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Summary. The article presents well known facts about quotient vector
spaces and functionals (see [8]). There are repeated theorems and constructions

with either weaker assumptions or in more general situations (see [11], [7], [10]).

The construction of coefficient functionals and non-degenerate functional in qu-

otient vector space generated by functional in the given vector space are the only

new things which are done.

MML Identifier: VECTSP10.

The articles [15], [5], [21], [13], [3], [1], [20], [2], [17], [7], [22], [4], [6], [14], [19],

[12], [18], [16], and [9] provide the notation and terminology for this paper.

1. Auxiliary Facts about Double Loops and Vector Spaces

The following proposition is true

(1) Let K be an add-associative right zeroed right complementable left di-

stributive left unital non empty double loop structure and a be an element

of the carrier of K. Then (−1K) · a = −a.

Let K be a double loop structure. The functor StructVectSp(K) yields a

strict vector space structure over K and is defined as follows:

(Def. 1) StructVectSp(K) = 〈the carrier of K, the addition of K, the zero of K,

the multiplication of K〉.

Let K be a non empty double loop structure. Note that StructVectSp(K) is

non empty.

Let K be an Abelian non empty double loop structure. One can verify that

StructVectSp(K) is Abelian.
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Let K be an add-associative non empty double loop structure. Note that

StructVectSp(K) is add-associative.

Let K be a right zeroed non empty double loop structure.

Note that StructVectSp(K) is right zeroed.

Let K be a right complementable non empty double loop structure. Observe

that StructVectSp(K) is right complementable.

Let K be an associative left unital distributive non empty double loop struc-

ture. One can check that StructVectSp(K) is vector space-like.

Let K be a non degenerated non empty double loop structure. Note that

StructVectSp(K) is non trivial.

Let K be a non degenerated non empty double loop structure. Note that

there exists a non empty vector space structure over K which is non trivial.

Let K be an add-associative right zeroed right complementable non empty

double loop structure. Observe that there exists a non empty vector space struc-

ture over K which is add-associative, right zeroed, right complementable, and

strict.

Let K be an add-associative right zeroed right complementable associative

left unital distributive non empty double loop structure. One can check that

there exists a non empty vector space structure over K which is add-associative,

right zeroed, right complementable, vector space-like, and strict.

Let K be an Abelian add-associative right zeroed right complementable as-

sociative left unital distributive non degenerated non empty double loop struc-

ture. One can verify that there exists a non empty vector space structure over

K which is Abelian, add-associative, right zeroed, right complementable, vector

space-like, strict, and non trivial.

Next we state a number of propositions:

(2) Let K be an add-associative right zeroed right complementable asso-

ciative left unital distributive non empty double loop structure, a be an

element of the carrier of K, V be an add-associative right zeroed right

complementable vector space-like non empty vector space structure over

K, and v be a vector of V . Then 0K · v = 0V and a · 0V = 0V .

(3) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V be

a vector space over K, S, T be subspaces of V , and v be a vector of V . If

S ∩ T = 0V and v ∈ S and v ∈ T, then v = 0V .

(4) Let K be a field, V be a vector space over K, x be a set, and v be a

vector of V . Then x ∈ Lin({v}) if and only if there exists an element a of

the carrier of K such that x = a · v.

(5) Let K be a field, V be a vector space over K, v be a vector of V , and a,

b be scalars of V . If v 6= 0V and a · v = b · v, then a = b.

(6) Let K be an add-associative right zeroed right complementable associa-
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tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, and W1, W2 be subspaces of V . Suppose V is

the direct sum of W1 and W2. Let v, v1, v2 be vectors of V . If v1 ∈ W1

and v2 ∈W2 and v = v1 + v2, then v〈〈W1,W2〉〉
= 〈〈v1, v2〉〉.

(7) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V be

a vector space over K, and W1, W2 be subspaces of V . Suppose V is the

direct sum of W1 and W2. Let v, v1, v2 be vectors of V . If v〈〈W1,W2〉〉
= 〈〈v1,

v2〉〉, then v = v1 + v2.

(8) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V be

a vector space over K, and W1, W2 be subspaces of V . Suppose V is the

direct sum of W1 and W2. Let v, v1, v2 be vectors of V . If v〈〈W1,W2〉〉
= 〈〈v1,

v2〉〉, then v1 ∈W1 and v2 ∈W2.

(9) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V be

a vector space over K, and W1, W2 be subspaces of V . Suppose V is the

direct sum of W1 and W2. Let v, v1, v2 be vectors of V . If v〈〈W1,W2〉〉
= 〈〈v1,

v2〉〉, then v〈〈W2,W1〉〉
= 〈〈v2, v1〉〉.

(10) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, and W1, W2 be subspaces of V . Suppose V is

the direct sum of W1 and W2. Let v be a vector of V . If v ∈ W1, then

v〈〈W1,W2〉〉
= 〈〈v, 0V 〉〉.

(11) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, and W1, W2 be subspaces of V . Suppose V is

the direct sum of W1 and W2. Let v be a vector of V . If v ∈ W2, then

v〈〈W1,W2〉〉
= 〈〈0V , v〉〉.

(12) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, V1 be a subspace of V , W1 be a subspace of V1,

and v be a vector of V . If v ∈W1, then v is a vector of V1.

(13) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, V1, V2, W be subspaces of V , and W1, W2 be

subspaces of W . If W1 = V1 and W2 = V2, then W1 + W2 = V1 + V2.

(14) Let K be a field, V be a vector space over K,W be a subspace of V , v be

a vector of V , and w be a vector ofW . If v = w, then Lin({w}) = Lin({v}).
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(15) Let K be a field, V be a vector space over K, v be a vector of V , and X

be a subspace of V . Suppose v /∈ X. Let y be a vector of X +Lin({v}) and

W be a subspace of X +Lin({v}). If v = y andW = X, then X +Lin({v})

is the direct sum of W and Lin({y}).

(16) Let K be a field, V be a vector space over K, v be a vector of V , X be

a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of

X + Lin({v}). If v = y and X = W and v /∈ X, then y〈〈W,Lin({y})〉〉 = 〈〈0W ,

y〉〉.

(17) Let K be a field, V be a vector space over K, v be a vector of V , X be

a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of

X + Lin({v}). Suppose v = y and X = W and v /∈ X. Let w be a vector

of X + Lin({v}). If w ∈ X, then w〈〈W,Lin({y})〉〉 = 〈〈w, 0V 〉〉.

(18) Let K be an add-associative right zeroed right complementable associa-

tive Abelian left unital distributive non empty double loop structure, V

be a vector space over K, v be a vector of V , and W1, W2 be subspaces

of V . Then there exist vectors v1, v2 of V such that v〈〈W1,W2〉〉
= 〈〈v1, v2〉〉.

(19) Let K be a field, V be a vector space over K, v be a vector of V , X be

a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of

X + Lin({v}). Suppose v = y and X = W and v /∈ X. Let w be a vector

of X + Lin({v}). Then there exists a vector x of X and there exists an

element r of the carrier of K such that w〈〈W,Lin({y})〉〉 = 〈〈x, r · v〉〉.

(20) Let K be a field, V be a vector space over K, v be a vector of V , X be

a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of

X+Lin({v}). Suppose v = y andX = W and v /∈ X. Let w1, w2 be vectors

ofX+Lin({v}), x1, x2 be vectors ofX, and r1, r2 be elements of the carrier

of K. If (w1)〈〈W,Lin({y})〉〉 = 〈〈x1, r1 · v〉〉 and (w2)〈〈W,Lin({y})〉〉 = 〈〈x2, r2 · v〉〉,

then (w1 + w2)〈〈W,Lin({y})〉〉 = 〈〈x1 + x2, (r1 + r2) · v〉〉.

(21) Let K be a field, V be a vector space over K, v be a vector of V , X be

a subspace of V , y be a vector of X + Lin({v}), and W be a subspace of

X + Lin({v}). Suppose v = y and X = W and v /∈ X. Let w be a vector

of X +Lin({v}), x be a vector of X, and t, r be elements of the carrier of

K. If w〈〈W,Lin({y})〉〉 = 〈〈x, r · v〉〉, then (t · w)〈〈W,Lin({y})〉〉 = 〈〈t · x, t · r · v〉〉.

2. Quotient Vector Space for Non-Commutative Double Loop

Let K be an add-associative right zeroed right complementable Abelian as-

sociative left unital distributive non empty double loop structure, let V be a

vector space over K, and letW be a subspace of V . The functor CosetSet(V,W )

yielding a non empty family of subsets of the carrier of V is defined as follows:
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(Def. 2) CosetSet(V, W ) = {A : A ranges over cosets of W}.

LetK be an add-associative right zeroed right complementable Abelian asso-

ciative left unital distributive non empty double loop structure, let V be a vector

space over K, and letW be a subspace of V . The functor addCoset(V, W ) yields

a binary operation on CosetSet(V, W ) and is defined by:

(Def. 3) For all elements A, B of CosetSet(V,W ) and for all vectors a, b of V such

that A = a+W and B = b+W holds (addCoset(V, W ))(A, B) = a+b+W.

Let K be an add-associative right zeroed right complementable Abelian as-

sociative left unital distributive non empty double loop structure, let V be a

vector space overK, and letW be a subspace of V . The functor zeroCoset(V, W )

yielding an element of CosetSet(V, W ) is defined as follows:

(Def. 4) zeroCoset(V, W ) = the carrier of W .

Let K be an add-associative right zeroed right complementable Abelian as-

sociative left unital distributive non empty double loop structure, let V be a vec-

tor space over K, and let W be a subspace of V . The functor lmultCoset(V, W )

yields a function from [: the carrier of K, CosetSet(V, W ) :] into CosetSet(V, W )

and is defined by the condition (Def. 5).

(Def. 5) Let z be an element of the carrier of K, A be an element of

CosetSet(V,W ), and a be a vector of V . If A = a + W, then

(lmultCoset(V, W ))(z, A) = z · a + W.

Let K be an add-associative right zeroed right complementable Abelian as-

sociative left unital distributive non empty double loop structure, let V be a

vector space over K, and let W be a subspace of V . The functor V /W yiel-

ding a strict Abelian add-associative right zeroed right complementable vector

space-like non empty vector space structure over K is defined by the conditions

(Def. 6).

(Def. 6)(i) The carrier of V /W = CosetSet(V,W ),

(ii) the addition of V /W = addCoset(V, W ),

(iii) the zero of V /W = zeroCoset(V, W ), and

(iv) the left multiplication of V /W = lmultCoset(V, W ).

The following propositions are true:

(22) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V be a

vector space over K, and W be a subspace of V . Then zeroCoset(V, W ) =

0V + W and 0V /W
= zeroCoset(V, W ).

(23) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V

be a vector space over K, W be a subspace of V , and w be a vector of
V /W . Then w is a coset of W and there exists a vector v of V such that

w = v + W.
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(24) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V be

a vector space over K, W be a subspace of V , and v be a vector of V .

Then v + W is a coset of W and v + W is a vector of V /W .

(25) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V be

a vector space over K, and W be a subspace of V . Then every coset of W

is a vector of V /W .

(26) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V be

a vector space over K, W be a subspace of V , A be a vector of V /W , v be

a vector of V , and a be a scalar of V . If A = v +W, then a ·A = a · v +W.

(27) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V be

a vector space over K, W be a subspace of V , A1, A2 be vectors of
V /W ,

and v1, v2 be vectors of V . If A1 = v1 + W and A2 = v2 + W, then

A1 + A2 = v1 + v2 + W.

3. Auxiliary Facts about Functionals

Next we state the proposition

(28) Let K be a field, V be a vector space over K, X be a subspace of V ,

f1 be a linear functional in X, v be a vector of V , and y be a vector of

X +Lin({v}). Suppose v = y and v /∈ X. Let r be an element of the carrier

of K. Then there exists a linear functional p1 in X + Lin({v}) such that

p1↾the carrier of X = f1 and p1(y) = r.

Let K be a right zeroed non empty loop structure and let V be a non empty

vector space structure over K. One can verify that there exists a functional in

V which is additive and 0-preserving.

Let K be an add-associative right zeroed right complementable non empty

double loop structure and let V be a right zeroed non empty vector space struc-

ture over K. Observe that every functional in V which is additive is also 0-

preserving.

Let K be an add-associative right zeroed right complementable associative

left unital distributive non empty double loop structure and let V be an add-

associative right zeroed right complementable vector space-like non empty vector

space structure over K. One can verify that every functional in V which is

homogeneous is also 0-preserving.

Let K be a non empty zero structure and let V be a non empty vector space

structure over K. One can check that 0FunctionalV is constant.
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Let K be a non empty zero structure and let V be a non empty vector space

structure over K. Note that there exists a functional in V which is constant.

Let K be an add-associative right zeroed right complementable non empty

double loop structure, let V be a right zeroed non empty vector space structure

over K, and let f be a 0-preserving functional in V . Let us observe that f is

constant if and only if:

(Def. 7) f = 0FunctionalV.

Let K be an add-associative right zeroed right complementable non empty

double loop structure and let V be a right zeroed non empty vector space struc-

ture over K. Note that there exists a functional in V which is constant, additive,

and 0-preserving.

Let K be a non empty 1-sorted structure and let V be a non empty vector

space structure over K. One can check that every functional in V which is non

constant is also non trivial.

Let K be a field and let V be a non trivial vector space over K. Observe that

there exists a functional in V which is additive, homogeneous, non constant, and

non trivial.

Let K be a field and let V be a non trivial vector space over K. One can

check that every functional in V which is trivial is also constant.

Let K be a field, let V be a non trivial vector space over K, let v be a

vector of V , and let W be a linear complement of Lin({v}). Let us assume that

v 6= 0V . The functor coeffFunctional(v, W ) yielding a non constant non trivial

linear functional in V is defined as follows:

(Def. 8) (coeffFunctional(v, W ))(v) = 1K and coeffFunctional(v, W )↾the carrier

of W = 0FunctionalW.

We now state several propositions:

(29) Let K be a field, V be a non trivial vector space over K, and f be a non

constant 0-preserving functional in V . Then there exists a vector v of V

such that v 6= 0V and f(v) 6= 0K .

(30) Let K be a field, V be a non trivial vector space over K, v be a vector

of V , a be a scalar of V , and W be a linear complement of Lin({v}). If

v 6= 0V , then (coeffFunctional(v, W ))(a · v) = a.

(31) Let K be a field, V be a non trivial vector space over K, v, w be vectors

of V , and W be a linear complement of Lin({v}). If v 6= 0V and w ∈ W,

then (coeffFunctional(v,W ))(w) = 0K .

(32) Let K be a field, V be a non trivial vector space over K, v, w be vectors

of V , a be a scalar of V , and W be a linear complement of Lin({v}). If

v 6= 0V and w ∈W, then (coeffFunctional(v, W ))(a · v + w) = a.

(33) Let K be a non empty loop structure, V be a non empty vector space

structure over K, f , g be functionals in V , and v be a vector of V . Then
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(f − g)(v) = f(v)− g(v).

Let K be a field and let V be a non trivial vector space over K. Note that

V is non trivial.

4. Kernel of Additive Functional. Linear Functionals in Quotient

Vector Spaces

Let K be a non empty zero structure, let V be a non empty vector space

structure over K, and let f be a functional in V . The functor ker f yields a

subset of the carrier of V and is defined by:

(Def. 9) ker f = {v; v ranges over vectors of V : f(v) = 0K}.

Let K be a right zeroed non empty loop structure, let V be a non empty

vector space structure over K, and let f be a 0-preserving functional in V . One

can check that ker f is non empty.

One can prove the following proposition

(34) Let K be an add-associative right zeroed right complementable asso-

ciative left unital distributive non empty double loop structure, V be an

add-associative right zeroed right complementable vector space-like non

empty vector space structure over K, and f be a linear functional in V .

Then ker f is linearly closed.

Let K be a non empty zero structure, let V be a non empty vector space

structure over K, and let f be a functional in V . We say that f is degenerated

if and only if:

(Def. 10) ker f 6= {0V }.

Let K be a non degenerated non empty double loop structure and let V be a

non trivial non empty vector space structure over K. One can check that every

functional in V which is non degenerated and 0-preserving is also non constant.

Let K be an add-associative right zeroed right complementable Abelian as-

sociative left unital distributive non empty double loop structure, let V be a

vector space over K, and let f be a linear functional in V . The functor Ker f

yields a strict non empty subspace of V and is defined as follows:

(Def. 11) The carrier of Ker f = ker f.

Let K be an add-associative right zeroed right complementable Abelian as-

sociative left unital distributive non empty double loop structure, let V be a

vector space over K, letW be a subspace of V , and let f be an additive functio-

nal in V . Let us assume that the carrier ofW ⊆ ker f. The functor f/W yielding

an additive functional in V /W is defined by:

(Def. 12) For every vector A of V /W and for every vector v of V such that A =

v + W holds (f/W )(A) = f(v).

One can prove the following proposition
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(35) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V be

a vector space over K, W be a subspace of V , and f be a linear functional

in V . If the carrier of W ⊆ ker f, then f/W is homogeneous.

LetK be an add-associative right zeroed right complementable Abelian asso-

ciative left unital distributive non empty double loop structure, let V be a vector

space over K, and let f be a linear functional in V . The functor CQFunctional f

yielding a linear functional in V /Ker f is defined as follows:

(Def. 13) CQFunctional f = f/Ker f .

One can prove the following proposition

(36) Let K be an add-associative right zeroed right complementable Abelian

associative left unital distributive non empty double loop structure, V be a

vector space overK, f be a linear functional in V , A be a vector of V /Ker f ,

and v be a vector of V . If A = v +Ker f, then CQFunctional f(A) = f(v).

Let K be a field, let V be a non trivial vector space over K, and let f

be a non constant linear functional in V . Observe that CQFunctional f is non

constant.

Let K be an add-associative right zeroed right complementable Abelian as-

sociative left unital distributive non empty double loop structure, let V be a

vector space over K, and let f be a linear functional in V . One can verify that

CQFunctional f is non degenerated.
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