Angle and Triangle in Euclidean Topological Space

Akihiro Kubo Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. Two transformations between the complex space and 2-dimensional Euclidean topological space are defined. By them, the concept of argument is induced to 2-dimensional vectors using argument of complex number. Similarly, the concept of an angle is introduced using the angle of two complex numbers. The concept of a triangle and related concepts are also defined in *n*-dimensional Euclidean topological spaces.

MML Identifier: EUCLID_3.

The notation and terminology used in this paper have been introduced in the following articles: [17], [19], [18], [20], [4], [12], [21], [5], [16], [11], [3], [13], [15], [8], [2], [6], [7], [1], [10], [9], and [14].

We follow the rules: z, z_1 , z_2 are elements of \mathbb{C} , r, r_1 , r_2 , x_1 , x_2 are real numbers, and p, p_1 , p_2 , p_3 , q are points of $\mathcal{E}^2_{\mathrm{T}}$.

Let z be an element of \mathbb{C} . The functor $\operatorname{cpx2euc}(z)$ yielding a point of $\mathcal{E}_{\mathbb{T}}^2$ is defined by:

(Def. 1) $\operatorname{cpx2euc}(z) = [\Re(z), \Im(z)].$

Let p be a point of $\mathcal{E}^2_{\mathbb{T}}$. The functor $\mathrm{euc2cpx}(p)$ yields an element of \mathbb{C} and is defined as follows:

(Def. 2) $\operatorname{euc2cpx}(p) = p_1 + p_2 i$.

One can prove the following propositions:

- (1) $\operatorname{euc2cpx}(\operatorname{cpx2euc}(z)) = z$.
- (2) $\operatorname{cpx2euc}(\operatorname{euc2cpx}(p)) = p.$
- (3) For every p there exists z such that $p = \exp 2\operatorname{euc}(z)$.
- (4) For every z there exists p such that z = euc2cpx(p).

- (5) For all z_1 , z_2 such that $\operatorname{cpx2euc}(z_1) = \operatorname{cpx2euc}(z_2)$ holds $z_1 = z_2$.
- (6) For all p_1 , p_2 such that $euc2cpx(p_1) = euc2cpx(p_2)$ holds $p_1 = p_2$.
- (7) $(\operatorname{cpx2euc}(z))_1 = \Re(z)$ and $(\operatorname{cpx2euc}(z))_2 = \Im(z)$.
- (8) $\Re(\text{euc2cpx}(p)) = p_1$ and $\Im(\text{euc2cpx}(p)) = p_2$.
- (9) $\operatorname{cpx2euc}(x_1 + x_2 i) = [x_1, x_2].$
- $(10) \quad [\Re(z_1+z_2),\Im(z_1+z_2)] = [\Re(z_1) + \Re(z_2),\Im(z_1) + \Im(z_2)].$
- (11) $\operatorname{cpx2euc}(z_1 + z_2) = \operatorname{cpx2euc}(z_1) + \operatorname{cpx2euc}(z_2)$.
- $(12) \quad (p_1+p_2)_1 + (p_1+p_2)_2 i = ((p_1)_1 + (p_2)_1) + ((p_1)_2 + (p_2)_2)i.$
- (13) $\operatorname{euc2cpx}(p_1 + p_2) = \operatorname{euc2cpx}(p_1) + \operatorname{euc2cpx}(p_2).$
- (14) $[\Re(-z), \Im(-z)] = [-\Re(z), -\Im(z)].$
- (15) $\operatorname{cpx2euc}(-z) = -\operatorname{cpx2euc}(z)$.
- (16) $(-p)_1 + (-p)_2 i = -p_1 + (-p_2)i$.
- (17) $\operatorname{euc2cpx}(-p) = -\operatorname{euc2cpx}(p)$.
- (18) $\operatorname{cpx2euc}(z_1 z_2) = \operatorname{cpx2euc}(z_1) \operatorname{cpx2euc}(z_2).$
- (19) $\operatorname{euc2cpx}(p_1 p_2) = \operatorname{euc2cpx}(p_1) \operatorname{euc2cpx}(p_2).$
- (20) $\operatorname{cpx2euc}(0_{\mathbb{C}}) = 0_{\mathcal{E}_{\mathbb{T}}^2}.$
- (21) $\operatorname{euc2cpx}(0_{\mathcal{E}^2_{\mathbb{T}}}) = 0_{\mathbb{C}}.$
- (22) If $\operatorname{euc2cpx}(p) = 0_{\mathbb{C}}$, then $p = 0_{\mathcal{E}_{x}^{2}}$.
- (23) $\operatorname{cpx2euc}((r+0i) \cdot z) = r \cdot \operatorname{cpx2euc}(z)$.
- (24) $(r+0i) \cdot (r_1+r_2i) = r \cdot r_1 + (r \cdot r_2)i$.
- (25) $\operatorname{euc2cpx}(r \cdot p) = (r + 0i) \cdot \operatorname{euc2cpx}(p)$.
- (26) $|\operatorname{euc2cpx}(p)| = \sqrt{(p_1)^2 + (p_2)^2}.$
- (27) For every finite sequence f of elements of \mathbb{R} such that len f=2 holds $|f|=\sqrt{f(1)^2+f(2)^2}$.
- (28) For every finite sequence f of elements of \mathbb{R} and for every point p of $\mathcal{E}_{\mathrm{T}}^2$ such that len f=2 and p=f holds |p|=|f|.
- (29) $|\operatorname{cpx2euc}(z)| = \sqrt{\Re(z)^2 + \Im(z)^2}.$
- (30) $|\exp 2\operatorname{euc}(z)| = |z|$.
- (31) $|\operatorname{euc2cpx}(p)| = |p|$.

Let us consider p. The functor $\operatorname{Arg} p$ yields a real number and is defined as follows:

(Def. 3) $\operatorname{Arg} p = \operatorname{Arg} \operatorname{euc2cpx}(p)$.

We now state a number of propositions:

- (32) For every element z of \mathbb{C} and for every p such that z = euc2cpx(p) or p = cpx2euc(z) holds Arg z = Arg p.
- (33) For every p holds $0 \leq \operatorname{Arg} p$ and $\operatorname{Arg} p < 2 \cdot \pi$.

- (34) For all real numbers x_1 , x_2 and for every p such that $x_1 = |p| \cdot \cos \operatorname{Arg} p$ and $x_2 = |p| \cdot \sin \operatorname{Arg} p$ holds $p = [x_1, x_2]$.
- (35) $\operatorname{Arg}(0_{\mathcal{E}_{\pi}^2}) = 0.$
- (36) For every p such that $p \neq 0_{\mathcal{E}_{\mathbf{T}}^2}$ holds if $\operatorname{Arg} p < \pi$, then $\operatorname{Arg}(-p) = \operatorname{Arg} p + \pi$ and if $\operatorname{Arg} p \geqslant \pi$, then $\operatorname{Arg}(-p) = \operatorname{Arg} p \pi$.
- (37) For every p such that $\operatorname{Arg} p = 0$ holds p = [|p|, 0] and $p_2 = 0$.
- (38) For every p such that $p \neq 0_{\mathcal{E}^2_T}$ holds $\operatorname{Arg} p < \pi$ iff $\operatorname{Arg}(-p) \geqslant \pi$.
- (39) For all p_1, p_2 such that $p_1 \neq p_2$ or $p_1 p_2 \neq 0_{\mathcal{E}^2_T}$ holds $Arg(p_1 p_2) < \pi$ iff $Arg(p_2 p_1) \geqslant \pi$.
- (40) For every p holds $\operatorname{Arg} p \in [0, \pi[\text{ iff } p_2 > 0.$
- (41) For every p such that $\operatorname{Arg} p \neq 0$ holds $\operatorname{Arg} p < \pi$ iff $\sin \operatorname{Arg} p > 0$.
- (42) For all p_1 , p_2 such that $\operatorname{Arg} p_1 < \pi$ and $\operatorname{Arg} p_2 < \pi$ holds $\operatorname{Arg}(p_1 + p_2) < \pi$. Let us consider p_1 , p_2 , p_3 . The functor $\angle(p_1, p_2, p_3)$ yielding a real number is defined as follows:
- (Def. 4) $\angle(p_1, p_2, p_3) = \angle(\text{euc2cpx}(p_1), \text{euc2cpx}(p_2), \text{euc2cpx}(p_3)).$

The following propositions are true:

- (43) For all p_1, p_2, p_3 holds $0 \le \angle(p_1, p_2, p_3)$ and $\angle(p_1, p_2, p_3) < 2 \cdot \pi$.
- (44) For all p_1, p_2, p_3 holds $\angle(p_1, p_2, p_3) = \angle(p_1 p_2, 0_{\mathcal{E}^2_{T}}, p_3 p_2)$.
- (45) For all p_1, p_2, p_3 such that $\angle(p_1, p_2, p_3) = 0$ holds $\operatorname{Arg}(p_1 p_2) = \operatorname{Arg}(p_3 p_2)$ and $\angle(p_3, p_2, p_1) = 0$.
- (46) For all p_1, p_2, p_3 such that $\angle(p_1, p_2, p_3) \neq 0$ holds $\angle(p_3, p_2, p_1) = 2 \cdot \pi \angle(p_1, p_2, p_3)$.
- (47) For all p_1 , p_2 , p_3 such that $\angle(p_3, p_2, p_1) \neq 0$ holds $\angle(p_3, p_2, p_1) = 2 \cdot \pi \angle(p_1, p_2, p_3)$.
- (48) For all elements x, y of \mathbb{C} holds $\Re((x|y)) = \Re(x) \cdot \Re(y) + \Im(x) \cdot \Im(y)$.
- (49) For all elements x, y of \mathbb{C} holds $\Im((x|y)) = -\Re(x) \cdot \Im(y) + \Im(x) \cdot \Re(y)$.
- (50) For all p, q holds $|(p,q)| = p_1 \cdot q_1 + p_2 \cdot q_2$.
- (51) For all p_1 , p_2 holds $|(p_1, p_2)| = \Re((\operatorname{euc2cpx}(p_1)| \operatorname{euc2cpx}(p_2)))$.
- (52) For all p_1, p_2, p_3 such that $p_1 \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$ and $p_2 \neq 0_{\mathcal{E}_{\mathrm{T}}^2}$ holds $|(p_1, p_2)| = 0$ iff $\angle (p_1, 0_{\mathcal{E}_{\mathrm{T}}^2}, p_2) = \frac{\pi}{2}$ or $\angle (p_1, 0_{\mathcal{E}_{\mathrm{T}}^2}, p_2) = \frac{3}{2} \cdot \pi$.
- (53) Let given p_1, p_2 . Suppose $p_1 \neq 0_{\mathcal{E}_{\mathbb{T}}^2}$ and $p_2 \neq 0_{\mathcal{E}_{\mathbb{T}}^2}$. Then $-(p_1)_{\mathbf{1}} \cdot (p_2)_{\mathbf{2}} + (p_1)_{\mathbf{2}} \cdot (p_2)_{\mathbf{1}} = |p_1| \cdot |p_2| \text{ or } -(p_1)_{\mathbf{1}} \cdot (p_2)_{\mathbf{2}} + (p_1)_{\mathbf{2}} \cdot (p_2)_{\mathbf{1}} = -|p_1| \cdot |p_2| \text{ if and only if } \angle(p_1, 0_{\mathcal{E}_{\mathbb{T}}^2}, p_2) = \frac{\pi}{2} \text{ or } \angle(p_1, 0_{\mathcal{E}_{\mathbb{T}}^2}, p_2) = \frac{3}{2} \cdot \pi.$
- (54) For all p_1, p_2, p_3 such that $p_1 \neq p_2$ and $p_3 \neq p_2$ holds $|(p_1 p_2, p_3 p_2)| = 0$ iff $\angle(p_1, p_2, p_3) = \frac{\pi}{2}$ or $\angle(p_1, p_2, p_3) = \frac{3}{2} \cdot \pi$.
- (55) For all p_1 , p_2 , p_3 such that $p_1 \neq p_2$ but $p_3 \neq p_2$ but $\angle (p_1, p_2, p_3) = \frac{\pi}{2}$ or $\angle (p_1, p_2, p_3) = \frac{3}{2} \cdot \pi$ holds $|p_1 p_2|^2 + |p_3 p_2|^2 = |p_1 p_3|^2$.

(56) For all p_1 , p_2 , p_3 such that $p_2 \neq p_1$ and $p_1 \neq p_3$ and $p_3 \neq p_2$ and $\angle(p_2, p_1, p_3) < \pi$ and $\angle(p_1, p_3, p_2) < \pi$ and $\angle(p_3, p_2, p_1) < \pi$ holds $\angle(p_2, p_1, p_3) + \angle(p_1, p_3, p_2) + \angle(p_3, p_2, p_1) = \pi$.

Let n be a natural number and let p_1 , p_2 , p_3 be points of \mathcal{E}_T^n . The functor Triangle (p_1, p_2, p_3) yields a subset of \mathcal{E}_T^n and is defined as follows:

(Def. 5) Triangle $(p_1, p_2, p_3) = \mathcal{L}(p_1, p_2) \cup \mathcal{L}(p_2, p_3) \cup \mathcal{L}(p_3, p_1)$.

Let n be a natural number and let p_1 , p_2 , p_3 be points of $\mathcal{E}_{\mathrm{T}}^n$. The functor ClInsideOfTriangle (p_1, p_2, p_3) yields a subset of $\mathcal{E}_{\mathrm{T}}^n$ and is defined as follows:

(Def. 6) ClInsideOfTriangle $(p_1, p_2, p_3) = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^n: \bigvee_{a_1, a_2, a_3 : \mathrm{real\ number}} (0 \leqslant a_1 \land 0 \leqslant a_2 \land 0 \leqslant a_3 \land a_1 + a_2 + a_3 = 1 \land p = a_1 \cdot p_1 + a_2 \cdot p_2 + a_3 \cdot p_3)\}.$

Let n be a natural number and let p_1 , p_2 , p_3 be points of $\mathcal{E}_{\mathrm{T}}^n$. The functor InsideOfTriangle (p_1, p_2, p_3) yielding a subset of $\mathcal{E}_{\mathrm{T}}^n$ is defined by:

(Def. 7) InsideOfTriangle (p_1, p_2, p_3) = ClInsideOfTriangle (p_1, p_2, p_3) \Triangle (p_1, p_2, p_3) .

Let n be a natural number and let p_1 , p_2 , p_3 be points of \mathcal{E}_T^n . The functor OutsideOfTriangle (p_1, p_2, p_3) yielding a subset of \mathcal{E}_T^n is defined by the condition (Def. 8).

(Def. 8) OutsideOfTriangle $(p_1, p_2, p_3) = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^n: \bigvee_{a_1, a_2, a_3 : \mathrm{real\ number}} ((0 > a_1 \lor 0 > a_2 \lor 0 > a_3) \land a_1 + a_2 + a_3 = 1 \land p = a_1 \cdot p_1 + a_2 \cdot p_2 + a_3 \cdot p_3)\}.$

Let n be a natural number and let p_1 , p_2 , p_3 be points of $\mathcal{E}_{\mathrm{T}}^n$. The functor plane (p_1, p_2, p_3) yielding a subset of $\mathcal{E}_{\mathrm{T}}^n$ is defined as follows:

(Def. 9) plane (p_1, p_2, p_3) = OutsideOfTriangle (p_1, p_2, p_3) \cup ClInsideOfTriangle (p_1, p_2, p_3) .

One can prove the following propositions:

- (57) Let n be a natural number and p_1 , p_2 , p_3 , p be points of \mathcal{E}_T^n . Suppose $p \in \text{plane}(p_1, p_2, p_3)$. Then there exist real numbers a_1 , a_2 , a_3 such that $a_1 + a_2 + a_3 = 1$ and $p = a_1 \cdot p_1 + a_2 \cdot p_2 + a_3 \cdot p_3$.
- (58) For every natural number n and for all points p_1 , p_2 , p_3 of \mathcal{E}_T^n holds $\text{Triangle}(p_1, p_2, p_3) \subseteq \text{ClInsideOfTriangle}(p_1, p_2, p_3)$.

Let n be a natural number and let q_1 , q_2 be points of \mathcal{E}_T^n . We say that q_1 , q_2 are lindependent 2 if and only if:

(Def. 10) For all real numbers a_1 , a_2 such that $a_1 \cdot q_1 + a_2 \cdot q_2 = 0_{\mathcal{E}_T^n}$ holds $a_1 = 0$ and $a_2 = 0$.

We introduce q_1 , q_2 are ldependent2 as an antonym of q_1 , q_2 are lindependent2. One can prove the following propositions:

(59) Let n be a natural number and q_1 , q_2 be points of $\mathcal{E}_{\mathrm{T}}^n$. If q_1 , q_2 are lindependent2, then $q_1 \neq q_2$ and $q_1 \neq 0_{\mathcal{E}_{\mathrm{T}}^n}$ and $q_2 \neq 0_{\mathcal{E}_{\mathrm{T}}^n}$.

- (60) Let n be a natural number and p_1, p_2, p_3, p_0 be points of \mathcal{E}_T^n . Suppose $p_2 p_1, p_3 p_1$ are lindependent2 and $p_0 \in \text{plane}(p_1, p_2, p_3)$. Then there exist real numbers a_1, a_2, a_3 such that
 - (i) $p_0 = a_1 \cdot p_1 + a_2 \cdot p_2 + a_3 \cdot p_3$,
 - (ii) $a_1 + a_2 + a_3 = 1$, and
- (iii) for all real numbers b_1 , b_2 , b_3 such that $p_0 = b_1 \cdot p_1 + b_2 \cdot p_2 + b_3 \cdot p_3$ and $b_1 + b_2 + b_3 = 1$ holds $b_1 = a_1$ and $b_2 = a_2$ and $b_3 = a_3$.
- (61) Let n be a natural number and p_1 , p_2 , p_3 , p_0 be points of \mathcal{E}_T^n . Given real numbers a_1 , a_2 , a_3 such that $p_0 = a_1 \cdot p_1 + a_2 \cdot p_2 + a_3 \cdot p_3$ and $a_1 + a_2 + a_3 = 1$. Then $p_0 \in \text{plane}(p_1, p_2, p_3)$.
- (62) Let n be a natural number and p_1 , p_2 , p_3 be points of \mathcal{E}^n_T . Then plane $(p_1, p_2, p_3) = \{p; p \text{ ranges over points of } \mathcal{E}^n_T$: $\bigvee_{a_1, a_2, a_3 \text{ : real number }} (a_1 + a_2 + a_3 = 1 \land p = a_1 \cdot p_1 + a_2 \cdot p_2 + a_3 \cdot p_3)\}.$
- (63) For all p_1 , p_2 , p_3 such that $p_2 p_1$, $p_3 p_1$ are lindependent2 holds plane $(p_1, p_2, p_3) = \mathcal{R}^2$.

Let n be a natural number and let p_1, p_2, p_3, p be points of \mathcal{E}_T^n . Let us assume that $p_2 - p_1, p_3 - p_1$ are lindependent2 and $p \in \text{plane}(p_1, p_2, p_3)$. The functor tricord1 (p_1, p_2, p_3, p) yields a real number and is defined as follows:

(Def. 11) There exist real numbers a_2 , a_3 such that tricord1 $(p_1, p_2, p_3, p) + a_2 + a_3 = 1$ and $p = \text{tricord1}(p_1, p_2, p_3, p) \cdot p_1 + a_2 \cdot p_2 + a_3 \cdot p_3$.

Let n be a natural number and let p_1, p_2, p_3, p be points of \mathcal{E}_T^n . Let us assume that $p_2 - p_1, p_3 - p_1$ are lindependent 2 and $p \in \text{plane}(p_1, p_2, p_3)$. The functor tricord $2(p_1, p_2, p_3, p)$ yielding a real number is defined as follows:

(Def. 12) There exist real numbers a_1 , a_3 such that $a_1 + \text{tricord2}(p_1, p_2, p_3, p) + a_3 = 1$ and $p = a_1 \cdot p_1 + \text{tricord2}(p_1, p_2, p_3, p) \cdot p_2 + a_3 \cdot p_3$.

Let n be a natural number and let p_1, p_2, p_3, p be points of \mathcal{E}_T^n . Let us assume that $p_2 - p_1, p_3 - p_1$ are lindependent 2 and $p \in \text{plane}(p_1, p_2, p_3)$. The functor tricord $2(p_1, p_2, p_3, p)$ yielding a real number is defined as follows:

(Def. 13) There exist real numbers a_1 , a_2 such that $a_1 + a_2 + \text{tricord2}(p_1, p_2, p_3, p) = 1$ and $p = a_1 \cdot p_1 + a_2 \cdot p_2 + \text{tricord2}(p_1, p_2, p_3, p) \cdot p_3$.

Let us consider p_1 , p_2 , p_3 . The functor trcmap1 (p_1, p_2, p_3) yielding a map from \mathcal{E}^2_T into \mathbb{R}^1 is defined as follows:

- (Def. 14) For every p holds $(\operatorname{trcmap1}(p_1, p_2, p_3))(p) = \operatorname{tricord1}(p_1, p_2, p_3, p)$.
 - Let us consider p_1 , p_2 , p_3 . The functor trcmap2 (p_1, p_2, p_3) yields a map from \mathcal{E}^2_T into \mathbb{R}^1 and is defined as follows:
- (Def. 15) For every p holds $(\operatorname{trcmap2}(p_1, p_2, p_3))(p) = \operatorname{tricord2}(p_1, p_2, p_3, p)$.

Let us consider p_1 , p_2 , p_3 . The functor trcmap3 (p_1, p_2, p_3) yielding a map from \mathcal{E}^2_T into \mathbb{R}^1 is defined by:

(Def. 16) For every p holds $(\operatorname{trcmap3}(p_1, p_2, p_3))(p) = \operatorname{tricord2}(p_1, p_2, p_3, p)$.

Next we state several propositions:

- (64) Let given p_1 , p_2 , p_3 , p. Suppose $p_2 p_1$, $p_3 p_1$ are lindependent2. Then $p \in \text{OutsideOfTriangle}(p_1, p_2, p_3)$ if and only if one of the following conditions is satisfied:
 - (i) tricord1 $(p_1, p_2, p_3, p) < 0$, or
 - (ii) tricord2 $(p_1, p_2, p_3, p) < 0$, or
- (iii) tricord2 $(p_1, p_2, p_3, p) < 0$.
- (65) Let given p_1, p_2, p_3, p . Suppose $p_2 p_1, p_3 p_1$ are lindependent 2. Then $p \in \text{Triangle}(p_1, p_2, p_3)$ if and only if the following conditions are satisfied:
 - (i) tricord1 $(p_1, p_2, p_3, p) \ge 0$,
 - (ii) tricord2 $(p_1, p_2, p_3, p) \ge 0$,
- (iii) tricord2 $(p_1, p_2, p_3, p) \ge 0$, and
- (iv) $\operatorname{tricord}(p_1, p_2, p_3, p) = 0$ or $\operatorname{tricord}(p_1, p_2, p_3, p) = 0$ or $\operatorname{tricord}(p_1, p_2, p_3, p) = 0$.
- (66) Let given p_1, p_2, p_3, p . Suppose $p_2 p_1, p_3 p_1$ are lindependent 2. Then $p \in \text{Triangle}(p_1, p_2, p_3)$ if and only if one of the following conditions is satisfied:
 - (i) $\operatorname{tricord}(p_1, p_2, p_3, p) = 0$ and $\operatorname{tricord}(p_1, p_2, p_3, p) \ge 0$ and $\operatorname{tricord}(p_1, p_2, p_3, p) \ge 0$, or
 - (ii) tricord1 $(p_1, p_2, p_3, p) \ge 0$ and tricord2 $(p_1, p_2, p_3, p) = 0$ and tricord2 $(p_1, p_2, p_3, p) \ge 0$, or
- (iii) tricord1 $(p_1, p_2, p_3, p) \ge 0$ and tricord2 $(p_1, p_2, p_3, p) \ge 0$ and tricord2 $(p_1, p_2, p_3, p) = 0$.
- (67) Let given p_1, p_2, p_3, p . Suppose $p_2 p_1, p_3 p_1$ are lindependent 2. Then $p \in \text{InsideOfTriangle}(p_1, p_2, p_3)$ if and only if the following conditions are satisfied:
 - (i) tricord1 $(p_1, p_2, p_3, p) > 0$,
 - (ii) tricord2 $(p_1, p_2, p_3, p) > 0$, and
- (iii) tricord2 $(p_1, p_2, p_3, p) > 0$.
- (68) For all p_1 , p_2 , p_3 such that $p_2 p_1$, $p_3 p_1$ are lindependent2 holds InsideOfTriangle (p_1, p_2, p_3) is non empty.

References

- [1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179–183, 2003.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.

- [7] Wenpai Chang, Yatsuka Nakamura, and Piotr Rudnicki. Inner products and angles of complex numbers. Formalized Mathematics, 11(3):275–280, 2003.
- [8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [9] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [10] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathbb{T}}^2$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [15] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$. Formalized Mathematics, $5(\mathbf{1})$:93–96, 1996.
- [16] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [21] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received May 29, 2003