty unsplit many sorted signature

with arity held in gates with denotation held in gates and A be a non-

empty circuit of S such that A has denotation held in gates. Then A has

a stabilization limit.

Let X be a non empty finite set and let S be a finite signature over X. One

can verify that every circuit over X and S has a stabilization limit.

Now we present three schemes. The scheme 1AryDef deals with a non empty

set A and a unary functor F yielding an element of A, and states that:

(i) There exists a function f from A1 into A such that for

every element x of A holds f(〈x〉) = F(x), and

(ii) for all functions f1, f2 from A
1 into A such that for every

element x of A holds f1(〈x〉) = F(x) and for every element x of

A holds f2(〈x〉) = F(x) holds f1 = f2

for all values of the parameters.

The scheme 2AryDef deals with a non empty set A and a binary functor F

yielding an element of A, and states that:

(i) There exists a function f from A2 into A such that for all

elements x, y of A holds f(〈x, y〉) = F(x, y), and

(ii) for all functions f1, f2 from A
2 into A such that for all

elements x, y of A holds f1(〈x, y〉) = F(x, y) and for all elements

x, y of A holds f2(〈x, y〉) = F(x, y) holds f1 = f2

for all values of the parameters.

The scheme 3AryDef deals with a non empty set A and a ternary functor F

yielding an element of A, and states that:

(i) There exists a function f from A3 into A such that for all

elements x, y, z of A holds f(〈x, y, z〉) = F(x, y, z), and



preliminaries to automatic generation . . . 125

(ii) for all functions f1, f2 from A
3 into A such that for all

elements x, y, z of A holds f1(〈x, y, z〉) = F(x, y, z) and for all

elements x, y, z of A holds f2(〈x, y, z〉) = F(x, y, z) holds f1 = f2

for all values of the parameters.

We now state three propositions:

(36) For every function f and for every set x such that x ∈ dom f holds

f · 〈x〉 = 〈f(x)〉.

(37) Let f be a function and x1, x2, x3, x4 be sets. If x1 ∈ dom f and x2 ∈

dom f and x3 ∈ dom f and x4 ∈ dom f, then f · 〈x1, x2, x3, x4〉 = 〈f(x1),

f(x2), f(x3), f(x4)〉.

(38) Let f be a function and x1, x2, x3, x4, x5 be sets. Suppose x1 ∈ dom f

and x2 ∈ dom f and x3 ∈ dom f and x4 ∈ dom f and x5 ∈ dom f. Then

f · 〈x1, x2, x3, x4, x5〉 = 〈f(x1), f(x2), f(x3), f(x4), f(x5)〉.

Now we present several schemes. The scheme OneGate1Result deals with a

set A, a non empty finite set B, a unary functor F yielding an element of B,

and a function C from B1 into B, and states that:

For every state s of 1GateCircuit(〈A〉, C) and for every element a1

of B such that a1 = s(A) holds (Result(s))(Output 1GateCircStr(〈A〉, C)) =

F(a1)

provided the following requirement is met:

• For every function g from B1 into B holds g = C iff for every

element a1 of B holds g(〈a1〉) = F(a1).

The scheme OneGate2Result deals with sets A, B, a non empty finite set C,

a binary functor F yielding an element of C, and a function D from C2 into C,

and states that:

For every state s of 1GateCircuit(〈A,B〉,D) and for all ele-

ments a1, a2 of C such that a1 = s(A) and a2 = s(B) holds

(Result(s))(Output 1GateCircStr(〈A,B〉,D)) = F(a1, a2)

provided the parameters satisfy the following condition:

• For every function g from C2 into C holds g = D iff for all elements

a1, a2 of C holds g(〈a1, a2〉) = F(a1, a2).

The scheme OneGate3Result deals with sets A, B, C, a non empty finite set

D, a ternary functor F yielding an element of D, and a function E from D3 into

D, and states that:

Let s be a state of 1GateCircuit(〈A,B, C〉, E) and a1, a2, a3 be

elements of D. If a1 = s(A) and a2 = s(B) and a3 = s(C), then

(Result(s))(Output 1GateCircStr(〈A,B, C〉, E)) = F(a1, a2, a3)

provided the following requirement is met:

• For every function g from D3 into D holds g = E iff for all elements

a1, a2, a3 of D holds g(〈a1, a2, a3〉) = F(a1, a2, a3).

The scheme OneGate4Result deals with sets A, B, C, D, a non empty finite



126 grzegorz bancerek and adam naumowicz

set E , a 4-ary functor F yielding an element of E , and a function F from E4 into

E , and states that:

Let s be a state of 1GateCircuit(〈A,B, C,D〉,F) and a1, a2, a3,

a4 be elements of E . If a1 = s(A) and a2 = s(B) and a3 = s(C)

and a4 = s(D), then (Result(s))(Output 1GateCircStr(〈A,B, C,

D〉,F)) = F(a1, a2, a3, a4)

provided the following condition is met:

• Let g be a function from E4 into E . Then g = F if and only

if for all elements a1, a2, a3, a4 of E holds g(〈a1, a2, a3, a4〉) =

F(a1, a2, a3, a4).

The scheme OneGate5Result deals with sets A, B, C, D, E , a non empty

finite set F , a 5-ary functor F yielding an element of F , and a function G from

F5 into F , and states that:

Let s be a state of 1GateCircuit(〈A,B, C,D, E〉,G) and a1,

a2, a3, a4, a5 be elements of F . Suppose a1 = s(A)

and a2 = s(B) and a3 = s(C) and a4 = s(D) and

a5 = s(E). Then (Result(s))(Output 1GateCircStr(〈A,B, C,D,

E〉,G)) = F(a1, a2, a3, a4, a5)

provided the following requirement is met:

• Let g be a function from F5 into F . Then g = G if and only

if for all elements a1, a2, a3, a4, a5 of F holds g(〈a1, a2, a3, a4,

a5〉) = F(a1, a2, a3, a4, a5).

4. Input of a Compound Circuit

We now state a number of propositions:

(39) Let n be a natural number, X be a non empty finite set,

f be a function from Xn into X, p be a finite sequence with

length n, and S be a signature over X. If rng p ⊆ the car-

rier of S and Output 1GateCircStr(p, f) /∈ InputVertices(S), then

InputVertices(S+· 1GateCircStr(p, f)) = InputVertices(S).

(40) Let X1, X2 be sets, X be a non empty finite set, n be a na-

tural number, f be a function from Xn into X, p be a finite

sequence with length n, and S be a signature over X. Suppose

rng p = X1 ∪ X2 and X1 ⊆ the carrier of S and X2 misses

InnerVertices(S) and Output 1GateCircStr(p, f) /∈ InputVertices(S).

Then InputVertices(S+· 1GateCircStr(p, f)) = InputVertices(S) ∪X2.

(41) Let x1 be a set, X be a non empty finite set, f be a function

from X1 into X, and S be a signature over X. If x1 ∈ the car-

rier of S and Output 1GateCircStr(〈x1〉, f) /∈ InputVertices(S), then

InputVertices(S+· 1GateCircStr(〈x1〉, f)) = InputVertices(S).



preliminaries to automatic generation . . . 127

(42) Let x1, x2 be sets, X be a non empty finite set, f be a function

from X2 into X, and S be a signature over X. Suppose x1 ∈ the

carrier of S and x2 /∈ InnerVertices(S) and Output 1GateCircStr(〈x1,

x2〉, f) /∈ InputVertices(S). Then InputVertices(S+· 1GateCircStr(〈x1,

x2〉, f)) = InputVertices(S) ∪ {x2}.

(43) Let x1, x2 be sets, X be a non empty finite set, f be a function

from X2 into X, and S be a signature over X. Suppose x2 ∈ the

carrier of S and x1 /∈ InnerVertices(S) and Output 1GateCircStr(〈x1,

x2〉, f) /∈ InputVertices(S). Then InputVertices(S+· 1GateCircStr(〈x1,

x2〉, f)) = InputVertices(S) ∪ {x1}.

(44) Let x1, x2 be sets, X be a non empty finite set, f be a function

from X2 into X, and S be a signature over X. Suppose x1 ∈ the

carrier of S and x2 ∈ the carrier of S and Output 1GateCircStr(〈x1,

x2〉, f) /∈ InputVertices(S). Then InputVertices(S+· 1GateCircStr(〈x1,

x2〉, f)) = InputVertices(S).

(45) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x1 ∈ the

carrier of S and x2 /∈ InnerVertices(S) and x3 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x2, x3}.

(46) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x2 ∈ the

carrier of S and x1 /∈ InnerVertices(S) and x3 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x1, x3}.

(47) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x3 ∈ the

carrier of S and x1 /∈ InnerVertices(S) and x2 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x1, x2}.

(48) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x1 ∈ the

carrier of S and x2 ∈ the carrier of S and x3 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x3}.

(49) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x1 ∈ the



128 grzegorz bancerek and adam naumowicz

carrier of S and x3 ∈ the carrier of S and x2 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x2}.

(50) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x2 ∈ the

carrier of S and x3 ∈ the carrier of S and x1 /∈ InnerVertices(S)

and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S) ∪

{x1}.

(51) Let x1, x2, x3 be sets, X be a non empty finite set, f be a func-

tion from X3 into X, and S be a signature over X. Suppose x1 ∈

the carrier of S and x2 ∈ the carrier of S and x3 ∈ the carrier

of S and Output 1GateCircStr(〈x1, x2, x3〉, f) /∈ InputVertices(S). Then

InputVertices(S+· 1GateCircStr(〈x1, x2, x3〉, f)) = InputVertices(S).

5. Result of a Compound Circuit

Next we state the proposition

(52) Let X be a non empty finite set, S be a finite signature over X,

A be a circuit over X and S, n be a natural number, f be a func-

tion from Xn into X, and p be a finite sequence with length n. Sup-

pose Output 1GateCircStr(p, f) /∈ InputVertices(S). Let s be a state of

A+· 1GateCircuit(p, f) and s′ be a state of A. Suppose s′ = s↾the carrier

of S. Then the stabilization time of s ¬ 1 + the stabilization time of s′.

Now we present several schemes. The scheme Comb1CircResult deals with a

set A, a non empty finite set B, a unary functor F yielding an element of B, a

finite signature C over B, a circuit D over B and C, and a function E from B1

into B, and states that:

Let s be a state of D+· 1GateCircuit(〈A〉, E) and s′ be a

state of D. Suppose s′ = s↾the carrier of C. Let a1 be an

element of B. Suppose if A ∈ InnerVertices(C), then a1 =

(Result(s′))(A) and if A /∈ InnerVertices(C), then a1 = s(A).

Then (Result(s))(Output 1GateCircStr(〈A〉, E)) = F(a1)

provided the parameters meet the following conditions:

• For every function g from B1 into B holds g = E iff for every

element a1 of B holds g(〈a1〉) = F(a1), and

• Output 1GateCircStr(〈A〉, E) /∈ InputVertices(C).

The scheme Comb2CircResult deals with sets A, B, a non empty finite set

C, a binary functor F yielding an element of C, a finite signature D over C, a

circuit E over C and D, and a function F from C2 into C, and states that:



preliminaries to automatic generation . . . 129

Let s be a state of E+· 1GateCircuit(〈A,B〉,F) and s′ be

a state of E . Suppose s′ = s↾the carrier of D. Let a1,

a2 be elements of C. Suppose if A ∈ InnerVertices(D),

then a1 = (Result(s′))(A) and if A /∈ InnerVertices(D),

then a1 = s(A) and if B ∈ InnerVertices(D), then a2 =

(Result(s′))(B) and if B /∈ InnerVertices(D), then a2 = s(B).

Then (Result(s))(Output 1GateCircStr(〈A,B〉,F)) = F(a1, a2)

provided the parameters meet the following requirements:

• For every function g from C2 into C holds g = F iff for all elements

a1, a2 of C holds g(〈a1, a2〉) = F(a1, a2), and

• Output 1GateCircStr(〈A,B〉,F) /∈ InputVertices(D).

The scheme Comb3CircResult deals with sets A, B, C, a non empty finite set

D, a ternary functor F yielding an element of D, a finite signature E over D, a

circuit F over D and E , and a function G from D3 into D, and states that:

Let s be a state of F+· 1GateCircuit(〈A,B, C〉,G) and s′ be a state

of F . Suppose s′ = s↾the carrier of E . Let a1, a2, a3 be elements

of D. Suppose that

(i) if A ∈ InnerVertices(E), then a1 = (Result(s′))(A),

(ii) if A /∈ InnerVertices(E), then a1 = s(A),

(iii) if B ∈ InnerVertices(E), then a2 = (Result(s′))(B),

(iv) if B /∈ InnerVertices(E), then a2 = s(B),

(v) if C ∈ InnerVertices(E), then a3 = (Result(s′))(C), and

(vi) if C /∈ InnerVertices(E), then a3 = s(C).

Then (Result(s))(Output 1GateCircStr(〈A,B, C〉,G)) = F(a1, a2, a3)

provided the parameters meet the following requirements:

• For every function g from D3 into D holds g = G iff for all elements

a1, a2, a3 of D holds g(〈a1, a2, a3〉) = F(a1, a2, a3), and

• Output 1GateCircStr(〈A,B, C〉,G) /∈ InputVertices(E).

The scheme Comb4CircResult deals with sets A, B, C, D, a non empty finite

set E , a 4-ary functor F yielding an element of E , a finite signature F over E , a

circuit G over E and F , and a function H from E4 into E , and states that:

Let s be a state of G+· 1GateCircuit(〈A,B, C,D〉,H) and s′ be

a state of G. Suppose s′ = s↾the carrier of F . Let a1, a2, a3,

a4 be elements of E . Suppose that if A ∈ InnerVertices(F),

then a1 = (Result(s′))(A) and if A /∈ InnerVertices(F),

then a1 = s(A) and if B ∈ InnerVertices(F), then a2 =

(Result(s′))(B) and if B /∈ InnerVertices(F), then a2 = s(B) and

if C ∈ InnerVertices(F), then a3 = (Result(s′))(C) and if C /∈

InnerVertices(F), then a3 = s(C) and if D ∈ InnerVertices(F),

then a4 = (Result(s′))(D) and if D /∈ InnerVertices(F), then a4 =

s(D). Then (Result(s))(Output 1GateCircStr(〈A,B, C,D〉,H)) =

F(a1, a2, a3, a4)



130 grzegorz bancerek and adam naumowicz

provided the parameters satisfy the following conditions:

• Let g be a function from E4 into E . Then g = H if and only

if for all elements a1, a2, a3, a4 of E holds g(〈a1, a2, a3, a4〉) =

F(a1, a2, a3, a4), and

• Output 1GateCircStr(〈A,B, C,D〉,H) /∈ InputVertices(F).

The scheme Comb5CircResult deals with sets A, B, C, D, E , a non empty

finite set F , a 5-ary functor F yielding an element of F , a finite signature G

over F , a circuit H over F and G, and a function I from F5 into F , and states

that:

Let s be a state of H+· 1GateCircuit(〈A,B, C,D, E〉, I) and

s′ be a state of H. Suppose s′ = s↾the carrier of G. Let

a1, a2, a3, a4, a5 be elements of F . Suppose that if A ∈

InnerVertices(G), then a1 = (Result(s′))(A) and if A /∈

InnerVertices(G), then a1 = s(A) and if B ∈ InnerVertices(G),

then a2 = (Result(s′))(B) and if B /∈ InnerVertices(G), then

a2 = s(B) and if C ∈ InnerVertices(G), then a3 = (Result(s′))(C)

and if C /∈ InnerVertices(G), then a3 = s(C) and if D ∈

InnerVertices(G), then a4 = (Result(s′))(D) and if D /∈

InnerVertices(G), then a4 = s(D) and if E ∈ InnerVertices(G),

then a5 = (Result(s′))(E) and if E /∈ InnerVertices(G), then

a5 = s(E). Then (Result(s))(Output 1GateCircStr(〈A,B, C,D,

E〉, I)) = F(a1, a2, a3, a4, a5)

provided the parameters meet the following conditions:

• Let g be a function from F5 into F . Then g = I if and only

if for all elements a1, a2, a3, a4, a5 of F holds g(〈a1, a2, a3, a4,

a5〉) = F(a1, a2, a3, a4, a5), and

• Output 1GateCircStr(〈A,B, C,D, E〉, I) /∈ InputVertices(G).

6. Inputs Without Pairs

Let S be a non empty many sorted signature. We say that S has nonpair

inputs if and only if:

(Def. 11) InputVertices(S) has no pairs.

Note that N has no pairs. Let X be a set with no pairs. Note that every

subset of X has no pairs.

Let us observe that every function which is natural-yielding is also nonpair

yielding.

Let us note that every finite sequence of elements of N is natural-yielding.

Let us observe that there exists a finite sequence which is one-to-one and

natural-yielding.

Let n be a natural number. Observe that there exists a finite sequence with

length n which is one-to-one and natural-yielding.



preliminaries to automatic generation . . . 131

Let p be a nonpair yielding finite sequence and let f be a set. Observe that

1GateCircStr(p, f) has nonpair inputs.

One can verify that there exists an one-gate many sorted signature which

has nonpair inputs. Let X be a non empty finite set. One can verify that there

exists an one-gate signature over X which has nonpair inputs.

Let S be a non empty many sorted signature with nonpair inputs. One can

check that InputVertices(S) has no pairs.

The following proposition is true

(53) Let S be a non empty many sorted signature with nonpair inputs and x

be a vertex of S. If x is pair, then x ∈ InnerVertices(S).

Let S be an unsplit non empty many sorted signature with arity held in

gates. One can verify that InnerVertices(S) is relation-like.

Let S be an unsplit non empty non void many sorted signature with deno-

tation held in gates. Note that InnerVertices(S) is relation-like.

Let S1, S2 be unsplit non empty many sorted signatures with arity held in

gates with nonpair inputs. One can verify that S1+·S2 has nonpair inputs.

One can prove the following propositions:

(54) For every non pair set x and for every binary relation R holds x /∈ R.

(55) Let x1 be a set, X be a non empty finite set, f be a function from X1

into X, and S be a signature over X with nonpair inputs. If x1 ∈ the

carrier of S or x1 is non pair, then S+· 1GateCircStr(〈x1〉, f) has nonpair

inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1 be a vertex of S, and let f be a function from X1 into X. One

can verify that S+· 1GateCircStr(〈x1〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1 be a non pair set, and let f be a function from X1 into X. One

can verify that S+· 1GateCircStr(〈x1〉, f) has nonpair inputs.

We now state the proposition

(56) Let x1, x2 be sets, X be a non empty finite set, f be a function from

X2 into X, and S be a signature over X with nonpair inputs. Suppose

x1 ∈ the carrier of S or x1 is non pair but x2 ∈ the carrier of S or x2 is

non pair. Then S+· 1GateCircStr(〈x1, x2〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1 be a vertex of S, let n2 be a non pair set, and let f be a function

from X2 into X. Observe that S+· 1GateCircStr(〈x1, n2〉, f) has nonpair inputs

and S+· 1GateCircStr(〈n2, x1〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1, x2 be vertices of S, and let f be a function from X2 into X. One

can verify that S+· 1GateCircStr(〈x1, x2〉, f) has nonpair inputs.

One can prove the following proposition



132 grzegorz bancerek and adam naumowicz

(57) Let x1, x2, x3 be sets, X be a non empty finite set, f be a function from

X3 into X, and S be a signature over X with nonpair inputs. Suppose

that

(i) x1 ∈ the carrier of S or x1 is non pair,

(ii) x2 ∈ the carrier of S or x2 is non pair, and

(iii) x3 ∈ the carrier of S or x3 is non pair.

Then S+· 1GateCircStr(〈x1, x2, x3〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1, x2 be vertices of S, let n be a non pair set, and let f be a function

from X3 into X. One can verify the following observations:

∗ S+· 1GateCircStr(〈x1, x2, n〉, f) has nonpair inputs,

∗ S+· 1GateCircStr(〈x1, n, x2〉, f) has nonpair inputs, and

∗ S+· 1GateCircStr(〈n, x1, x2〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x be a vertex of S, let n1, n2 be non pair sets, and let f be a function

from X3 into X. One can check the following observations:

∗ S+· 1GateCircStr(〈x, n1, n2〉, f) has nonpair inputs,

∗ S+· 1GateCircStr(〈n1, x, n2〉, f) has nonpair inputs, and

∗ S+· 1GateCircStr(〈n1, n2, x〉, f) has nonpair inputs.

Let X be a non empty finite set, let S be a signature over X with nonpair

inputs, let x1, x2, x3 be vertices of S, and let f be a function from X3 into X.

Observe that S+· 1GateCircStr(〈x1, x2, x3〉, f) has nonpair inputs.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–
290, 1990.

[3] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics, 1(3):563–567,
1990.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Ma-
thematics, 5(3):367–380, 1996.

[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[11] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175–182, 1999.

[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,
1(3):471–475, 1990.



preliminaries to automatic generation . . . 133

[14] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics,
2(1):17–28, 1991.

[15] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits. Formalized Mathema-
tics, 5(2):283–295, 1996.

[16] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Intro-
duction to circuits, II. Formalized Mathematics, 5(2):273–278, 1996.

[17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-
minaries to circuits, II. Formalized Mathematics, 5(2):215–220, 1996.

[18] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-
minaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.

[19] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[20] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[22] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[23] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[24] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213–225,
1997.

[25] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received July 26, 2002


