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The articles [9], [13], [14], [4], [15], [5], [8], [7], [2], [3], [1], [10], [12], [11], and [6]

provide the notation and terminology for this paper.

1. Preliminaries

In this paper i is a set.

Let I be a set, let f be a many sorted set indexed by I, and let p be a finite

sequence of elements of I. One can check that f · p is finite sequence-like.

Let S be a non empty many sorted signature. A sort symbol of S is an

element of S.

Let S be a non empty many sorted signature.

(Def. 1) An element of the operation symbols of S is said to be an operation

symbol of S.

Let S be a non void non empty many sorted signature and let o be an

operation symbol of S. Then the result sort of o is an element of S.

Let X be a set. Then △X is an order in X. We introduce △o
X
as a synonym

of △X .

Let X be a set. Then △X is an equivalence relation of X. We introduce △
r
X

as a synonym of △X .

1This work was done during author’s research visit in Bialystok, funded by the CALCU-

LEMUS grant HPRN-CT-2000-00102.
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We introduce overloaded many sorted signatures which are extensions of

many sorted signature and are systems

〈 a carrier, operation symbols, an overloading, an arity, a result sort 〉,

where the carrier is a set, the operation symbols constitute a set, the overloading

is an equivalence relation of the operation symbols, the arity is a function from

the operation symbols into the carrier∗, and the result sort is a function from

the operation symbols into the carrier.

We introduce relation sorted signatures which are extensions of many sorted

signature and relational structure and are systems

〈 a carrier, an internal relation, operation symbols, an arity, a result sort 〉,

where the carrier is a set, the internal relation is a binary relation on the carrier,

the operation symbols constitute a set, the arity is a function from the operation

symbols into the carrier∗, and the result sort is a function from the operation

symbols into the carrier.

We consider overloaded relation sorted signatures as extensions of overloaded

many sorted signature and relation sorted signature as systems

〈 a carrier, an internal relation, operation symbols, an overloading, an arity,

a result sort 〉,

where the carrier is a set, the internal relation is a binary relation on the carrier,

the operation symbols constitute a set, the overloading is an equivalence relation

of the operation symbols, the arity is a function from the operation symbols into

the carrier∗, and the result sort is a function from the operation symbols into

the carrier.

For simplicity, we use the following convention: A, O are non empty sets, R

is an order in A, O1 is an equivalence relation of O, f is a function from O into

A∗, and g is a function from O into A.

One can prove the following proposition

(1) 〈A,R,O, O1, f, g〉 is non empty, non void, reflexive, transitive, and anti-

symmetric.

Let us consider A, R, O, O1, f , g. One can verify that 〈A, R, O,O1, f, g〉 is

strict, non empty, reflexive, transitive, and antisymmetric.

2. The Notions: Order-Sorted, Discernable, Op-Discrete

In the sequel S is an overloaded relation sorted signature.

Let us consider S. We say that S is order-sorted if and only if:

(Def. 2) S is reflexive, transitive, and antisymmetric.

Let us note that every overloaded relation sorted signature which is order-

sorted is also reflexive, transitive, and antisymmetric and there exists an overlo-

aded relation sorted signature which is strict, non empty, non void, and order-

sorted.
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Let us observe that there exists an overloaded many sorted signature which

is non empty and non void.

Let S be a non empty non void overloaded many sorted signature and let x,

y be operation symbols of S. The predicate x ∼= y is defined by:

(Def. 3) 〈〈x, y〉〉 ∈ the overloading of S.

Let us notice that the predicate x ∼= y is reflexive and symmetric.

One can prove the following proposition

(2) Let S be a non empty non void overloaded many sorted signature and

o, o1, o2 be operation symbols of S. If o ∼= o1 and o1
∼= o2, then o ∼= o2.

Let S be a non empty non void overloaded many sorted signature. We say

that S is discernable if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let x, y be operation symbols of S. Suppose x ∼= y and Arity(x) =

Arity(y) and the result sort of x = the result sort of y. Then x = y.

We say that S is op-discrete if and only if:

(Def. 5) The overloading of S = △r

the operation symbols of S
.

The following two propositions are true:

(3) Let S be a non empty non void overloaded many sorted signature. Then

S is op-discrete if and only if for all operation symbols x, y of S such that

x ∼= y holds x = y.

(4) For every non empty non void overloaded many sorted signature S such

that S is op-discrete holds S is discernable.

3. Order Sorted Signature

In the sequel S0 is a non empty non void many sorted signature.

Let us consider S0. The functor OSSignS0 yields a strict non empty non

void order-sorted overloaded relation sorted signature and is defined by the

conditions (Def. 6).

(Def. 6)(i) The carrier of S0 = the carrier of OSSignS0,

(ii) △the carrier of S0
= the internal relation of OSSignS0,

(iii) the operation symbols of S0 = the operation symbols of OSSignS0,

(iv) △the operation symbols of S0
= the overloading of OSSignS0,

(v) the arity of S0 = the arity of OSSignS0, and

(vi) the result sort of S0 = the result sort of OSSignS0.

Next we state the proposition

(5) OSSignS0 is discrete and op-discrete.

Let us mention that there exists a strict non empty non void order-sorted

overloaded relation sorted signature which is discrete, op-discrete, and discer-

nable.
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Let us observe that every non empty non void overloaded relation sorted

signature which is op-discrete is also discernable.

Let us consider S0. Observe that OSSignS0 is discrete and op-discrete.

An order sorted signature is a discernable non empty non void order-sorted

overloaded relation sorted signature.

We use the following convention: S is a non empty poset, s1, s2 are elements

of S, and w1, w2 are elements of (the carrier of S)∗.

Let us consider S and let w1, w2 be elements of (the carrier of S)∗. The

predicate w1 ¬ w2 is defined as follows:

(Def. 7) lenw1 = lenw2 and for every set i such that i ∈ domw1 and for all s1,

s2 such that s1 = w1(i) and s2 = w2(i) holds s1 ¬ s2.

Let us note that the predicate w1 ¬ w2 is reflexive.

We now state two propositions:

(6) For all elements w1, w2 of (the carrier of S)∗ such that w1 ¬ w2 and

w2 ¬ w1 holds w1 = w2.

(7) If S is discrete and w1 ¬ w2, then w1 = w2.

We follow the rules: S is an order sorted signature, o, o1, o2 are operation

symbols of S, and w1 is an element of (the carrier of S)∗.

One can prove the following proposition

(8) If S is discrete and o1
∼= o2 and Arity(o1) ¬ Arity(o2) and the result

sort of o1 ¬ the result sort of o2, then o1 = o2.

Let us consider S and let us consider o. We say that o is monotone if and

only if:

(Def. 8) For every o2 such that o ∼= o2 and Arity(o) ¬ Arity(o2) holds the result

sort of o ¬ the result sort of o2.

Let us consider S. We say that S is monotone if and only if:

(Def. 9) Every operation symbol of S is monotone.

The following proposition is true

(9) If S is op-discrete, then S is monotone.

Let us observe that there exists an order sorted signature which is monotone.

Let S be a monotone order sorted signature. Observe that there exists an

operation symbol of S which is monotone.

Let S be a monotone order sorted signature. One can check that every ope-

ration symbol of S is monotone.

One can check that every order sorted signature which is op-discrete is also

monotone.

We now state the proposition

(10) If S is monotone and Arity(o1) = ∅ and o1
∼= o2 and Arity(o2) = ∅, then

o1 = o2.
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Let us consider S, o, o1, w1. We say that o1 has least args for o, w1 if and

only if:

(Def. 10) o ∼= o1 and w1 ¬ Arity(o1) and for every o2 such that o ∼= o2 and

w1 ¬ Arity(o2) holds Arity(o1) ¬ Arity(o2).

We say that o1 has least sort for o, w1 if and only if:

(Def. 11) o ∼= o1 and w1 ¬ Arity(o1) and for every o2 such that o ∼= o2 and

w1 ¬ Arity(o2) holds the result sort of o1 ¬ the result sort of o2.

Let us consider S, o, o1, w1. We say that o1 has least rank for o, w1 if and

only if:

(Def. 12) o1 has least args for o, w1 and least sort for o, w1.

Let us consider S, o. We say that o is regular if and only if:

(Def. 13) o is monotone and for every w1 such that w1 ¬ Arity(o) holds there

exists o1 which has least args for o, w1.

Let S1 be a monotone order sorted signature. We say that S1 is regular if

and only if:

(Def. 14) Every operation symbol of S1 is regular.

In the sequel S1 is a monotone order sorted signature, o, o1 are operation

symbols of S1, and w1 is an element of (the carrier of S1)
∗.

We now state two propositions:

(11) S1 is regular iff for all o, w1 such that w1 ¬ Arity(o) holds there exists

o1 which has least rank for o, w1.

(12) For every monotone order sorted signature S1 such that S1 is op-discrete

holds S1 is regular.

One can verify that there exists a monotone order sorted signature which is

regular.

Let us mention that every monotone order sorted signature which is op-

discrete is also regular.

Let S2 be a regular monotone order sorted signature. One can verify that

every operation symbol of S2 is regular.

We adopt the following rules: S2 is a regular monotone order sorted si-

gnature, o, o3, o4 are operation symbols of S2, and w1 is an element of

(the carrier of S2)
∗.

One can prove the following proposition

(13) If w1 ¬ Arity(o) and o3 has least args for o, w1 and o4 has least args for

o, w1, then o3 = o4.

Let us consider S2, o, w1. Let us assume that w1 ¬ Arity(o). The functor

LBound(o, w1) yields an operation symbol of S2 and is defined as follows:

(Def. 15) LBound(o, w1) has least args for o, w1.

One can prove the following proposition
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(14) For every w1 such that w1 ¬ Arity(o) holds LBound(o, w1) has least

rank for o, w1.

In the sequel R denotes a non empty poset and z denotes a non empty set.

Let us consider R, z. The functor ConstOSSet(R, z) yielding a many sorted

set indexed by the carrier of R is defined by:

(Def. 16) ConstOSSet(R, z) = (the carrier of R) 7−→ z.

The following proposition is true

(15) ConstOSSet(R, z) is non-empty and for all elements s1, s2 of R such that

s1 ¬ s2 holds (ConstOSSet(R, z))(s1) ⊆ (ConstOSSet(R, z))(s2).

Let C be a 1-sorted structure.

(Def. 17) A many sorted set indexed by the carrier of C is said to be a many sorted

set indexed by C.

Let us consider R, z. Then ConstOSSet(R, z) is a many sorted set indexed

by R.

Let us consider R and let M be a many sorted set indexed by R. We say

that M is order-sorted if and only if:

(Def. 18) For all elements s1, s2 of R such that s1 ¬ s2 holds M(s1) ⊆M(s2).

Next we state the proposition

(16) ConstOSSet(R, z) is order-sorted.

Let us consider R. Observe that there exists a many sorted set indexed by

R which is order-sorted.

Let us consider R, z. Then ConstOSSet(R, z) is an order-sorted many sorted

set indexed by R.

Let R be a non empty poset. An order sorted set of R is an order-sorted

many sorted set indexed by R.

Let R be a non empty poset. Observe that there exists an order sorted set

of R which is non-empty.

We adopt the following convention: s1, s2 denote sort symbols of S, o,

o1, o2, o3 denote operation symbols of S, and w1, w2 denote elements of

(the carrier of S)∗.

Let us consider S and let M be an algebra over S. We say that M is order-

sorted if and only if:

(Def. 19) For all s1, s2 such that s1 ¬ s2 holds (the sorts of M)(s1) ⊆ (the sorts

of M)(s2).

The following proposition is true

(17) For every algebra M over S holds M is order-sorted iff the sorts of M

are an order sorted set of S.

In the sequel C1 denotes a many sorted function from (ConstOSSet(S, z))# ·

the arity of S into ConstOSSet(S, z) · the result sort of S.
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Let us consider S, z, C1. The functor ConstOSA(S, z, C1) yielding a strict

non-empty algebra over S is defined by:

(Def. 20) The sorts of ConstOSA(S, z, C1) = ConstOSSet(S, z) and the characte-

ristics of ConstOSA(S, z, C1) = C1.

One can prove the following proposition

(18) ConstOSA(S, z, C1) is order-sorted.

Let us consider S. One can check that there exists an algebra over S which

is strict, non-empty, and order-sorted.

Let us consider S, z, C1. One can verify that ConstOSA(S, z, C1) is order-

sorted.

Let us consider S. An order sorted algebra of S is an order-sorted algebra

over S.

Next we state the proposition

(19) For every discrete order sorted signature S holds every algebra over S is

order-sorted.

Let S be a discrete order sorted signature. Observe that every algebra over

S is order-sorted.

In the sequel A denotes an order sorted algebra of S.

We now state the proposition

(20) If w1 ¬ w2, then (the sorts of A)#(w1) ⊆ (the sorts of A)#(w2).

In the sequel M is an algebra over S0.

Let us consider S0, M . The functor OSAlgM yielding a strict order sorted

algebra of OSSignS0 is defined as follows:

(Def. 21) The sorts of OSAlgM = the sorts of M and the characteristics of

OSAlgM = the characteristics of M .

In the sequel A denotes an order sorted algebra of S.

We now state the proposition

(21) For all elements w1, w2, w3 of (the carrier of S)∗ such that w1 ¬ w2 and

w2 ¬ w3 holds w1 ¬ w3.

Let us consider S, o1, o2. The predicate o1 ¬ o2 is defined as follows:

(Def. 22) o1
∼= o2 and Arity(o1) ¬ Arity(o2) and the result sort of o1 ¬ the result

sort of o2.

Let us note that the predicate o1 ¬ o2 is reflexive.

We now state several propositions:

(22) If o1 ¬ o2 and o2 ¬ o1, then o1 = o2.

(23) If o1 ¬ o2 and o2 ¬ o3, then o1 ¬ o3.

(24) If the result sort of o1 ¬ the result sort of o2, then Result(o1, A) ⊆

Result(o2, A).

(25) If Arity(o1) ¬ Arity(o2), then Args(o1, A) ⊆ Args(o2, A).
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(26) If o1 ¬ o2, then Args(o1, A) ⊆ Args(o2, A) and Result(o1, A) ⊆

Result(o2, A).

Let us consider S, A. We say that A is monotone if and only if:

(Def. 23) For all o1, o2 such that o1 ¬ o2 holds Den(o2, A)↾Args(o1, A) = Den(o1,

A).

We now state two propositions:

(27) Let A be a non-empty order sorted algebra of S. Then A is monotone if

and only if for all o1, o2 such that o1 ¬ o2 holds Den(o1, A) ⊆ Den(o2, A).

(28) If S is discrete and op-discrete, then A is monotone.

Let us consider S, z and let z1 be an element of z. The functor

TrivialOSA(S, z, z1) yielding a strict order sorted algebra of S is defined by:

(Def. 24) The sorts of TrivialOSA(S, z, z1) = ConstOSSet(S, z) and for every o

holds Den(o,TrivialOSA(S, z, z1)) = Args(o,TrivialOSA(S, z, z1)) 7−→ z1.

Next we state the proposition

(29) For every element z1 of z holds TrivialOSA(S, z, z1) is non-empty and

TrivialOSA(S, z, z1) is monotone.

Let us consider S. Note that there exists an order sorted algebra of S which

is monotone, strict, and non-empty.

Let us consider S, z and let z1 be an element of z. One can check that

TrivialOSA(S, z, z1) is monotone and non-empty.

In the sequel o5, o6 are operation symbols of S.

Let us consider S. The functor OperNamesS yields a non empty family of

subsets of the operation symbols of S and is defined as follows:

(Def. 25) OperNamesS = Classes (the overloading of S).

Let us consider S. One can check that every element of OperNamesS is non

empty.

Let us consider S. An OperName of S is an element of OperNamesS.

Let us consider S, o5. The functor Name o5 yields an OperName of S and is

defined by:

(Def. 26) Name o5 = [o5]the overloading of S
.

Next we state three propositions:

(30) o5
∼= o6 iff o6 ∈ [o5]the overloading of S

.

(31) o5
∼= o6 iff Name o5 = Name o6.

(32) For every set X holds X is an OperName of S iff there exists o5 such

that X = Name o5.

Let us consider S and let o be an OperName of S. We see that the element

of o is an operation symbol of S.

Next we state two propositions:
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(33) For every OperName o8 of S and for every operation symbol o7 of S

holds o7 is an element of o8 iff Name o7 = o8.

(34) Let S2 be a regular monotone order sorted signature, o5, o6 be operation

symbols of S2, and w be an element of (the carrier of S2)
∗. If o5

∼= o6 and

lenArity(o5) = lenArity(o6) and w ¬ Arity(o5) and w ¬ Arity(o6), then

LBound(o5, w) = LBound(o6, w).

Let S2 be a regular monotone order sorted signature, let o8 be an OperName

of S2, and let w be an element of (the carrier of S2)
∗. Let us assume that there

exists an element o7 of o8 such that w ¬ Arity(o7). The functor LBound(o8, w)

yields an element of o8 and is defined as follows:

(Def. 27) For every element o7 of o8 such that w ¬ Arity(o7) holds

LBound(o8, w) = LBound(o7, w).

Next we state the proposition

(35) Let S be a regular monotone order sorted signature, o be an operation

symbol of S, and w1 be an element of (the carrier of S)∗. If w1 ¬ Arity(o),

then LBound(o, w1) ¬ o.
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