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Summary. A continuation of [5]. As the example of real norm spaces,
we introduce the arithmetic addition and multiplication in the set of absolute

summable real sequences and also introduce the norm. This set has the structure

of the Banach space.
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The notation and terminology used here are introduced in the following papers:

[14], [17], [4], [1], [13], [7], [2], [3], [18], [16], [10], [15], [11], [9], [8], [12], and [6].

1. The Space of Absolute Summable Real Sequences

The subset the set of l1-real sequences of the linear space of real sequences

is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then x ∈ the set of l1-real sequences if and only if x ∈ the

set of real sequences and idseq(x) is absolutely summable.

Let us observe that the set of l1-real sequences is non empty.

One can prove the following two propositions:

(1) The set of l1-real sequences is linearly closed.

(2) 〈the set of l1-real sequences,Zero (the set of l1-real sequences, the linear

space of real sequences),Add (the set of l1-real sequences, the linear space
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of real sequences),Mult (the set of l1-real sequences, the linear space of

real sequences)〉 is a subspace of the linear space of real sequences.

One can check that 〈the set of l1-real sequences,Zero (the set of

l1-real sequences, the linear space of real sequences),Add (the set of l1-

real sequences, the linear space of real sequences),Mult (the set of l1-real

sequences, the linear space of real sequences)〉 is Abelian, add-associative, ri-

ght zeroed, right complementable, and real linear space-like.

One can prove the following proposition

(3) 〈the set of l1-real sequences,Zero (the set of l1-real sequences, the linear

space of real sequences),Add (the set of l1-real sequences, the linear space

of real sequences),Mult (the set of l1-real sequences, the linear space of

real sequences)〉 is a real linear space.

The function normseq from the set of l1-real sequences into R is defined by:

(Def. 2) For every set x such that x ∈ the set of l1-real sequences holds

normseq(x) =
∑
|idseq(x)|.

Let X be a non empty set, let Z be an element of X, let A be a binary

operation on X, let M be a function from [: R, X :] into X, and let N be a

function from X into R. One can check that 〈X, Z, A,M,N〉 is non empty.

Next we state four propositions:

(4) Let l be a normed structure. Suppose 〈the carrier of l, the zero of l, the

addition of l, the external multiplication of l〉 is a real linear space. Then

l is a real linear space.

(5) Let r1 be a sequence of real numbers. Suppose that for every natural

number n holds r1(n) = 0. Then r1 is absolutely summable and
∑
|r1| = 0.

(6) Let r1 be a sequence of real numbers. Suppose r1 is absolutely summable

and
∑
|r1| = 0. Let n be a natural number. Then r1(n) = 0.

(7) 〈the set of l1-real sequences,Zero (the set of l1-real sequences, the linear

space of real sequences),Add (the set of l1-real sequences, the linear space

of real sequences),Mult (the set of l1-real sequences, the linear space of

real sequences),normseq〉 is a real linear space.

The non empty normed structure l1-Space is defined by the condition

(Def. 3).

(Def. 3) l1-Space = 〈the set of l1-real sequences,Zero (the set of l1-real

sequences, the linear space of real sequences),Add (the set of l1-real

sequences, the linear space of real sequences),Mult (the set of l1-real

sequences, the linear space of real sequences),normseq〉.
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2. The Space is Banach Space

One can prove the following two propositions:

(8) The carrier of l1-Space = the set of l1-real sequences and for every set x

holds x is an element of l1-Space iff x is a sequence of real numbers and

idseq(x) is absolutely summable and for every set x holds x is a vector

of l1-Space iff x is a sequence of real numbers and idseq(x) is absolutely

summable and 0l1-Space = Zeroseq and for every vector u of l1-Space holds

u = idseq(u) and for all vectors u, v of l1-Space holds u + v = idseq(u) +

idseq(v) and for every real number r and for every vector u of l1-Space

holds r · u = r idseq(u) and for every vector u of l1-Space holds −u =

−idseq(u) and idseq(−u) = −idseq(u) and for all vectors u, v of l1-Space

holds u − v = idseq(u) − idseq(v) and for every vector v of l1-Space holds

idseq(v) is absolutely summable and for every vector v of l1-Space holds

‖v‖ =
∑
|idseq(v)|.

(9) Let x, y be points of l1-Space and a be a real number. Then ‖x‖ = 0 iff

x = 0l1-Space and 0 ¬ ‖x‖ and ‖x + y‖ ¬ ‖x‖+ ‖y‖ and ‖a · x‖ = |a| · ‖x‖.

Let us observe that l1-Space is real normed space-like, real linear space-like,

Abelian, add-associative, right zeroed, and right complementable.

Let X be a non empty normed structure and let x, y be points of X. The

functor ρ(x, y) yields a real number and is defined by:

(Def. 4) ρ(x, y) = ‖x− y‖.

Let N1 be a non empty normed structure and let s1 be a sequence of N1.

We say that s1 is CCauchy if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let r2 be a real number. Suppose r2 > 0. Then there exists a natural

number k1 such that for all natural numbers n1, m1 if n1 ­ k1 and m1 ­

k1, then ρ(s1(n1), s1(m1)) < r2.

We introduce s1 is Cauchy sequence by norm as a synonym of s1 is CCauchy.

In the sequel N1 denotes a non empty real normed space and s2 denotes a

sequence of N1.

We now state two propositions:

(10) s2 is Cauchy sequence by norm if and only if for every real number r

such that r > 0 there exists a natural number k such that for all natural

numbers n, m such that n ­ k and m ­ k holds ‖s2(n)− s2(m)‖ < r.

(11) For every sequence v1 of l1-Space such that v1 is Cauchy sequence by

norm holds v1 is convergent.
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