Homomorphisms of Order Sorted Algebras¹

Josef Urban Charles University Praha

MML Identifier: $OSALG_3$.

The notation and terminology used in this paper have been introduced in the following articles: [8], [12], [14], [15], [4], [5], [2], [1], [9], [11], [7], [10], [3], [13], and [6].

In this paper R denotes a non empty poset and S_1 denotes an order sorted signature.

Let us consider R and let F be a many sorted function indexed by the carrier of R. We say that F is order-sorted if and only if:

(Def. 1) For all elements s_1 , s_2 of R such that $s_1 \leq s_2$ and for every set a_1 such that $a_1 \in \text{dom } F(s_1)$ holds $a_1 \in \text{dom } F(s_2)$ and $F(s_1)(a_1) = F(s_2)(a_1)$.

Next we state several propositions:

- (1) For every set I and for every many sorted set A indexed by I holds id_A is "1-1".
- (2) Let F be a many sorted function indexed by the carrier of R. Suppose F is order-sorted. Let s_1, s_2 be elements of R. If $s_1 \leq s_2$, then dom $F(s_1) \subseteq$ dom $F(s_2)$ and $F(s_1) \subseteq F(s_2)$.
- (3) Let A be an order sorted set of R, B be a non-empty order sorted set of R, and F be a many sorted function from A into B. Then F is order-sorted if and only if for all elements s_1 , s_2 of R such that $s_1 \leq s_2$ and for every set a_1 such that $a_1 \in A(s_1)$ holds $F(s_1)(a_1) = F(s_2)(a_1)$.
- (4) Let F be a many sorted function indexed by the carrier of R. Suppose F is order-sorted. Let w_1, w_2 be elements of (the carrier of R)*. If $w_1 \leq w_2$, then $F^{\#}(w_1) \subseteq F^{\#}(w_2)$.

C 2002 University of Białystok ISSN 1426-2630

¹This work was done during author's research visit in Bialystok, funded by the CALCU-LEMUS grant HPRN-CT-2000-00102.

JOSEF URBAN

- (5) For every order sorted set A of R holds id_A is order-sorted.
- (6) Let A be an order sorted set of R, B, C be non-empty order sorted sets of R, F be a many sorted function from A into B, and G be a many sorted function from B into C. If F is order-sorted and G is order-sorted, then $G \circ F$ is order-sorted.
- (7) Let A, B be order sorted sets of R and F be a many sorted function from A into B. If F is "1-1", onto, and order-sorted, then F^{-1} is order-sorted.
- (8) Let A be an order sorted set of R and F be a many sorted function indexed by the carrier of R. If F is order-sorted, then $F \circ A$ is an order sorted set of R.

Let us consider S_1 and let U_1 , U_2 be order sorted algebras of S_1 . We say that U_1 and U_2 are os-isomorphic if and only if:

(Def. 2) There exists a many sorted function from U_1 into U_2 which is an isomorphism of U_1 and U_2 and order-sorted.

The following propositions are true:

- (9) For every order sorted algebra U_1 of S_1 holds U_1 and U_1 are osisomorphic.
- (10) Let U_1 , U_2 be non-empty order sorted algebras of S_1 . If U_1 and U_2 are os-isomorphic, then U_2 and U_1 are os-isomorphic.

Let us consider S_1 and let U_1 , U_2 be order sorted algebras of S_1 . Let us note that the predicate U_1 and U_2 are os-isomorphic is reflexive.

One can prove the following propositions:

- (11) Let U_1 , U_2 , U_3 be non-empty order sorted algebras of S_1 . Suppose U_1 and U_2 are os-isomorphic and U_2 and U_3 are os-isomorphic. Then U_1 and U_3 are os-isomorphic.
- (12) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is order-sorted and a homomorphism of U_1 into U_2 . Then Im F is order-sorted.
- (13) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is order-sorted. Let o_1 , o_2 be operation symbols of S_1 . Suppose $o_1 \leq o_2$. Let x be an element of $\operatorname{Args}(o_1, U_1)$ and x_1 be an element of $\operatorname{Args}(o_2, U_1)$. If $x = x_1$, then F # x = $F \# x_1$.
- (14) Let U_1 be a monotone non-empty order sorted algebra of S_1 , U_2 be a non-empty order sorted algebra of S_1 , and F be a many sorted function from U_1 into U_2 . Suppose F is order-sorted and a homomorphism of U_1 into U_2 . Then Im F is order-sorted and Im F is a monotone order sorted algebra of S_1 .
- (15) For every monotone order sorted algebra U_1 of S_1 holds every OSSubAlgebra of U_1 is monotone.

Let us consider S_1 and let U_1 be a monotone order sorted algebra of S_1 . One can check that there exists an OSSubAlgebra of U_1 which is monotone.

Let us consider S_1 and let U_1 be a monotone order sorted algebra of S_1 . One can verify that every OSSubAlgebra of U_1 is monotone.

The following propositions are true:

- (16) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is a homomorphism of U_1 into U_2 and order-sorted. Then there exists a many sorted function G from U_1 into Im F such that F = G and G is order-sorted and an epimorphism of U_1 onto Im F.
- (17) Let U_1 , U_2 be non-empty order sorted algebras of S_1 and F be a many sorted function from U_1 into U_2 . Suppose F is a homomorphism of U_1 into U_2 and order-sorted. Then there exists a many sorted function F_1 from U_1 into Im F and there exists a many sorted function F_2 from Im F into U_2 such that
 - (i) F_1 is an epimorphism of U_1 onto Im F,
 - (ii) F_2 is a monomorphism of Im F into U_2 ,
- (iii) $F = F_2 \circ F_1$,
- (iv) F_1 is order-sorted, and
- (v) F_2 is order-sorted.

Let us consider S_1 and let U_1 be an order sorted algebra of S_1 . Note that (the sorts of U_1 , the characteristics of U_1) is order-sorted.

One can prove the following propositions:

- (18) Let U_1 be an order sorted algebra of S_1 . Then U_1 is monotone if and only if (the sorts of U_1 , the characteristics of U_1) is monotone.
- (19) Let U_1 , U_2 be strict non-empty order sorted algebras of S_1 . Suppose U_1 and U_2 are os-isomorphic. Then U_1 is monotone if and only if U_2 is monotone.

Acknowledgments

Thanks to Joseph Goguen, for providing me with his articles on osas, and Andrzej Trybulec, for suggesting and funding this work in Bialystok.

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47–54, 1996.
- [4] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.

JOSEF URBAN

- [6] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103– 108, 1993.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [10] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
 [11] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,
- 1990.
 [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [12] Zinada Trybulec. Properties of subsets. Formatized Mathematics, $f(\mathbf{1}):(i-1)$, 1990.
- [13] Josef Urban. Order sorted algebras. Formalized Mathematics, 10(3):179–188, 2002.
 [14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received September 19, 2002