FORMALIZED MATHEMATICS

Volume 11, Number 3, 2003
University of Bialystok

Angle and Triangle in Euclidean Topological
Space

Akihiro Kubo Yatsuka Nakamura
Shinshu University Shinshu University
Nagano Nagano

Summary. Two transformations between the complex space and 2-
dimensional Euclidean topological space are defined. By them, the concept of
argument is induced to 2-dimensional vectors using argument of complex num-
ber. Similarly, the concept of an angle is introduced using the angle of two com-
plex numbers. The concept of a triangle and related concepts are also defined in
n-dimensional Euclidean topological spaces.

MML Identifier: EUCLID_3.

The notation and terminology used in this paper have been introduced in the
following articles: [17], [19], [18], [20], [4], [12], [21], [5], [16], [11], [3], [13], [15],
8, 2], (6], [7), [1), [10], [9], and [14].

We follow the rules: z, z1, zo are elements of C, r, r1, ro, 1, x2 are real
numbers, and p, p1, p2, P3, ¢ are points of 5%.

Let z be an element of C. The functor cpx2euc(z) yielding a point of £2 is
defined by:

(Def. 1) cpx2euc(z) = [R(z), 3(z)].

Let p be a point of 5%. The functor euc2cpx(p) yields an element of C and

is defined as follows:

(Def. 2) euc2cpx(p) = p1 + pai.
One can prove the following propositions:

[

) euc2cpx(cpx2euc(z)) = z.
2)
3) For every p there exists z such that p = cpx2euc(z).
4)

cpx2euc(euc2cpx(p)) = p.

A~ I~ —~~

For every z there exists p such that z = euc2cpx(p).
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(5) For all z;1, zo such that cpx2euc(z1) = cpx2euc(zz) holds z1 = 29.
(6) For all py, pe such that euc2cpx(p;) = euc2cpx(p2) holds p; = po.
(7)  (cpx2euc(z))1 = R(z) and (cpx2euc(z))2 = J(2).
(8) R(euc2epx(p)) = p1 and J(euc2epx(p)) = pa.
(9) cpx2euc(zy + x2i) = [z1, x2).
10)  [R(z1 + 22), S(21 + 22)] = [R(21) + R(22), S(21) + S(22)].
11) cpx2euc(z1 + 22) = cpx2euc(z1) + cpx2euc(z2).
12)  (p1+p2)1 + (p1 +p2)2i = ((p1)1 + (P2)1) + ((p1)2 + (p2)2)i.
13) euc2cpx(p1 + p2) = euc2epx(p1) + euc2epx(p2).
14) [R(—2),3(=2)] = [~R(), ~S(2)].
15) cpx2euc(—z) = —cpx2euc(z).
(=p)1 + (=p)2i = —p1 + (—p2)i-
17)  euc2cpx(—p) = —euc2epx(p).

z1) — cpx2euc(z2).

p1) — euc2epx(p2).

cpx2euc(z) — z3) = cpx2euc
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euc2cpx(p; — p2) = euc2epx
(
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cpx2euc(Oc) = Ogz.
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GUCQCpX(Og%) =0c.

[N
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If euc2cpx(p) = Oc, then p = Og%.

\)
w

cpx2euc((r + 0i) - z) = r - cpx2euc(z).

(r40d) - (ri +rot) =r-ry + (r-ra)i.

euc2cpx(r - p) = (r + 07) - euc2epx(p).

| euc2epx(p)| = v/(p1)? + (p2)?.

For every finite sequence f of elements of R such that len f = 2 holds
[fl=V )2+ f(2)%
(28) For every finite sequence f of elements of R and for every point p of £2
such that len f = 2 and p = f holds |p| = | f].

(29) |cpx2euc(z)| = /R(2)2 + 3(2)2.
(30) |cpx2euc(z)| = |z|.
(31)  [euc2epx(p)| = |pl-

Let us consider p. The functor Arg p yields a real number and is defined as
follows:

(Def. 3) Argp = Argeuc2cpx(p).

We now state a number of propositions:
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(32) For every element z of C and for every p such that z = euc2cpx(p) or
p = cpx2euc(z) holds Arg z = Argp.
(33) For every p holds 0 < Argp and Argp < 2 - 7.
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(34) For all real numbers z1, x2 and for every p such that x; = |p| - cos Argp
and x9 = |p| - sin Arg p holds p = [z1, z2].
(35) Arg(()g%) =0.
(36) For every p such that p # 05% holds if Argp < m, then Arg(—p) =
Argp+ 7 and if Argp > m, then Arg(—p) = Argp — 7.
(37) For every p such that Argp = 0 holds p = [|p|,0] and pz = 0.
(38) For every p such that p # 05% holds Argp < 7 iff Arg(—p) > 7.
(39) For all py, pe such that p; # pa or p; — p2 # Ogz holds Arg(p1 —p2) <7
iff Arg(pe —p1) > 7.
(40) For every p holds Argp € |0, [ iff p2 > 0.
(41) For every p such that Argp # 0 holds Argp < 7 iff sin Argp > 0.
(42) For all py, pg such that Argp; < mand Argps < 7 holds Arg(p1+p2) < 7.
Let us consider p1, p2, p3. The functor £(p1,p2,ps3) yielding a real number
is defined as follows:
(Def. 4)  L(p1,p2,p3) = L(euc2epx(p1), euc2epx(p2), euc2epx(ps)).
The following propositions are true:
(43) For all p1, p2, p3 holds 0 < £L(p1,p2,p3) and £(p1,p2,p3) <2-T.
(44) For all p1, p, ps holds £(p1,p2,p3) = £(p1 — p2,0g2,p3 — P2).
(45) For all p1, p2, p3 such that £(p1,p2,p3) = 0 holds Arg(p1—p2) = Arg(ps—
p2) and £(p3,p2,p1) = 0.
(46) For all p1, pa, p3 such that £(p1,p2,p3) # 0 holds L(ps3,p2,p1) =27 —
£(p1,p2,p3)-
(47) For all p1, pa, p3 such that £(p3,p2,p1) # 0 holds L(ps,p2,p1) =2 -7 —
£(p1,p2,p3)-
(48) For all elements z, y of C holds R((z|y)) = R(x) - R(y) + 3(x) - S(y).
(49) For all elements z, y of C holds S((z|y)) = —R(z) - S(y) + S(z) - R(y).
(50) For all p, g holds |(p,q)| = p1 - ¢1 + p2 - g2-
(51) For all py, pz holds |(p1, p2)| = R((euc2epx(p1)| euc2epx(pz))).
(52) For all py, pa, p3 such that p; # 05% and py # 05% holds |(p1,p2)| = 0 iff
£(p1,0g2,p2) = 5 or £(p1,0g2,p2) = 3 - .
(53) Let given p1, p2. Suppose p1 # Ogz and pa # Ogz. Then —(p1)1 - (p2)2 +

(p1)2- (p2)1 = Ip1| - Ip2| or —(p1)1 - (P2)2 + (P1)2- (P2)1 = —|p1| - |p2] if and
only if £(p1, 0gz,p2) = § or £(p1,0g3,p2) = 5 -

(54)  For all p1, pa, p3 such that py 7 pa and ps 7 p holds |(p1 —p2, p3 —p2)| =
0 iff £(p1,p2,p3) = 5 or £L(p1,p2,p3) = % .

(55) For all p1, p2, p3 such that p1 # py but p3 # py but L(p1,p2,p3) = 5 or
£(p1,p2,p3) = 5 - mholds |p1 — p2|? + [ps — p2|® = |p1 — p3|2.
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(56) For all py, p2, p3 such that py # p; and p; # ps and p3 # py and
£L(p2,p1,p3) < 7 and L(p1,p3,p2) < m and L(p3,p2,p1) < 7 holds
£(p2,p1,p3) + £(p1,P3,p2) + £L(P3,p2,p1) = T

Let n be a natural number and let p1, p2, p3 be points of £7. The functor
Triangle(p1, p2, p3) yields a subset of £ and is defined as follows:

(Def. 5) Triangle(p1, p2, p3) = L(p1,p2) U L(p2,p3) U L(p3, p1).

Let n be a natural number and let pi, p2, p3 be points of £}. The functor
ClInsideOfTriangle(p1, p2, p3) yields a subset of £} and is defined as follows:
(Def. 6) CllnsideOfTriangle(p1, p2,p3) = {p;p ranges over points of &f:
\/al’amas:real number (0 <apr N 0<ax N0<az AN ap+a+as =

L A p=ay-pi+ag-p2+az-p3)}

Let n be a natural number and let pi, p2, p3 be points of £F. The functor
InsideOfTriangle(p1, p2, p3) yielding a subset of £F is defined by:

(Def. 7) InsideOfTriangle(p1, p2, ps) = CllnsideOfTriangle(pi, p2, p3)\ Triangle(py,
P2,D3)-

Let n be a natural number and let pi, p2, p3 be points of £F. The functor
OutsideOfTriangle(p1, p2, p3) yielding a subset of £F is defined by the condition
(Def. 8).

(Def. 8) OutsideOfTriangle(pi, p2,p3) = {p;p ranges over points of &
\/CLWMS:reaLl mumber (0> a1 V 0 >a V 0>a3) A a1 +ax+az =
L A p=ay-p1+az-p2+as-p3)}

Let n be a natural number and let pi, p2, p3 be points of £7. The functor
plane(p1, p2, p3) yielding a subset of £ is defined as follows:

(Def. 9) plane(py, p2, p3) = OutsideOfTriangle(p;, p2, p3) UClInsideOfTriangle(p;,
P2, D3)-

One can prove the following propositions:

(57) Let n be a natural number and p1, p2, p3, p be points of EL. Suppose
p € plane(p1, p2,p3). Then there exist real numbers a1, as, as such that
a1 +az+az=1and p=ay-p1+az-p2+as-p;s.

(58) For every natural number n and for all points pi1, p2, p3 of £ holds
Triangle(p1, p2, p3) € CllnsideOfTriangle(p1, p2, p3).

Let n be a natural number and let g, g2 be points of £F. We say that g1, g2
are lindependent2 if and only if:

(Def. 10) For all real numbers aq, as such that a; - ¢1 +ag - g2 = Ogn holds a; =0
and a9 = 0.
We introduce q1, ¢2 are ldependent2 as an antonym of ¢;, ¢o are lindependent?2.

One can prove the following propositions:

(59) Let n be a natural number and ¢, g2 be points of EL. If ¢, g2 are
lindependent2, then ¢1 # g2 and g1 # Ogn and g2 # Ogn.
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(60) Let n be a natural number and p1, p2, p3, po be points of E}. Suppose
p2 — p1, p3 — p1 are lindependent2 and py € plane(p1, p2, p3). Then there
exist real numbers aq, as, asz such that

(i) po=a1-p1+az-p2+az-ps,

(ii) a1+ as +a3z =1, and

(ili)  for all real numbers by, by, bs such that pg = by - p1 + b2 - p2 + b3 - p3 and
b1 + by + b3 = 1 holds b1 = a1 and by = as and bg = as.

(61) Let n be a natural number and p1, pa, p3, po be points of . Given real
numbers a1, as, as such that pg = a1-p1+as-pa+as-ps and a;+as+az = 1.
Then py € plane(pi, p2, p3).

(62) Let n be a natural number and pi, p2, ps be points of £} Then
plane(p1, p2, p3) = {p; p ranges over points of EF: V| 1 . el number (@1+
ag+a3=1 AN p=ay-p1+az-p2+az-p3)}

(63) For all py, pa, ps such that py — p1, p3 — p1 are lindependent2 holds
plane(py, pa2, p3) = R2.

Let n be a natural number and let p1, p2, p3, p be points of £F. Let us assume
that py — p1, ps — p1 are lindependent2 and p € plane(pi, p2, p3). The functor
tricord1(p1, p2, p3, p) yields a real number and is defined as follows:

(Def. 11) There exist real numbers ag, ag such that tricord1(p1, p2, ps, p)+az+as =
1 and p = tricord1(p1, p2, p3, p) - p1 + a2 - p2 + az - ps.

Let n be a natural number and let p1, p2, p3, p be points of £F. Let us assume
that pa — p1, ps — p1 are lindependent2 and p € plane(p;, p2, p3). The functor
tricord2(p1, p2, p3, p) yielding a real number is defined as follows:

(Def. 12) There exist real numbers a1, ag such that a; +tricord2(py, p2, ps, p)+as =
1 and p = ay - p1 + tricord2(p1, p2, p3, p) - p2 + as - ps.

Let n be a natural number and let p1, p2, p3, p be points of . Let us assume
that pa — p1, ps — p1 are lindependent2 and p € plane(pi, p2, p3). The functor
tricord2(p1, p2, p3, p) yielding a real number is defined as follows:

(Def. 13) There exist real numbers a1, ag such that aj +ag+tricord2(p1, p2, p3,p) =
L and p = ay - p1 + ag - p2 + tricord2(p1, p2, p3, p) - P3-

Let us consider py, p2, p3. The functor trcmapl(pi, p2, ps) yielding a map
from 5% into R is defined as follows:

(Def. 14) For every p holds (trcmapl(pi, p2,p3))(p) = tricord1(p1, p2, p3, D).

Let us consider p1, p2, ps. The functor tremap2(py, p2, p3) yields a map from
5% into R! and is defined as follows:

(Def. 15) For every p holds (trcmap2(p1, p2,p3))(p) = tricord2(p1, p2, p3, D).

Let us consider pi, p2, p3. The functor trcmap3(pi, p2,p3) yielding a map
from 5% into R is defined by:

(Def. 16) For every p holds (trcmap3(p1, p2, p3))(p) = tricord2(p1, p2, p3, p)-
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Next we state several propositions:

(64) Let given p1, p2, p3, p. Suppose p2 — p1, p3 — p1 are lindependent?2.
Then p € OutsideOfTriangle(p1, p2, p3) if and only if one of the following
conditions is satisfied:

(i)  tricord1(p1, p2,ps3,p) < 0, or
(ii)  tricord2(p1,p2,ps3,p) < 0, or
(iii)  tricord2(py, p2,ps3,p) < 0.

(65) Let given p1, p2, p3, p. Suppose pa — p1, ps — p1 are lindependent2. Then

p € Triangle(p1, p2, p3) if and only if the following conditions are satisfied:

(i)  tricord1(p1, p2,ps3,p) =

(i1)  tricord2(p1, p2,ps3,p) =

(iii)  tricord2(py, p2,ps3,p) = (), and

(iv) tricord1(p1, p2,p3,p) = 0 or tricord2(pi,p2,p3,p) = 0 or

tI‘iCOI‘d2(p]_ , P2, D3, p) = 0.
(66) Let given p1, p2, p3, p. Suppose pa — p1, ps — p1 are lindependent2. Then
p € Triangle(py, p2, p3) if and only if one of the following conditions is

satisfied:

(i) tricord1(p1,p2,p3,p) = 0 and tricord2(p1,p2,p3,p) = 0 and
tricord2(p1, p2, p3,p) = 0, or

(ii) tricord1(p1,p2,p3,p) = 0 and tricord2(p1,pe,ps,p) = 0 and

tricord2(p1, p2,ps3,p) = 0, or
(iii) tricord1(p1,p2,p3,p) = 0 and tricord2(p1,p2,p3,p) = 0 and
tricord2(p1, p2, p3,p) = 0.

(67) Let given p1, p2, p3, p.- Suppose pa — p1, ps — p1 are lindependent2. Then
p € InsideOfTriangle(pi, p2, p3) if and only if the following conditions are
satisfied:

(i)  tricord1(p1, p2,ps3,p) > 0,
(ii)  tricord2(py, p2,ps3,p) > 0, and
(iii)  tricord2(p1, p2,p3,p) > 0.

(68) For all pi, po, ps such that ps — p1, ps — p1 are lindependent2 holds
InsideOfTriangle(p1, p2, p3) is non empty.
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